Age | Commit message (Collapse) | Author |
|
* Rename syncutil to sync.
* Add aliases to sync types.
* Replace existing usage of standard library sync package.
This will make it easier to swap out synchronization primitives. For example,
this will allow us to use primitives from github.com/sasha-s/go-deadlock to
check for lock ordering violations.
Updates #1472
PiperOrigin-RevId: 289033387
|
|
The implementation follows the linux behavior where specifying
a TCP_USER_TIMEOUT will cause the resend timer to honor the
user specified timeout rather than the default rto based timeout.
Further it alters when connections are timedout due to keepalive
failures. It does not alter the behavior of when keepalives are
sent. This is as per the linux behavior.
PiperOrigin-RevId: 285099795
|
|
This change adds explicit support for honoring the 2MSL timeout
for sockets in TIME_WAIT state. It also adds support for the
TCP_LINGER2 option that allows modification of the FIN_WAIT2
state timeout duration for a given socket.
It also adds an option to modify the Stack wide TIME_WAIT timeout
but this is only for testing. On Linux this is fixed at 60s.
Further, we also now correctly process RST's in CLOSE_WAIT and
close the socket similar to linux without moving it to error
state.
We also now handle SYN in ESTABLISHED state as per
RFC5961#section-4.1. Earlier we would just drop these SYNs.
Which can result in some tests that pass on linux to fail on
gVisor.
Netstack now honors TIME_WAIT correctly as well as handles the
following cases correctly.
- TCP RSTs in TIME_WAIT are ignored.
- A duplicate TCP FIN during TIME_WAIT extends the TIME_WAIT
and a dup ACK is sent in response to the FIN as the dup FIN
indicates potential loss of the original final ACK.
- An out of order segment during TIME_WAIT generates a dup ACK.
- A new SYN w/ a sequence number > the highest sequence number
in the previous connection closes the TIME_WAIT early and
opens a new connection.
Further to make the SYN case work correctly the ISN (Initial
Sequence Number) generation for Netstack has been updated to
be as per RFC. Its not a pure random number anymore and follows
the recommendation in https://tools.ietf.org/html/rfc6528#page-3.
The current hash used is not a cryptographically secure hash
function. A separate change will update the hash function used
to Siphash similar to what is used in Linux.
PiperOrigin-RevId: 279106406
|
|
PiperOrigin-RevId: 278979065
|
|
PacketBuffers are analogous to Linux's sk_buff. They hold all information about
a packet, headers, and payload. This is important for:
* iptables to access various headers of packets
* Preventing the clutter of passing different net and link headers along with
VectorisedViews to packet handling functions.
This change only affects the incoming packet path, and a future change will
change the outgoing path.
Benchmark Regular PacketBufferPtr PacketBufferConcrete
--------------------------------------------------------------------------------
BM_Recvmsg 400.715MB/s 373.676MB/s 396.276MB/s
BM_Sendmsg 361.832MB/s 333.003MB/s 335.571MB/s
BM_Recvfrom 453.336MB/s 393.321MB/s 381.650MB/s
BM_Sendto 378.052MB/s 372.134MB/s 341.342MB/s
BM_SendmsgTCP/0/1k 353.711MB/s 316.216MB/s 322.747MB/s
BM_SendmsgTCP/0/2k 600.681MB/s 588.776MB/s 565.050MB/s
BM_SendmsgTCP/0/4k 995.301MB/s 888.808MB/s 941.888MB/s
BM_SendmsgTCP/0/8k 1.517GB/s 1.274GB/s 1.345GB/s
BM_SendmsgTCP/0/16k 1.872GB/s 1.586GB/s 1.698GB/s
BM_SendmsgTCP/0/32k 1.017GB/s 1.020GB/s 1.133GB/s
BM_SendmsgTCP/0/64k 475.626MB/s 584.587MB/s 627.027MB/s
BM_SendmsgTCP/0/128k 416.371MB/s 503.434MB/s 409.850MB/s
BM_SendmsgTCP/0/256k 323.449MB/s 449.599MB/s 388.852MB/s
BM_SendmsgTCP/0/512k 243.992MB/s 267.676MB/s 314.474MB/s
BM_SendmsgTCP/0/1M 95.138MB/s 95.874MB/s 95.417MB/s
BM_SendmsgTCP/0/2M 96.261MB/s 94.977MB/s 96.005MB/s
BM_SendmsgTCP/0/4M 96.512MB/s 95.978MB/s 95.370MB/s
BM_SendmsgTCP/0/8M 95.603MB/s 95.541MB/s 94.935MB/s
BM_SendmsgTCP/0/16M 94.598MB/s 94.696MB/s 94.521MB/s
BM_SendmsgTCP/0/32M 94.006MB/s 94.671MB/s 94.768MB/s
BM_SendmsgTCP/0/64M 94.133MB/s 94.333MB/s 94.746MB/s
BM_SendmsgTCP/0/128M 93.615MB/s 93.497MB/s 93.573MB/s
BM_SendmsgTCP/0/256M 93.241MB/s 95.100MB/s 93.272MB/s
BM_SendmsgTCP/1/1k 303.644MB/s 316.074MB/s 308.430MB/s
BM_SendmsgTCP/1/2k 537.093MB/s 584.962MB/s 529.020MB/s
BM_SendmsgTCP/1/4k 882.362MB/s 939.087MB/s 892.285MB/s
BM_SendmsgTCP/1/8k 1.272GB/s 1.394GB/s 1.296GB/s
BM_SendmsgTCP/1/16k 1.802GB/s 2.019GB/s 1.830GB/s
BM_SendmsgTCP/1/32k 2.084GB/s 2.173GB/s 2.156GB/s
BM_SendmsgTCP/1/64k 2.515GB/s 2.463GB/s 2.473GB/s
BM_SendmsgTCP/1/128k 2.811GB/s 3.004GB/s 2.946GB/s
BM_SendmsgTCP/1/256k 3.008GB/s 3.159GB/s 3.171GB/s
BM_SendmsgTCP/1/512k 2.980GB/s 3.150GB/s 3.126GB/s
BM_SendmsgTCP/1/1M 2.165GB/s 2.233GB/s 2.163GB/s
BM_SendmsgTCP/1/2M 2.370GB/s 2.219GB/s 2.453GB/s
BM_SendmsgTCP/1/4M 2.005GB/s 2.091GB/s 2.214GB/s
BM_SendmsgTCP/1/8M 2.111GB/s 2.013GB/s 2.109GB/s
BM_SendmsgTCP/1/16M 1.902GB/s 1.868GB/s 1.897GB/s
BM_SendmsgTCP/1/32M 1.655GB/s 1.665GB/s 1.635GB/s
BM_SendmsgTCP/1/64M 1.575GB/s 1.547GB/s 1.575GB/s
BM_SendmsgTCP/1/128M 1.524GB/s 1.584GB/s 1.580GB/s
BM_SendmsgTCP/1/256M 1.579GB/s 1.607GB/s 1.593GB/s
PiperOrigin-RevId: 278940079
|
|
PiperOrigin-RevId: 274700093
|
|
Also removes the need for protocol names.
PiperOrigin-RevId: 271186030
|
|
Adds support to generate Port Unreachable messages for UDP
datagrams received on a port for which there is no valid
endpoint.
Fixes #703
PiperOrigin-RevId: 267034418
|
|
The implementation is similar to linux where we track the number of bytes
consumed by the application to grow the receive buffer of a given TCP endpoint.
This ensures that the advertised window grows at a reasonable rate to accomodate
for the sender's rate and prevents large amounts of data being held in stack
buffers if the application is not actively reading or not reading fast enough.
The original paper that was used to implement the linux receive buffer auto-
tuning is available @ https://public.lanl.gov/radiant/pubs/drs/lacsi2001.pdf
NOTE: Linux does not implement DRS as defined in that paper, it's just a good
reference to understand the solution space.
Updates #230
PiperOrigin-RevId: 253168283
|
|
This can be merged after:
https://github.com/google/gvisor-website/pull/77
or
https://github.com/google/gvisor-website/pull/78
PiperOrigin-RevId: 253132620
|
|
This CL also cleans up the error returned for setting congestion
control which was incorrectly returning EINVAL instead of ENOENT.
PiperOrigin-RevId: 252889093
|
|
Netstack sets the unprocessed segment queue size to match the receive
buffer size. This is not required as this queue only needs to hold enough
for a short duration before the endpoint goroutine can process it.
Updates #230
PiperOrigin-RevId: 250976323
|
|
PiperOrigin-RevId: 249511348
Change-Id: I34539092cc85032d9473ff4dd308fc29dc9bfd6b
|
|
Based on the guidelines at
https://opensource.google.com/docs/releasing/authors/.
1. $ rg -l "Google LLC" | xargs sed -i 's/Google LLC.*/The gVisor Authors./'
2. Manual fixup of "Google Inc" references.
3. Add AUTHORS file. Authors may request to be added to this file.
4. Point netstack AUTHORS to gVisor AUTHORS. Drop CONTRIBUTORS.
Fixes #209
PiperOrigin-RevId: 245823212
Change-Id: I64530b24ad021a7d683137459cafc510f5ee1de9
|
|
PiperOrigin-RevId: 242704699
Change-Id: I87db368ca343b3b4bf4f969b17d3aa4ce2f8bd4f
|
|
The linux packet socket can handle GSO packets, so we can segment packets to
64K instead of the MTU which is usually 1500.
Here are numbers for the nginx-1m test:
runsc: 579330.01 [Kbytes/sec] received
runsc-gso: 1794121.66 [Kbytes/sec] received
runc: 2122139.06 [Kbytes/sec] received
and for tcp_benchmark:
$ tcp_benchmark --duration 15 --ideal
[ 4] 0.0-15.0 sec 86647 MBytes 48456 Mbits/sec
$ tcp_benchmark --client --duration 15 --ideal
[ 4] 0.0-15.0 sec 2173 MBytes 1214 Mbits/sec
$ tcp_benchmark --client --duration 15 --ideal --gso 65536
[ 4] 0.0-15.0 sec 19357 MBytes 10825 Mbits/sec
PiperOrigin-RevId: 240809103
Change-Id: I2637f104db28b5d4c64e1e766c610162a195775a
|
|
PiperOrigin-RevId: 238467634
Change-Id: If4cd8efff7386fbee1195f051d15549b495910a9
|
|
Broadly, this change:
* Enables sockets to be created via `socket(AF_INET, SOCK_RAW, IPPROTO_ICMP)`.
* Passes the network-layer (IP) header up the stack to the transport endpoint,
which can pass it up to the socket layer. This allows a raw socket to return
the entire IP packet to users.
* Adds functions to stack.TransportProtocol, stack.Stack, stack.transportDemuxer
that enable incoming packets to be delivered to raw endpoints. New raw sockets
of other protocols (not ICMP) just need to register with the stack.
* Enables ping.endpoint to return IP headers when created via SOCK_RAW.
PiperOrigin-RevId: 235993280
Change-Id: I60ed994f5ff18b2cbd79f063a7fdf15d093d845a
|
|
PiperOrigin-RevId: 217951017
Change-Id: Ie08bf6987f98467d07457bcf35b5f1ff6e43c035
|
|
PiperOrigin-RevId: 212757571
Change-Id: I04200df9e45c21eb64951cd2802532fa84afcb1a
|
|
PiperOrigin-RevId: 212750821
Change-Id: I822fd63e48c684b45fd91f9ce057867b7eceb792
|
|
Makes it possible to avoid copying or allocating in cases where DeliverNetworkPacket (rx)
needs to turn around and call WritePacket (tx) with its VectorisedView.
Also removes the restriction on having VectorisedViews with multiple views in the write path.
PiperOrigin-RevId: 211728717
Change-Id: Ie03a65ecb4e28bd15ebdb9c69f05eced18fdfcff
|
|
This CL implements CUBIC as described in https://tools.ietf.org/html/rfc8312.
PiperOrigin-RevId: 207353142
Change-Id: I329cbf3277f91127e99e488f07d906f6779c6603
|
|
Fixes #27
PiperOrigin-RevId: 203825288
Change-Id: Ie9f3a2b2c1e296b026b024f75c07da1a7e118633
|
|
Also adds support to query available congestion control algorithms.
PiperOrigin-RevId: 199826897
Change-Id: I2b338b709820ee9cf58bb56d83aa7b1a39f4eab2
|
|
PiperOrigin-RevId: 194583126
Change-Id: Ica1d8821a90f74e7e745962d71801c598c652463
|