summaryrefslogtreecommitdiffhomepage
path: root/pkg/tcpip/stack
AgeCommit message (Collapse)Author
2020-08-25Add option to replace linkAddrCache with neighborCacheSam Balana
This change adds an option to replace the current implementation of ARP through linkAddrCache, with an implementation of NUD through neighborCache. Switching to using NUD for both ARP and NDP is beneficial for the reasons described by RFC 4861 Section 3.1: "[Using NUD] significantly improves the robustness of packet delivery in the presence of failing routers, partially failing or partitioned links, or nodes that change their link-layer addresses. For instance, mobile nodes can move off-link without losing any connectivity due to stale ARP caches." "Unlike ARP, Neighbor Unreachability Detection detects half-link failures and avoids sending traffic to neighbors with which two-way connectivity is absent." Along with these changes exposes the API for querying and operating the neighbor cache. Operations include: - Create a static entry - List all entries - Delete all entries - Remove an entry by address This also exposes the API to change the NUD protocol constants on a per-NIC basis to allow Neighbor Discovery to operate over links with widely varying performance characteristics. See [RFC 4861 Section 10][1] for the list of constants. Finally, an API for subscribing to NUD state changes is exposed through NUDDispatcher. See [RFC 4861 Appendix C][3] for the list of edges. Tests: pkg/tcpip/network/arp:arp_test + TestDirectRequest pkg/tcpip/network/ipv6:ipv6_test + TestLinkResolution + TestNDPValidation + TestNeighorAdvertisementWithTargetLinkLayerOption + TestNeighorSolicitationResponse + TestNeighorSolicitationWithSourceLinkLayerOption + TestRouterAdvertValidation pkg/tcpip/stack:stack_test + TestCacheWaker + TestForwardingWithFakeResolver + TestForwardingWithFakeResolverManyPackets + TestForwardingWithFakeResolverManyResolutions + TestForwardingWithFakeResolverPartialTimeout + TestForwardingWithFakeResolverTwoPackets + TestIPv6SourceAddressSelectionScopeAndSameAddress [1]: https://tools.ietf.org/html/rfc4861#section-10 [2]: https://tools.ietf.org/html/rfc4861#appendix-C Fixes #1889 Fixes #1894 Fixes #1895 Fixes #1947 Fixes #1948 Fixes #1949 Fixes #1950 PiperOrigin-RevId: 328365034
2020-08-24Consider loopback bound to all addresses in subnetGhanan Gowripalan
When a loopback interface is configurd with an address and associated subnet, the loopback should treat all addresses in that subnet as an address it owns. This is mimicking linux behaviour as seen below: ``` $ ip addr show dev lo 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group ... link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever $ ping 192.0.2.1 PING 192.0.2.1 (192.0.2.1) 56(84) bytes of data. ^C --- 192.0.2.1 ping statistics --- 2 packets transmitted, 0 received, 100% packet loss, time 1018ms $ ping 192.0.2.2 PING 192.0.2.2 (192.0.2.2) 56(84) bytes of data. ^C --- 192.0.2.2 ping statistics --- 3 packets transmitted, 0 received, 100% packet loss, time 2039ms $ sudo ip addr add 192.0.2.1/24 dev lo $ ip addr show dev lo 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group ... link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet 192.0.2.1/24 scope global lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever $ ping 192.0.2.1 PING 192.0.2.1 (192.0.2.1) 56(84) bytes of data. 64 bytes from 192.0.2.1: icmp_seq=1 ttl=64 time=0.131 ms 64 bytes from 192.0.2.1: icmp_seq=2 ttl=64 time=0.046 ms 64 bytes from 192.0.2.1: icmp_seq=3 ttl=64 time=0.048 ms ^C --- 192.0.2.1 ping statistics --- 3 packets transmitted, 3 received, 0% packet loss, time 2042ms rtt min/avg/max/mdev = 0.046/0.075/0.131/0.039 ms $ ping 192.0.2.2 PING 192.0.2.2 (192.0.2.2) 56(84) bytes of data. 64 bytes from 192.0.2.2: icmp_seq=1 ttl=64 time=0.131 ms 64 bytes from 192.0.2.2: icmp_seq=2 ttl=64 time=0.069 ms 64 bytes from 192.0.2.2: icmp_seq=3 ttl=64 time=0.049 ms 64 bytes from 192.0.2.2: icmp_seq=4 ttl=64 time=0.035 ms ^C --- 192.0.2.2 ping statistics --- 4 packets transmitted, 4 received, 0% packet loss, time 3049ms rtt min/avg/max/mdev = 0.035/0.071/0.131/0.036 ms ``` Test: integration_test.TestLoopbackAcceptAllInSubnet PiperOrigin-RevId: 328188546
2020-08-20Consistent precondition formattingMichael Pratt
Our "Preconditions:" blocks are very useful to determine the input invariants, but they are bit inconsistent throughout the codebase, which makes them harder to read (particularly cases with 5+ conditions in a single paragraph). I've reformatted all of the cases to fit in simple rules: 1. Cases with a single condition are placed on a single line. 2. Cases with multiple conditions are placed in a bulleted list. This format has been added to the style guide. I've also mentioned "Postconditions:", though those are much less frequently used, and all uses already match this style. PiperOrigin-RevId: 327687465
2020-08-17Remove address range functionsGhanan Gowripalan
Should have been removed in cl/326791119 https://github.com/google/gvisor/commit/9a7b5830aa063895f67ca0fdf653a46906374613 PiperOrigin-RevId: 327074156
2020-08-15Don't support address rangesGhanan Gowripalan
Previously the netstack supported assignment of a range of addresses. This feature is not used so remove it. PiperOrigin-RevId: 326791119
2020-08-14Use a single NetworkEndpoint per NIC per protocolGhanan Gowripalan
The NetworkEndpoint does not need to be created for each address. Most of the work the NetworkEndpoint does is address agnostic. PiperOrigin-RevId: 326759605
2020-08-13Migrate to PacketHeader API for PacketBuffer.Ting-Yu Wang
Formerly, when a packet is constructed or parsed, all headers are set by the client code. This almost always involved prepending to pk.Header buffer or trimming pk.Data portion. This is known to prone to bugs, due to the complexity and number of the invariants assumed across netstack to maintain. In the new PacketHeader API, client will call Push()/Consume() method to construct/parse an outgoing/incoming packet. All invariants, such as slicing and trimming, are maintained by the API itself. NewPacketBuffer() is introduced to create new PacketBuffer. Zero value is no longer valid. PacketBuffer now assumes the packet is a concatenation of following portions: * LinkHeader * NetworkHeader * TransportHeader * Data Any of them could be empty, or zero-length. PiperOrigin-RevId: 326507688
2020-08-10Set the NetworkProtocolNumber of all PacketBuffers.Kevin Krakauer
NetworkEndpoints set the number on outgoing packets in Write() and NetworkProtocols set them on incoming packets in Parse(). Needed for #3549. PiperOrigin-RevId: 325938745
2020-08-08Use unicast source for ICMP echo repliesGhanan Gowripalan
Packets MUST NOT use a non-unicast source address for ICMP Echo Replies. Test: integration_test.TestPingMulticastBroadcast PiperOrigin-RevId: 325634380
2020-08-07Fix panic during Address Resolution of neighbor entry created by NSSam Balana
When a Neighbor Solicitation is received, a neighbor entry is created with the remote host's link layer address, but without a link layer address resolver. If the host decides to send a packet addressed to the IP address of that neighbor entry, Address Resolution starts with a nil pointer to the link layer address resolver. This causes the netstack to panic and crash. This change ensures that when a packet is sent in that situation, the link layer address resolver will be set before Address Resolution begins. Tests: pkg/tcpip/stack:stack_test + TestEntryUnknownToStaleToProbeToReachable - TestNeighborCacheEntryNoLinkAddress Updates #1889 Updates #1894 Updates #1895 Updates #1947 Updates #1948 Updates #1949 Updates #1950 PiperOrigin-RevId: 325516471
2020-08-06Join IPv4 all-systems group on NIC enableGhanan Gowripalan
Test: - stack_test.TestJoinLeaveMulticastOnNICEnableDisable - integration_test.TestIncomingMulticastAndBroadcast PiperOrigin-RevId: 325185259
2020-08-05Support receiving broadcast IPv4 packetsGhanan Gowripalan
Test: integration_test.TestIncomingSubnetBroadcast PiperOrigin-RevId: 325135617
2020-08-05Prefer RLock over Lock in functions that don't need Lock().Bhasker Hariharan
Updates #231 PiperOrigin-RevId: 325097683
2020-08-04Update variables for implementation of RACK in TCPNayana Bidari
RACK (Recent Acknowledgement) is a new loss detection algorithm in TCP. These are the fields which should be stored on connections to implement RACK algorithm. PiperOrigin-RevId: 324948703
2020-07-31iptables: support SO_ORIGINAL_DSTKevin Krakauer
Envoy (#170) uses this to get the original destination of redirected packets.
2020-07-30Implement neighbor unreachability detection for ARP and NDP.Sam Balana
This change implements the Neighbor Unreachability Detection (NUD) state machine, as per RFC 4861 [1]. The state machine operates on a single neighbor in the local network. This requires the state machine to be implemented on each entry of the neighbor table. This change also adds, but does not expose, several APIs. The first API is for performing basic operations on the neighbor table: - Create a static entry - List all entries - Delete all entries - Remove an entry by address The second API is used for changing the NUD protocol constants on a per-NIC basis to allow Neighbor Discovery to operate over links with widely varying performance characteristics. See [RFC 4861 Section 10][2] for the list of constants. Finally, the last API is for allowing users to subscribe to NUD state changes. See [RFC 4861 Appendix C][3] for the list of edges. [1]: https://tools.ietf.org/html/rfc4861 [2]: https://tools.ietf.org/html/rfc4861#section-10 [3]: https://tools.ietf.org/html/rfc4861#appendix-C Tests: pkg/tcpip/stack:stack_test - TestNeighborCacheAddStaticEntryThenOverflow - TestNeighborCacheClear - TestNeighborCacheClearThenOverflow - TestNeighborCacheConcurrent - TestNeighborCacheDuplicateStaticEntryWithDifferentLinkAddress - TestNeighborCacheDuplicateStaticEntryWithSameLinkAddress - TestNeighborCacheEntry - TestNeighborCacheEntryNoLinkAddress - TestNeighborCacheGetConfig - TestNeighborCacheKeepFrequentlyUsed - TestNeighborCacheNotifiesWaker - TestNeighborCacheOverflow - TestNeighborCacheOverwriteWithStaticEntryThenOverflow - TestNeighborCacheRemoveEntry - TestNeighborCacheRemoveEntryThenOverflow - TestNeighborCacheRemoveStaticEntry - TestNeighborCacheRemoveStaticEntryThenOverflow - TestNeighborCacheRemoveWaker - TestNeighborCacheReplace - TestNeighborCacheResolutionFailed - TestNeighborCacheResolutionTimeout - TestNeighborCacheSetConfig - TestNeighborCacheStaticResolution - TestEntryAddsAndClearsWakers - TestEntryDelayToProbe - TestEntryDelayToReachableWhenSolicitedOverrideConfirmation - TestEntryDelayToReachableWhenUpperLevelConfirmation - TestEntryDelayToStaleWhenConfirmationWithDifferentAddress - TestEntryDelayToStaleWhenProbeWithDifferentAddress - TestEntryFailedGetsDeleted - TestEntryIncompleteToFailed - TestEntryIncompleteToIncompleteDoesNotChangeUpdatedAt - TestEntryIncompleteToReachable - TestEntryIncompleteToReachableWithRouterFlag - TestEntryIncompleteToStale - TestEntryInitiallyUnknown - TestEntryProbeToFailed - TestEntryProbeToReachableWhenSolicitedConfirmationWithSameAddress - TestEntryProbeToReachableWhenSolicitedOverrideConfirmation - TestEntryProbeToStaleWhenConfirmationWithDifferentAddress - TestEntryProbeToStaleWhenProbeWithDifferentAddress - TestEntryReachableToStaleWhenConfirmationWithDifferentAddress - TestEntryReachableToStaleWhenConfirmationWithDifferentAddressAndOverride - TestEntryReachableToStaleWhenProbeWithDifferentAddress - TestEntryReachableToStaleWhenTimeout - TestEntryStaleToDelay - TestEntryStaleToReachableWhenSolicitedOverrideConfirmation - TestEntryStaleToStaleWhenOverrideConfirmation - TestEntryStaleToStaleWhenProbeUpdateAddress - TestEntryStaysDelayWhenOverrideConfirmationWithSameAddress - TestEntryStaysProbeWhenOverrideConfirmationWithSameAddress - TestEntryStaysReachableWhenConfirmationWithRouterFlag - TestEntryStaysReachableWhenProbeWithSameAddress - TestEntryStaysStaleWhenProbeWithSameAddress - TestEntryUnknownToIncomplete - TestEntryUnknownToStale - TestEntryUnknownToUnknownWhenConfirmationWithUnknownAddress pkg/tcpip/stack:stack_x_test - TestDefaultNUDConfigurations - TestNUDConfigurationFailsForNotSupported - TestNUDConfigurationsBaseReachableTime - TestNUDConfigurationsDelayFirstProbeTime - TestNUDConfigurationsMaxMulticastProbes - TestNUDConfigurationsMaxRandomFactor - TestNUDConfigurationsMaxUnicastProbes - TestNUDConfigurationsMinRandomFactor - TestNUDConfigurationsRetransmitTimer - TestNUDConfigurationsUnreachableTime - TestNUDStateReachableTime - TestNUDStateRecomputeReachableTime - TestSetNUDConfigurationFailsForBadNICID - TestSetNUDConfigurationFailsForNotSupported [1]: https://tools.ietf.org/html/rfc4861 [2]: https://tools.ietf.org/html/rfc4861#section-10 [3]: https://tools.ietf.org/html/rfc4861#appendix-C Updates #1889 Updates #1894 Updates #1895 Updates #1947 Updates #1948 Updates #1949 Updates #1950 PiperOrigin-RevId: 324070795
2020-07-30Use brodcast MAC for broadcast IPv4 packetsGhanan Gowripalan
When sending packets to a known network's broadcast address, use the broadcast MAC address. Test: - stack_test.TestOutgoingSubnetBroadcast - udp_test.TestOutgoingSubnetBroadcast PiperOrigin-RevId: 324062407
2020-07-28Redirect TODO to GitHub issuesFabricio Voznika
PiperOrigin-RevId: 323715260
2020-07-27Add ability to send unicast ARP requests and Neighbor SolicitationsSam Balana
The previous implementation of LinkAddressRequest only supported sending broadcast ARP requests and multicast Neighbor Solicitations. The ability to send these packets as unicast is required for Neighbor Unreachability Detection. Tests: pkg/tcpip/network/arp:arp_test - TestLinkAddressRequest pkg/tcpip/network/ipv6:ipv6_test - TestLinkAddressRequest Updates #1889 Updates #1894 Updates #1895 Updates #1947 Updates #1948 Updates #1949 Updates #1950 PiperOrigin-RevId: 323451569
2020-07-23Add AfterFunc to tcpip.ClockSam Balana
Changes the API of tcpip.Clock to also provide a method for scheduling and rescheduling work after a specified duration. This change also implements the AfterFunc method for existing implementations of tcpip.Clock. This is the groundwork required to mock time within tests. All references to CancellableTimer has been replaced with the tcpip.Job interface, allowing for custom implementations of scheduling work. This is a BREAKING CHANGE for clients that implement their own tcpip.Clock or use tcpip.CancellableTimer. Migration plan: 1. Add AfterFunc(d, f) to tcpip.Clock 2. Replace references of tcpip.CancellableTimer with tcpip.Job 3. Replace calls to tcpip.CancellableTimer#StopLocked with tcpip.Job#Cancel 4. Replace calls to tcpip.CancellableTimer#Reset with tcpip.Job#Schedule 5. Replace calls to tcpip.NewCancellableTimer with tcpip.NewJob. PiperOrigin-RevId: 322906897
2020-07-23iptables: use keyed array literalsKevin Krakauer
PiperOrigin-RevId: 322882426
2020-07-23Merge pull request #3207 from kevinGC:icmp-connectgVisor bot
PiperOrigin-RevId: 322853192
2020-07-22make connect(2) fail when dest is unreachableKevin Krakauer
Previously, ICMP destination unreachable datagrams were ignored by TCP endpoints. This caused connect to hang when an intermediate router couldn't find a route to the host. This manifested as a Kokoro error when Docker IPv6 was enabled. The Ruby image test would try to install the sinatra gem and hang indefinitely attempting to use an IPv6 address. Fixes #3079.
2020-07-22iptables: don't NAT existing connectionsKevin Krakauer
Fixes a NAT bug that manifested as: - A SYN was sent from gVisor to another host, unaffected by iptables. - The corresponding SYN/ACK was NATted by a PREROUTING REDIRECT rule despite being part of the existing connection. - The socket that sent the SYN never received the SYN/ACK and thus a connection could not be established. We handle this (as Linux does) by tracking all connections, inserting a no-op conntrack rule for new connections with no rules of their own. Needed for istio support (#170).
2020-07-22iptables: replace maps with arraysKevin Krakauer
For iptables users, Check() is a hot path called for every packet one or more times. Let's avoid a bunch of map lookups. PiperOrigin-RevId: 322678699
2020-07-22Support for receiving outbound packets in AF_PACKET.Bhasker Hariharan
Updates #173 PiperOrigin-RevId: 322665518
2020-07-15iptables: remove check for NetworkHeaderKevin Krakauer
This is no longer necessary, as we always set NetworkHeader before calling iptables.Check. PiperOrigin-RevId: 321461978
2020-07-15Fix minor bugs in a couple of interface IOCTLs.Bhasker Hariharan
gVisor incorrectly returns the wrong ARP type for SIOGIFHWADDR. This breaks tcpdump as it tries to interpret the packets incorrectly. Similarly, SIOCETHTOOL is used by tcpdump to query interface properties which fails with an EINVAL since we don't implement it. For now change it to return EOPNOTSUPP to indicate that we don't support the query rather than return EINVAL. NOTE: ARPHRD types for link endpoints are distinct from NIC capabilities and NIC flags. In Linux all 3 exist eg. ARPHRD types are stored in dev->type field while NIC capabilities are more like the device features which can be queried using SIOCETHTOOL but not modified and NIC Flags are fields that can be modified from user space. eg. NIC status (UP/DOWN/MULTICAST/BROADCAST) etc. Updates #2746 PiperOrigin-RevId: 321436525
2020-07-13Merge pull request #2672 from amscanne:shim-integratedgVisor bot
PiperOrigin-RevId: 321053634
2020-07-13garbage collect connectionsKevin Krakauer
As in Linux, we must periodically clean up unused connections. PiperOrigin-RevId: 321003353
2020-07-12Do not copy sleep.WakerGhanan Gowripalan
sleep.Waker's fields are modified as values. PiperOrigin-RevId: 320873451
2020-07-07icmp: When setting TransportHeader, remove from the Data portion.Ting-Yu Wang
The current convention is when a header is set to pkt.XxxHeader field, it gets removed from pkt.Data. ICMP does not currently follow this convention. PiperOrigin-RevId: 320078606
2020-07-06Shard some slow tests.Ting-Yu Wang
stack_x_test: 2m -> 20s tcp_x_test: 80s -> 25s PiperOrigin-RevId: 319828101
2020-06-25conntrack refactor, no behavior changesKevin Krakauer
- Split connTrackForPacket into 2 functions instead of switching on flag - Replace hash with struct keys. - Remove prefixes where possible - Remove unused connStatus, timeout - Flatten ConnTrack struct a bit - some intermediate structs had no meaning outside of the context of their parent. - Protect conn.tcb with a mutex - Remove redundant error checking (e.g. when is pkt.NetworkHeader valid) - Clarify that HandlePacket and CreateConnFor are the expected entrypoints for ConnTrack PiperOrigin-RevId: 318407168
2020-06-24Add support for Stack level options.Bhasker Hariharan
Linux controls socket send/receive buffers using a few sysctl variables - net.core.rmem_default - net.core.rmem_max - net.core.wmem_max - net.core.wmem_default - net.ipv4.tcp_rmem - net.ipv4.tcp_wmem The first 4 control the default socket buffer sizes for all sockets raw/packet/tcp/udp and also the maximum permitted socket buffer that can be specified in setsockopt(SOL_SOCKET, SO_(RCV|SND)BUF,...). The last two control the TCP auto-tuning limits and override the default specified in rmem_default/wmem_default as well as the max limits. Netstack today only implements tcp_rmem/tcp_wmem and incorrectly uses it to limit the maximum size in setsockopt() as well as uses it for raw/udp sockets. This changelist introduces the other 4 and updates the udp/raw sockets to use the newly introduced variables. The values for min/max match the current tcp_rmem/wmem values and the default value buffers for UDP/RAW sockets is updated to match the linux value of 212KiB up from the really low current value of 32 KiB. Updates #3043 Fixes #3043 PiperOrigin-RevId: 318089805
2020-06-23Add support for SO_REUSEADDR to TCP sockets/endpoints.Ian Gudger
For TCP sockets, SO_REUSEADDR relaxes the rules for binding addresses. gVisor/netstack already supported a behavior similar to SO_REUSEADDR, but did not allow disabling it. This change brings the SO_REUSEADDR behavior closer to the behavior implemented by Linux and adds a new SO_REUSEADDR disabled behavior. Like Linux, SO_REUSEADDR is now disabled by default. PiperOrigin-RevId: 317984380
2020-06-18iptables: skip iptables if no rules are setKevin Krakauer
Users that never set iptables rules shouldn't incur the iptables performance cost. Suggested by Ian (@iangudger). PiperOrigin-RevId: 317232921
2020-06-18iptables: remove metadata structKevin Krakauer
Metadata was useful for debugging and safety, but enough tests exist that we should see failures when (de)serialization is broken. It made stack initialization more cumbersome and it's also getting in the way of ip6tables. PiperOrigin-RevId: 317210653
2020-06-18Cleanup tcp.timer and tcpip.RouteGhanan Gowripalan
When a tcp.timer or tcpip.Route is no longer used, clean up its resources so that unused memory may be released. PiperOrigin-RevId: 317046582
2020-06-17Increase timeouts for NDP testsGhanan Gowripalan
... to help reduce flakes. When waiting for an event to occur, use a timeout of 10s. When waiting for an event to not occur, use a timeout of 1s. Test: Ran test locally w/ run count of 1000 with and without gotsan. PiperOrigin-RevId: 316998128
2020-06-11Do not use tentative addresses for routesGhanan Gowripalan
Tentative addresses should not be used when finding a route. This change fixes a bug where a tentative address may have been used. Test: stack_test.TestDADResolve PiperOrigin-RevId: 315997624
2020-06-10Add support for SO_REUSEADDR to UDP sockets/endpoints.Ian Gudger
On UDP sockets, SO_REUSEADDR allows multiple sockets to bind to the same address, but only delivers packets to the most recently bound socket. This differs from the behavior of SO_REUSEADDR on TCP sockets. SO_REUSEADDR for TCP sockets will likely need an almost completely independent implementation. SO_REUSEADDR has some odd interactions with the similar SO_REUSEPORT. These interactions are tested fairly extensively and all but one particularly odd one (that honestly seems like a bug) behave the same on gVisor and Linux. PiperOrigin-RevId: 315844832
2020-06-09Handle removed NIC in NDP timer for packet txGhanan Gowripalan
NDP packets are sent periodically from NDP timers. These timers do not hold the NIC lock when sending packets as the packet write operation may take some time. While the lock is not held, the NIC may be removed by some other goroutine. This change handles that scenario gracefully. Test: stack_test.TestRemoveNICWhileHandlingRSTimer PiperOrigin-RevId: 315524143
2020-06-07netstack: parse incoming packet headers up-frontKevin Krakauer
Netstack has traditionally parsed headers on-demand as a packet moves up the stack. This is conceptually simple and convenient, but incompatible with iptables, where headers can be inspected and mangled before even a routing decision is made. This changes header parsing to happen early in the incoming packet path, as soon as the NIC gets the packet from a link endpoint. Even if an invalid packet is found (e.g. a TCP header of insufficient length), the packet is passed up the stack for proper stats bookkeeping. PiperOrigin-RevId: 315179302
2020-06-05Merge pull request #2872 from kevinGC:ipt-skip-preroutinggVisor bot
PiperOrigin-RevId: 315041419
2020-06-05iptables: loopback traffic skips prerouting chainKevin Krakauer
Loopback traffic is not affected by rules in the PREROUTING chain. This change is also necessary for istio's envoy to talk to other components in the same pod.
2020-06-05Fix copylocks error about copying IPTables.Ting-Yu Wang
IPTables.connections contains a sync.RWMutex. Copying it will trigger copylocks analysis. Tested by manually enabling nogo tests. sync.RWMutex is added to IPTables for the additional race condition discovered. PiperOrigin-RevId: 314817019
2020-06-03Pass PacketBuffer as pointer.Ting-Yu Wang
Historically we've been passing PacketBuffer by shallow copying through out the stack. Right now, this is only correct as the caller would not use PacketBuffer after passing into the next layer in netstack. With new buffer management effort in gVisor/netstack, PacketBuffer will own a Buffer (to be added). Internally, both PacketBuffer and Buffer may have pointers and shallow copying shouldn't be used. Updates #2404. PiperOrigin-RevId: 314610879
2020-05-29Merge pull request #2807 from kevinGC:iptables-sourcegVisor bot
PiperOrigin-RevId: 313842690
2020-05-29Update WritePacket* API to take ownership of packets to be written.Ting-Yu Wang
Updates #2404. PiperOrigin-RevId: 313834784