Age | Commit message (Collapse) | Author |
|
|
|
After IPTables checks a batch of packets, we can write packets that are
not dropped or locally destined as a batch instead of individually.
This previously caused a bug since WritePacket* functions expect to take
ownership of passed PacketBuffer{List}. WritePackets assumed the list of
PacketBuffers will not be invalidated when calling WritePacket for each
PacketBuffer in the list, but this is not true. WritePacket may add the
passed PacketBuffer into a different list which would modify the
PacketBuffer in such a way that it no longer points to the next
PacketBuffer to write.
Example: Given a PB list of
PB_a -> PB_b -> PB_c
WritePackets may be iterating over the list and calling WritePacket for
each PB. When WritePacket takes PB_a, it may add it to a new list which
would update pointers such that PB_a no longer points to PB_b.
Test: integration_test.TestIPTableWritePackets
PiperOrigin-RevId: 355969560
|
|
|
|
Make it clear that failing to parse a looped back is not a packet
sending error but a malformed received packet error.
FindNetworkEndpoint returns nil when no network endpoint is found
instead of an error.
PiperOrigin-RevId: 355954946
|
|
|
|
PiperOrigin-RevId: 355751801
|
|
|
|
- Adds a function to enable RACK in tests.
- RACK update functions are guarded behind the flag tcpRecovery.
PiperOrigin-RevId: 355435973
|
|
|
|
Rename HandleNDupAcks() to HandleLossDetected() as it will enter this when
is detected after:
- reorder window expires and TLP (in case of RACK)
- dupAckCount >= 3
PiperOrigin-RevId: 355237858
|
|
|
|
Netstack today will send dupACK's with no rate limit for incoming out of
window segments. This can result in ACK loops for example if a TCP socket
connects to itself (actually permitted by TCP). Where the ACK sent in
response to packets being out of order itself gets considered as an out
of window segment resulting in another ACK being generated.
PiperOrigin-RevId: 355206877
|
|
|
|
...to remove the need for the transport layer to deduce the type of
error it received.
Rename HandleControlPacket to HandleError as HandleControlPacket only
handles errors.
tcpip.SockError now holds a tcpip.SockErrorCause interface that
different errors can implement.
PiperOrigin-RevId: 354994306
|
|
|
|
This change flips gvisor to use Neighbor unreachability detection by
default to populate the neighbor table as defined by RFC 4861 section 7.
Although RFC 4861 is targeted at IPv6, the same algorithm is used for
link resolution on IPv4 networks using ARP.
Integrators may still use the legacy link address cache by setting
stack.Options.UseLinkAddrCache to true; stack.Options.UseNeighborCache
is now unused and will be removed.
A later change will remove linkAddrCache and associated code.
Updates #4658.
PiperOrigin-RevId: 354850531
|
|
PiperOrigin-RevId: 354827491
|
|
...in IPv6 ICMP tests.
A channel link endpoint's channel is closed when the link endpoint is
closed.
When the stack tries to send packets through a NIC with a closed channel
endpoint, a panic will occur when attempting to write to a closed
channel (https://golang.org/ref/spec#Close). To make sure the stack does
not try to send packets through a NIC, we remove it.
PiperOrigin-RevId: 354822085
|
|
|
|
This stores each protocol's neighbor state separately.
This change also removes the need for each neighbor entry to keep
track of their own link address resolver now that all the entries
in a cache will use the same resolver.
PiperOrigin-RevId: 354818155
|
|
|
|
The network endpoint should not need to have logic to handle different
kinds of neighbor tables. Network endpoints can let the NIC know about
differnt neighbor discovery messages and let the NIC decide which table
to update.
This allows us to remove the LinkAddressCache interface.
PiperOrigin-RevId: 354812584
|
|
|
|
PiperOrigin-RevId: 354746864
|
|
|
|
This removes the need to provide the link address request with the NIC
the request is being performed on since the NetworkEndpoints already
have a reference to the NIC.
PiperOrigin-RevId: 354721940
|
|
|
|
This allows later decoupling of the backing network buffer implementation.
PiperOrigin-RevId: 354643297
|
|
|
|
This is dynamic state that can be re-learned when the NIC comes
back up.
Test: ipv4_test.TestIgmpV1Present
PiperOrigin-RevId: 354630921
|
|
|
|
...as per As per RFC 2236 section 3 page 3 (for IGMPv2) and
RFC 2710 section 4 page 5 (for MLDv1).
See comments in code for more details.
Test: ip_test.TestHandleQuery
PiperOrigin-RevId: 354603068
|
|
|
|
...per RFC 4861 s7.1.2.
Startblock:
has LGTM from sbalana
and then
add reviewer ghanan
PiperOrigin-RevId: 354539026
|
|
|
|
When a route does not need to resolve a remote link address to send a
packet, avoid having to obtain the pending packets queue's lock.
PiperOrigin-RevId: 354456280
|
|
|
|
|
|
After receiving an ACK(cumulative or selective), RACK will update the reorder
window which is used as a settling time before marking the packet as lost.
This change will add an init function to initialize the variables in RACK and
also store the reference to sender in rackControl.
The reorder window is calculated as per rfc:
https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.2 Step 4.
PiperOrigin-RevId: 354453528
|
|
Avoid a race condition in which an entry is acquired while it is being
evicted by overlapping the entry lock with the cache lock.
PiperOrigin-RevId: 354452639
|
|
|
|
This makes it possible to add data to types that implement tcpip.Error.
ErrBadLinkEndpoint is removed as it is unused.
PiperOrigin-RevId: 354437314
|
|
Clockwork does not support timers being reset/stopped from different
goroutines. Our current use of clockwork causes data races and
gotsan complains about clockwork.
This change uses our own implementation of faketime, avoiding data
races.
PiperOrigin-RevId: 354428208
|
|
|
|
Previously, sending on an unconnected UDP socket would ignore the
SO_BINDTODEVICE option. Send on the configured interface when an UDP socket
is bound to an interface through setsockop SO_BINDTODEVICE.
Add packetimpact tests exercising UDP reads and writes with every combination
of bound/unbound, broadcast/multicast/unicast destination, and bound/not-bound
to device.
PiperOrigin-RevId: 354299670
|
|
|
|
As per RFC 4861 section 7.3.1,
A neighbor is considered reachable if the node has recently received
a confirmation that packets sent recently to the neighbor were
received by its IP layer. Positive confirmation can be gathered in
two ways: hints from upper-layer protocols that indicate a connection
is making "forward progress", or receipt of a Neighbor Advertisement
message that is a response to a Neighbor Solicitation message.
This change adds support for TCP to let the IP/link layers know that a
neighbor is reachable.
Test: integration_test.TestTCPConfirmNeighborReachability
PiperOrigin-RevId: 354222833
|
|
|
|
This clarifies that there is a lock involved.
PiperOrigin-RevId: 354213848
|
|
|