Age | Commit message (Collapse) | Author |
|
|
|
Test: integration_test.TestIncomingSubnetBroadcast
PiperOrigin-RevId: 325135617
|
|
|
|
Updates #231
PiperOrigin-RevId: 325097683
|
|
|
|
RACK (Recent Acknowledgement) is a new loss detection
algorithm in TCP. These are the fields which should be
stored on connections to implement RACK algorithm.
PiperOrigin-RevId: 324948703
|
|
|
|
Envoy (#170) uses this to get the original destination of redirected
packets.
|
|
This change implements the Neighbor Unreachability Detection (NUD) state
machine, as per RFC 4861 [1]. The state machine operates on a single neighbor
in the local network. This requires the state machine to be implemented on each
entry of the neighbor table.
This change also adds, but does not expose, several APIs. The first API is for
performing basic operations on the neighbor table:
- Create a static entry
- List all entries
- Delete all entries
- Remove an entry by address
The second API is used for changing the NUD protocol constants on a per-NIC
basis to allow Neighbor Discovery to operate over links with widely varying
performance characteristics. See [RFC 4861 Section 10][2] for the list of
constants.
Finally, the last API is for allowing users to subscribe to NUD state changes.
See [RFC 4861 Appendix C][3] for the list of edges.
[1]: https://tools.ietf.org/html/rfc4861
[2]: https://tools.ietf.org/html/rfc4861#section-10
[3]: https://tools.ietf.org/html/rfc4861#appendix-C
Tests:
pkg/tcpip/stack:stack_test
- TestNeighborCacheAddStaticEntryThenOverflow
- TestNeighborCacheClear
- TestNeighborCacheClearThenOverflow
- TestNeighborCacheConcurrent
- TestNeighborCacheDuplicateStaticEntryWithDifferentLinkAddress
- TestNeighborCacheDuplicateStaticEntryWithSameLinkAddress
- TestNeighborCacheEntry
- TestNeighborCacheEntryNoLinkAddress
- TestNeighborCacheGetConfig
- TestNeighborCacheKeepFrequentlyUsed
- TestNeighborCacheNotifiesWaker
- TestNeighborCacheOverflow
- TestNeighborCacheOverwriteWithStaticEntryThenOverflow
- TestNeighborCacheRemoveEntry
- TestNeighborCacheRemoveEntryThenOverflow
- TestNeighborCacheRemoveStaticEntry
- TestNeighborCacheRemoveStaticEntryThenOverflow
- TestNeighborCacheRemoveWaker
- TestNeighborCacheReplace
- TestNeighborCacheResolutionFailed
- TestNeighborCacheResolutionTimeout
- TestNeighborCacheSetConfig
- TestNeighborCacheStaticResolution
- TestEntryAddsAndClearsWakers
- TestEntryDelayToProbe
- TestEntryDelayToReachableWhenSolicitedOverrideConfirmation
- TestEntryDelayToReachableWhenUpperLevelConfirmation
- TestEntryDelayToStaleWhenConfirmationWithDifferentAddress
- TestEntryDelayToStaleWhenProbeWithDifferentAddress
- TestEntryFailedGetsDeleted
- TestEntryIncompleteToFailed
- TestEntryIncompleteToIncompleteDoesNotChangeUpdatedAt
- TestEntryIncompleteToReachable
- TestEntryIncompleteToReachableWithRouterFlag
- TestEntryIncompleteToStale
- TestEntryInitiallyUnknown
- TestEntryProbeToFailed
- TestEntryProbeToReachableWhenSolicitedConfirmationWithSameAddress
- TestEntryProbeToReachableWhenSolicitedOverrideConfirmation
- TestEntryProbeToStaleWhenConfirmationWithDifferentAddress
- TestEntryProbeToStaleWhenProbeWithDifferentAddress
- TestEntryReachableToStaleWhenConfirmationWithDifferentAddress
- TestEntryReachableToStaleWhenConfirmationWithDifferentAddressAndOverride
- TestEntryReachableToStaleWhenProbeWithDifferentAddress
- TestEntryReachableToStaleWhenTimeout
- TestEntryStaleToDelay
- TestEntryStaleToReachableWhenSolicitedOverrideConfirmation
- TestEntryStaleToStaleWhenOverrideConfirmation
- TestEntryStaleToStaleWhenProbeUpdateAddress
- TestEntryStaysDelayWhenOverrideConfirmationWithSameAddress
- TestEntryStaysProbeWhenOverrideConfirmationWithSameAddress
- TestEntryStaysReachableWhenConfirmationWithRouterFlag
- TestEntryStaysReachableWhenProbeWithSameAddress
- TestEntryStaysStaleWhenProbeWithSameAddress
- TestEntryUnknownToIncomplete
- TestEntryUnknownToStale
- TestEntryUnknownToUnknownWhenConfirmationWithUnknownAddress
pkg/tcpip/stack:stack_x_test
- TestDefaultNUDConfigurations
- TestNUDConfigurationFailsForNotSupported
- TestNUDConfigurationsBaseReachableTime
- TestNUDConfigurationsDelayFirstProbeTime
- TestNUDConfigurationsMaxMulticastProbes
- TestNUDConfigurationsMaxRandomFactor
- TestNUDConfigurationsMaxUnicastProbes
- TestNUDConfigurationsMinRandomFactor
- TestNUDConfigurationsRetransmitTimer
- TestNUDConfigurationsUnreachableTime
- TestNUDStateReachableTime
- TestNUDStateRecomputeReachableTime
- TestSetNUDConfigurationFailsForBadNICID
- TestSetNUDConfigurationFailsForNotSupported
[1]: https://tools.ietf.org/html/rfc4861
[2]: https://tools.ietf.org/html/rfc4861#section-10
[3]: https://tools.ietf.org/html/rfc4861#appendix-C
Updates #1889
Updates #1894
Updates #1895
Updates #1947
Updates #1948
Updates #1949
Updates #1950
PiperOrigin-RevId: 324070795
|
|
When sending packets to a known network's broadcast address, use the
broadcast MAC address.
Test:
- stack_test.TestOutgoingSubnetBroadcast
- udp_test.TestOutgoingSubnetBroadcast
PiperOrigin-RevId: 324062407
|
|
PiperOrigin-RevId: 323715260
|
|
|
|
The previous implementation of LinkAddressRequest only supported sending
broadcast ARP requests and multicast Neighbor Solicitations. The ability to
send these packets as unicast is required for Neighbor Unreachability
Detection.
Tests:
pkg/tcpip/network/arp:arp_test
- TestLinkAddressRequest
pkg/tcpip/network/ipv6:ipv6_test
- TestLinkAddressRequest
Updates #1889
Updates #1894
Updates #1895
Updates #1947
Updates #1948
Updates #1949
Updates #1950
PiperOrigin-RevId: 323451569
|
|
|
|
Changes the API of tcpip.Clock to also provide a method for scheduling and
rescheduling work after a specified duration. This change also implements the
AfterFunc method for existing implementations of tcpip.Clock.
This is the groundwork required to mock time within tests. All references to
CancellableTimer has been replaced with the tcpip.Job interface, allowing for
custom implementations of scheduling work.
This is a BREAKING CHANGE for clients that implement their own tcpip.Clock or
use tcpip.CancellableTimer. Migration plan:
1. Add AfterFunc(d, f) to tcpip.Clock
2. Replace references of tcpip.CancellableTimer with tcpip.Job
3. Replace calls to tcpip.CancellableTimer#StopLocked with tcpip.Job#Cancel
4. Replace calls to tcpip.CancellableTimer#Reset with tcpip.Job#Schedule
5. Replace calls to tcpip.NewCancellableTimer with tcpip.NewJob.
PiperOrigin-RevId: 322906897
|
|
|
|
PiperOrigin-RevId: 322882426
|
|
|
|
PiperOrigin-RevId: 322853192
|
|
|
|
Previously, ICMP destination unreachable datagrams were ignored by TCP
endpoints. This caused connect to hang when an intermediate router
couldn't find a route to the host.
This manifested as a Kokoro error when Docker IPv6 was enabled. The Ruby
image test would try to install the sinatra gem and hang indefinitely
attempting to use an IPv6 address.
Fixes #3079.
|
|
Fixes a NAT bug that manifested as:
- A SYN was sent from gVisor to another host, unaffected by iptables.
- The corresponding SYN/ACK was NATted by a PREROUTING REDIRECT rule
despite being part of the existing connection.
- The socket that sent the SYN never received the SYN/ACK and thus a
connection could not be established.
We handle this (as Linux does) by tracking all connections, inserting a
no-op conntrack rule for new connections with no rules of their own.
Needed for istio support (#170).
|
|
|
|
For iptables users, Check() is a hot path called for every packet one or more
times. Let's avoid a bunch of map lookups.
PiperOrigin-RevId: 322678699
|
|
|
|
Updates #173
PiperOrigin-RevId: 322665518
|
|
|
|
This is no longer necessary, as we always set NetworkHeader before calling
iptables.Check.
PiperOrigin-RevId: 321461978
|
|
|
|
gVisor incorrectly returns the wrong ARP type for SIOGIFHWADDR. This breaks
tcpdump as it tries to interpret the packets incorrectly.
Similarly, SIOCETHTOOL is used by tcpdump to query interface properties which
fails with an EINVAL since we don't implement it. For now change it to return
EOPNOTSUPP to indicate that we don't support the query rather than return
EINVAL.
NOTE: ARPHRD types for link endpoints are distinct from NIC capabilities
and NIC flags. In Linux all 3 exist eg. ARPHRD types are stored in dev->type
field while NIC capabilities are more like the device features which can be
queried using SIOCETHTOOL but not modified and NIC Flags are fields that can
be modified from user space. eg. NIC status (UP/DOWN/MULTICAST/BROADCAST) etc.
Updates #2746
PiperOrigin-RevId: 321436525
|
|
PiperOrigin-RevId: 321053634
|
|
|
|
As in Linux, we must periodically clean up unused connections.
PiperOrigin-RevId: 321003353
|
|
|
|
sleep.Waker's fields are modified as values.
PiperOrigin-RevId: 320873451
|
|
|
|
The current convention is when a header is set to pkt.XxxHeader field, it
gets removed from pkt.Data. ICMP does not currently follow this convention.
PiperOrigin-RevId: 320078606
|
|
stack_x_test: 2m -> 20s
tcp_x_test: 80s -> 25s
PiperOrigin-RevId: 319828101
|
|
|
|
- Split connTrackForPacket into 2 functions instead of switching on flag
- Replace hash with struct keys.
- Remove prefixes where possible
- Remove unused connStatus, timeout
- Flatten ConnTrack struct a bit - some intermediate structs had no meaning
outside of the context of their parent.
- Protect conn.tcb with a mutex
- Remove redundant error checking (e.g. when is pkt.NetworkHeader valid)
- Clarify that HandlePacket and CreateConnFor are the expected entrypoints for
ConnTrack
PiperOrigin-RevId: 318407168
|
|
|
|
Linux controls socket send/receive buffers using a few sysctl variables
- net.core.rmem_default
- net.core.rmem_max
- net.core.wmem_max
- net.core.wmem_default
- net.ipv4.tcp_rmem
- net.ipv4.tcp_wmem
The first 4 control the default socket buffer sizes for all sockets
raw/packet/tcp/udp and also the maximum permitted socket buffer that can be
specified in setsockopt(SOL_SOCKET, SO_(RCV|SND)BUF,...).
The last two control the TCP auto-tuning limits and override the default
specified in rmem_default/wmem_default as well as the max limits.
Netstack today only implements tcp_rmem/tcp_wmem and incorrectly uses it
to limit the maximum size in setsockopt() as well as uses it for raw/udp
sockets.
This changelist introduces the other 4 and updates the udp/raw sockets to use
the newly introduced variables. The values for min/max match the current
tcp_rmem/wmem values and the default value buffers for UDP/RAW sockets is
updated to match the linux value of 212KiB up from the really low current value
of 32 KiB.
Updates #3043
Fixes #3043
PiperOrigin-RevId: 318089805
|
|
|
|
|
|
For TCP sockets, SO_REUSEADDR relaxes the rules for binding addresses.
gVisor/netstack already supported a behavior similar to SO_REUSEADDR, but did
not allow disabling it. This change brings the SO_REUSEADDR behavior closer to
the behavior implemented by Linux and adds a new SO_REUSEADDR disabled
behavior. Like Linux, SO_REUSEADDR is now disabled by default.
PiperOrigin-RevId: 317984380
|
|
|
|
Users that never set iptables rules shouldn't incur the iptables performance
cost. Suggested by Ian (@iangudger).
PiperOrigin-RevId: 317232921
|
|
|
|
Metadata was useful for debugging and safety, but enough tests exist that we
should see failures when (de)serialization is broken. It made stack
initialization more cumbersome and it's also getting in the way of ip6tables.
PiperOrigin-RevId: 317210653
|
|
|