Age | Commit message (Collapse) | Author |
|
|
|
... as per RFC 7048. The Failed state is an internal state that is not
specified by any RFC; replacing it with the Unreachable state enables us to
expose this state while keeping our terminology consistent with RFC 4861 and
RFC 7048.
Unreachable state replaces all internal references for Failed state. However
unlike the Failed state, change events are dispatched when moving into
Unreachable state. This gives developers insight into whether a neighbor entry
failed address resolution or whether it was explicitly removed.
The Failed state will be removed entirely once all references to it are
removed. This is done to avoid a Fuchsia roll failure.
Updates #4667
PiperOrigin-RevId: 356554104
|
|
|
|
The thing the lock protects will never be accessed concurrently.
PiperOrigin-RevId: 356423331
|
|
|
|
...as long as the network protocol supports duplicate address detection.
This CL provides the facilities for a netstack integrator to perform
DAD.
DHCP recommends that clients effectively perform DAD before accepting an
offer. As per RFC 2131 section 4.4.1 pg 38,
The client SHOULD perform a check on the suggested address to ensure
that the address is not already in use. For example, if the client
is on a network that supports ARP, the client may issue an ARP request
for the suggested request.
The implementation of ARP-based IPv4 DAD effectively operates the same
as IPv6's NDP DAD - using ARP requests and responses in place of
NDP neighbour solicitations and advertisements, respectively.
DAD performed by calls to (*Stack).CheckDuplicateAddress don't interfere
with DAD performed when a new IPv6 address is added. This is so that
integrator requests to check for duplicate addresses aren't unexpectedly
aborted when addresses are removed.
A network package internal package provides protocol agnostic DAD state
management that specific protocols that provide DAD can use.
Fixes #4550.
Tests:
- internal/ip_test.*
- integration_test.TestDAD
- arp_test.TestDADARPRequestPacket
- ipv6.TestCheckDuplicateAddress
PiperOrigin-RevId: 356405593
|
|
|
|
It was replaced by NUD/neighborCache.
Fixes #4658.
PiperOrigin-RevId: 356085221
|
|
|
|
The network endpoints only look for other network endpoints of the
same kind. Since the network protocols keeps track of all endpoints,
go through the protocol to find an endpoint with an address instead
of the stack.
PiperOrigin-RevId: 356051498
|
|
|
|
Previously when sending probe messages, we would hold a shared lock
which lead to deadlocks (due to synchronous packet loooping (e.g. pipe
and loopback link endpoints)) and lock contention.
Writing packets may be an expensive operation which could prevent other
goroutines from doing meaningful work if a shared lock is held while
writing packets.
This change upates the NUD timers to not hold shared locks while
sending packets.
PiperOrigin-RevId: 356048697
|
|
|
|
Also while I'm here, update neighbor cahce/entry tests to use the
stack's RNG instead of creating a neigbor cache/entry specific one.
PiperOrigin-RevId: 356040581
|
|
|
|
The NIC structure is not to be used outside of the stack package
directly.
PiperOrigin-RevId: 356036737
|
|
|
|
Network endpoints that wish to check addresses on another NIC-local
network endpoint may now do so through the NetworkInterface.
This fixes a lock ordering issue between NIC removal and link
resolution. Before this change:
NIC Removal takes the stack lock, neighbor cache lock then neighbor
entries' locks.
When performing IPv4 link resolution, we take the entry lock then ARP
would try check IPv4 local addresses through the stack which tries to
obtain the stack's lock.
Now that ARP can check IPv4 addreses through the NIC, we avoid the lock
ordering issue, while also removing the need for stack to lookup the
NIC.
PiperOrigin-RevId: 356034245
|
|
|
|
Make it clear that failing to parse a looped back is not a packet
sending error but a malformed received packet error.
FindNetworkEndpoint returns nil when no network endpoint is found
instead of an error.
PiperOrigin-RevId: 355954946
|
|
|
|
PiperOrigin-RevId: 355751801
|
|
|
|
Netstack today will send dupACK's with no rate limit for incoming out of
window segments. This can result in ACK loops for example if a TCP socket
connects to itself (actually permitted by TCP). Where the ACK sent in
response to packets being out of order itself gets considered as an out
of window segment resulting in another ACK being generated.
PiperOrigin-RevId: 355206877
|
|
|
|
...to remove the need for the transport layer to deduce the type of
error it received.
Rename HandleControlPacket to HandleError as HandleControlPacket only
handles errors.
tcpip.SockError now holds a tcpip.SockErrorCause interface that
different errors can implement.
PiperOrigin-RevId: 354994306
|
|
|
|
This change flips gvisor to use Neighbor unreachability detection by
default to populate the neighbor table as defined by RFC 4861 section 7.
Although RFC 4861 is targeted at IPv6, the same algorithm is used for
link resolution on IPv4 networks using ARP.
Integrators may still use the legacy link address cache by setting
stack.Options.UseLinkAddrCache to true; stack.Options.UseNeighborCache
is now unused and will be removed.
A later change will remove linkAddrCache and associated code.
Updates #4658.
PiperOrigin-RevId: 354850531
|
|
|
|
This stores each protocol's neighbor state separately.
This change also removes the need for each neighbor entry to keep
track of their own link address resolver now that all the entries
in a cache will use the same resolver.
PiperOrigin-RevId: 354818155
|
|
|
|
The network endpoint should not need to have logic to handle different
kinds of neighbor tables. Network endpoints can let the NIC know about
differnt neighbor discovery messages and let the NIC decide which table
to update.
This allows us to remove the LinkAddressCache interface.
PiperOrigin-RevId: 354812584
|
|
|
|
PiperOrigin-RevId: 354746864
|
|
|
|
This removes the need to provide the link address request with the NIC
the request is being performed on since the NetworkEndpoints already
have a reference to the NIC.
PiperOrigin-RevId: 354721940
|
|
|
|
This allows later decoupling of the backing network buffer implementation.
PiperOrigin-RevId: 354643297
|
|
|
|
When a route does not need to resolve a remote link address to send a
packet, avoid having to obtain the pending packets queue's lock.
PiperOrigin-RevId: 354456280
|
|
|
|
|
|
After receiving an ACK(cumulative or selective), RACK will update the reorder
window which is used as a settling time before marking the packet as lost.
This change will add an init function to initialize the variables in RACK and
also store the reference to sender in rackControl.
The reorder window is calculated as per rfc:
https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.2 Step 4.
PiperOrigin-RevId: 354453528
|
|
Avoid a race condition in which an entry is acquired while it is being
evicted by overlapping the entry lock with the cache lock.
PiperOrigin-RevId: 354452639
|
|
|
|
This makes it possible to add data to types that implement tcpip.Error.
ErrBadLinkEndpoint is removed as it is unused.
PiperOrigin-RevId: 354437314
|
|
|
|
As per RFC 4861 section 7.3.1,
A neighbor is considered reachable if the node has recently received
a confirmation that packets sent recently to the neighbor were
received by its IP layer. Positive confirmation can be gathered in
two ways: hints from upper-layer protocols that indicate a connection
is making "forward progress", or receipt of a Neighbor Advertisement
message that is a response to a Neighbor Solicitation message.
This change adds support for TCP to let the IP/link layers know that a
neighbor is reachable.
Test: integration_test.TestTCPConfirmNeighborReachability
PiperOrigin-RevId: 354222833
|
|
|
|
This clarifies that there is a lock involved.
PiperOrigin-RevId: 354213848
|