Age | Commit message (Collapse) | Author |
|
The IPv4 RFCs are specific (though obtuse) that an echo response
packet needs to contain all the options from the echo request,
much as if it been routed back to the sender, though apparently
with a new TTL. They suggest copying the incoming packet header
to achieve this so that is what this patch does.
PiperOrigin-RevId: 335559176
|
|
We can get the network endpoint directly from the NIC.
This is a preparatory CL for when a Route needs to hold a dedicated NIC
as its output interface. This is because when forwarding is enabled,
packets may be sent from a NIC different from the NIC a route's local
address is associated with.
PiperOrigin-RevId: 335484500
|
|
We are currently tracking the minimum RTT for RACK as smoothed RTT. As per RFC
minimum RTT can be a global minimum of all RTTs or filtered value of recent
RTT measurements. In this cl minimum RTT is updated to global minimum of all
RTTs for the connection.
PiperOrigin-RevId: 335061518
|
|
Adds support for the IPv6-compatible redirect target. Redirection is a limited
form of DNAT, where the destination is always the localhost.
Updates #3549.
PiperOrigin-RevId: 334698344
|
|
As per relevant IP RFCS (see code comments), broadcast (for IPv4) and
multicast addresses are not allowed. Currently checks for these are
done at the transport layer, but since it is explicitly forbidden at
the IP layers, check for them there.
This change also removes the UDP.InvalidSourceAddress stat since there
is no longer a need for it.
Test: ip_test.TestSourceAddressValidation
PiperOrigin-RevId: 334490971
|
|
Currently expired IP fragments are discarded only if another fragment for the
same IP datagram is received after timeout or the total size of the fragment
queue exceeded a predefined value.
Test: fragmentation.TestReassemblingTimeout
Fixes #3960
PiperOrigin-RevId: 334423710
|
|
* Remove Capabilities and NICID methods from NetworkEndpoint.
* Remove linkEP and stack parameters from NetworkProtocol.NewEndpoint.
The LinkEndpoint can be fetched from the NetworkInterface. The stack
is passed to the NetworkProtocol when it is created so the
NetworkEndpoint can get it from its protocol.
* Remove stack parameter from TransportProtocol.NewEndpoint.
Like the NetworkProtocol/Endpoint, the stack is passed to the
TransportProtocol when it is created.
PiperOrigin-RevId: 334332721
|
|
* Add network address to network endpoints.
Hold network-specific state in the NetworkEndpoint instead of the stack.
This results in the stack no longer needing to "know" about the network
endpoints and special case certain work for various endpoints
(e.g. IPv6 DAD).
* Provide NetworkEndpoints with an NetworkInterface interface.
Instead of just passing the NIC ID of a NIC, pass an interface so the
network endpoint may query other information about the NIC such as
whether or not it is a loopback device.
* Move NDP code and state to the IPv6 package.
NDP is IPv6 specific so there is no need for it to live in the stack.
* Control forwarding through NetworkProtocols instead of Stack
Forwarding should be controlled on a per-network protocol basis so
forwarding configurations are now controlled through network protocols.
* Remove stack.referencedNetworkEndpoint.
Now that addresses are exposed via AddressEndpoint and only one
NetworkEndpoint is created per interface, there is no need for a
referenced NetworkEndpoint.
* Assume network teardown methods are infallible.
Fixes #3871, #3916
PiperOrigin-RevId: 334319433
|
|
In TestReceiveBufferAutoTuning we now send a keep-alive packet to measure the
current window rather than a 1 byte segment as the returned window value in the
latter case is reduced due to the 1 byte segment now being held in the receive
buffer and can cause the test to flake if the segment overheads were to change.
In getSendParams in rcv.go we were advertising a non-zero window even if
available window space was zero after we received the previous segment. In such
a case newWnd and curWnd will be the same and we end up advertising a tiny but
non-zero window and this can cause the next segment to be dropped.
PiperOrigin-RevId: 334314070
|
|
When the socket is set with SO_LINGER and close()'d in the initial state, it
should not linger and return immediately.
PiperOrigin-RevId: 334263149
|
|
Network or transport protocols may want to reach the stack. Support this
by letting the stack create the protocol instances so it can pass a
reference to itself at protocol creation time.
Note, protocols do not yet use the stack in this CL but later CLs will
make use of the stack from protocols.
PiperOrigin-RevId: 334260210
|
|
PiperOrigin-RevId: 333591566
|
|
segment_queue today has its own standalone limit of MaxUnprocessedSegments but
this can be a problem in UnlockUser() we do not release the lock till there are
segments to be processed. What can happen is as handleSegments dequeues packets
more keep getting queued and we will never release the lock. This can keep
happening even if the receive buffer is full because nothing can read() till we
release the lock.
Further having a separate limit for pending segments makes it harder to track
memory usage etc. Unifying the limits makes it easier to reason about memory in
use and makes the overall buffer behaviour more consistent.
PiperOrigin-RevId: 333508122
|
|
Store transport protocol number on packet buffers for use in ICMP error
generation.
Updates #2211.
PiperOrigin-RevId: 333252762
|
|
TCP needs to enqueue any send requests arriving when the connection is in
SYN_SENT state. The data should be sent out soon after completion of the
connection handshake.
Fixes #3995
PiperOrigin-RevId: 332482041
|
|
Extract parsing utilities so they can be used by the sniffer.
Fixes #3930
PiperOrigin-RevId: 332401880
|
|
SO_LINGER is a socket level option and should be stored on all endpoints even
though it is used to linger only for TCP endpoints.
PiperOrigin-RevId: 332369252
|
|
PiperOrigin-RevId: 332097286
|
|
When a broadcast packet is received by the stack, the packet should be
delivered to each endpoint that may be interested in the packet. This
includes all any address and specified broadcast address listeners.
Test: integration_test.TestReuseAddrAndBroadcast
PiperOrigin-RevId: 332060652
|
|
The routing table (in its current) form should not be used to make
decisions about whether a remote address is a broadcast address or
not (for IPv4).
Note, a destination subnet does not always map to a network.
E.g. RouterA may have a route to 192.168.0.0/22 through RouterB,
but RouterB may be configured with 4x /24 subnets on 4 different
interfaces.
See https://github.com/google/gvisor/issues/3938.
PiperOrigin-RevId: 331819868
|
|
This is simpler and more performant.
PiperOrigin-RevId: 331639978
|
|
gVisor stack ignores RSTs when in TIME_WAIT which is not the default
Linux behavior. Add a packetimpact test to test the same.
Also update code comments to reflect the rationale for the current
gVisor behavior.
PiperOrigin-RevId: 331629879
|
|
e.ID can't be read without holding e.mu. GetSockOpt was reading e.ID
when looking up OriginalDst without holding e.mu.
PiperOrigin-RevId: 330562293
|
|
The existing implementation for TransportProtocol.{Set}Option take
arguments of an empty interface type which all types (implicitly)
implement; any type may be passed to the functions.
This change introduces marker interfaces for transport protocol options
that may be set or queried which transport protocol option types
implement to ensure that invalid types are caught at compile time.
Different interfaces are used to allow the compiler to enforce read-only
or set-only socket options.
RELNOTES: n/a
PiperOrigin-RevId: 330559811
|
|
Accept on gVisor will return an error if a socket in the accept queue was closed
before Accept() was called. Linux will return the new fd even if the returned
socket is already closed by the peer say due to a RST being sent by the peer.
This seems to be intentional in linux more details on the github issue.
Fixes #3780
PiperOrigin-RevId: 329828404
|
|
On receiving an ACK with unacceptable ACK number, in a closing state,
TCP, needs to reply back with an ACK with correct seq and ack numbers and
remain in same state. This change is as per RFC793 page 37, but with a
difference that it does not apply to ESTABLISHED state, just as in Linux.
Also add more tests to check for OTW sequence number and unacceptable
ack numbers in these states.
Fixes #3785
PiperOrigin-RevId: 329616283
|
|
PiperOrigin-RevId: 329526153
|
|
The existing implementation for {G,S}etSockOpt take arguments of an
empty interface type which all types (implicitly) implement; any
type may be passed to the functions.
This change introduces marker interfaces for socket options that may be
set or queried which socket option types implement to ensure that invalid
types are caught at compile time. Different interfaces are used to allow
the compiler to enforce read-only or set-only socket options.
Fixes #3714.
RELNOTES: n/a
PiperOrigin-RevId: 328832161
|
|
In an upcoming CL, socket option types are made to implement a marker
interface with pointer receivers. Since this results in calling methods
of an interface with a pointer, we incur an allocation when attempting
to get an Endpoint's last error with the current implementation.
When calling the method of an interface, the compiler is unable to
determine what the interface implementation does with the pointer
(since calling a method on an interface uses virtual dispatch at runtime
so the compiler does not know what the interface method will do) so it
allocates on the heap to be safe incase an implementation continues to
hold the pointer after the functioon returns (the reference escapes the
scope of the object).
In the example below, the compiler does not know what b.foo does with
the reference to a it allocates a on the heap as the reference to a may
escape the scope of a.
```
var a int
var b someInterface
b.foo(&a)
```
This change removes the opportunity for that allocation.
RELNOTES: n/a
PiperOrigin-RevId: 328796559
|
|
Test:
- TestV4UnknownDestination
- TestV6UnknownDestination
PiperOrigin-RevId: 328424137
|
|
This change adds an option to replace the current implementation of ARP through
linkAddrCache, with an implementation of NUD through neighborCache. Switching
to using NUD for both ARP and NDP is beneficial for the reasons described by
RFC 4861 Section 3.1:
"[Using NUD] significantly improves the robustness of packet delivery in the
presence of failing routers, partially failing or partitioned links, or nodes
that change their link-layer addresses. For instance, mobile nodes can move
off-link without losing any connectivity due to stale ARP caches."
"Unlike ARP, Neighbor Unreachability Detection detects half-link failures and
avoids sending traffic to neighbors with which two-way connectivity is
absent."
Along with these changes exposes the API for querying and operating the
neighbor cache. Operations include:
- Create a static entry
- List all entries
- Delete all entries
- Remove an entry by address
This also exposes the API to change the NUD protocol constants on a per-NIC
basis to allow Neighbor Discovery to operate over links with widely varying
performance characteristics. See [RFC 4861 Section 10][1] for the list of
constants.
Finally, an API for subscribing to NUD state changes is exposed through
NUDDispatcher. See [RFC 4861 Appendix C][3] for the list of edges.
Tests:
pkg/tcpip/network/arp:arp_test
+ TestDirectRequest
pkg/tcpip/network/ipv6:ipv6_test
+ TestLinkResolution
+ TestNDPValidation
+ TestNeighorAdvertisementWithTargetLinkLayerOption
+ TestNeighorSolicitationResponse
+ TestNeighorSolicitationWithSourceLinkLayerOption
+ TestRouterAdvertValidation
pkg/tcpip/stack:stack_test
+ TestCacheWaker
+ TestForwardingWithFakeResolver
+ TestForwardingWithFakeResolverManyPackets
+ TestForwardingWithFakeResolverManyResolutions
+ TestForwardingWithFakeResolverPartialTimeout
+ TestForwardingWithFakeResolverTwoPackets
+ TestIPv6SourceAddressSelectionScopeAndSameAddress
[1]: https://tools.ietf.org/html/rfc4861#section-10
[2]: https://tools.ietf.org/html/rfc4861#appendix-C
Fixes #1889
Fixes #1894
Fixes #1895
Fixes #1947
Fixes #1948
Fixes #1949
Fixes #1950
PiperOrigin-RevId: 328365034
|
|
When SO_LINGER option is enabled, the close will not return until all the
queued messages are sent and acknowledged for the socket or linger timeout is
reached. If the option is not set, close will return immediately. This option
is mainly supported for connection oriented protocols such as TCP.
PiperOrigin-RevId: 328350576
|
|
We still deviate a bit from linux in how long we will actually wait in
FIN-WAIT-2. Linux seems to cap it with TIME_WAIT_LEN and it's not completely
obvious as to why it's done that way. For now I think we can ignore that and
fix it if it really is an issue.
PiperOrigin-RevId: 328324922
|
|
PiperOrigin-RevId: 328259353
|
|
PiperOrigin-RevId: 327686558
|
|
RACK requires the segments to be in the order of their transmission
or retransmission times. This cl creates a new list and moves the
retransmitted segments to the end of the list.
PiperOrigin-RevId: 327325153
|
|
The NetworkEndpoint does not need to be created for each address.
Most of the work the NetworkEndpoint does is address agnostic.
PiperOrigin-RevId: 326759605
|
|
This is a preparatory commit for a larger commit working on
ICMP generation in error cases.
This is removal of technical debt and cleanup in the gvisor code
as part of gvisor issue 2211.
Updates #2211.
PiperOrigin-RevId: 326615389
|
|
This change supports using the user supplied MSS (TCP_MAXSEG socket
option) for new socket connections created from a listening TCP socket.
Note that the user supplied MSS will only be used if it is not greater
than the maximum possible MSS for a TCP connection's route. If it is
greater than the maximum possible MSS, the MSS will be capped at that
maximum value.
Test: tcp_test.TestUserSuppliedMSSOnListenAccept
PiperOrigin-RevId: 326567442
|
|
Formerly, when a packet is constructed or parsed, all headers are set by the
client code. This almost always involved prepending to pk.Header buffer or
trimming pk.Data portion. This is known to prone to bugs, due to the complexity
and number of the invariants assumed across netstack to maintain.
In the new PacketHeader API, client will call Push()/Consume() method to
construct/parse an outgoing/incoming packet. All invariants, such as slicing
and trimming, are maintained by the API itself.
NewPacketBuffer() is introduced to create new PacketBuffer. Zero value is no
longer valid.
PacketBuffer now assumes the packet is a concatenation of following portions:
* LinkHeader
* NetworkHeader
* TransportHeader
* Data
Any of them could be empty, or zero-length.
PiperOrigin-RevId: 326507688
|
|
Netstack's TIME-WAIT state for a TCP socket could be terminated prematurely if
the socket entered TIME-WAIT using shutdown(..., SHUT_RDWR) and then was closed
using close(). This fixes that bug and updates the tests to verify that Netstack
correctly honors TIME-WAIT under such conditions.
Fixes #3106
PiperOrigin-RevId: 326456443
|
|
IPPacketInfo.DestinationAddr should hold the destination of the IP
packet, not the source. This change fixes that bug.
PiperOrigin-RevId: 325910766
|
|
Packets MUST NOT use a non-unicast source address for ICMP
Echo Replies.
Test: integration_test.TestPingMulticastBroadcast
PiperOrigin-RevId: 325634380
|
|
It was changed in the Linux kernel:
commit f0628c524fd188c3f9418e12478dfdfadacba815
Date: Fri Apr 24 16:06:16 2020 +0800
net: Replace the limit of TCP_LINGER2 with TCP_FIN_TIMEOUT_MAX
PiperOrigin-RevId: 325493859
|
|
/proc/sys/net/ipv4/tcp_recovery is used to enable RACK loss
recovery in TCP.
PiperOrigin-RevId: 325157807
|
|
RACK (Recent Acknowledgement) is a new loss detection
algorithm in TCP. These are the fields which should be
stored on connections to implement RACK algorithm.
PiperOrigin-RevId: 324948703
|
|
Envoy (#170) uses this to get the original destination of redirected
packets.
|
|
CurrentConnected counter is incorrectly decremented on close of an
endpoint which is still not connected.
Fixes #3443
PiperOrigin-RevId: 324155171
|
|
In
https://github.com/google/gvisor/commit/ca6bded95dbce07f9683904b4b768dfc2d4a09b2
we reduced the default buffer size to 32KB. This mostly works fine except at
high throughput where we hit zero window very quickly and the TCP receive
buffer moderation is not able to grow the window. This can be seen in the
benchmarks where with a 32KB buffer and 100 connections downloading a 10MB
file we get about 30 requests/s vs the 1MB buffer gives us about 53 requests/s.
A proper fix requires a few changes to when we send a zero window as well as
when we decide to send a zero window update. Today we consider available space
below 1MSS as zero and send an update when it crosses 1MSS of available space.
This is way too low and results in the window staying very small once we hit
a zero window condition as we keep sending updates with size barely over 1MSS.
Linux and BSD are smarter about this and use different thresholds. We should
separately update our logic to match linux or BSD so that we don't send
window updates that are really tiny or wait until we drop below 1MSS to
advertise a zero window.
PiperOrigin-RevId: 324087019
|
|
When sending packets to a known network's broadcast address, use the
broadcast MAC address.
Test:
- stack_test.TestOutgoingSubnetBroadcast
- udp_test.TestOutgoingSubnetBroadcast
PiperOrigin-RevId: 324062407
|