Age | Commit message (Collapse) | Author |
|
* Aggregate architecture Overview in "What is gVisor?" as it makes more sense
in one place.
* Drop "user-space kernel" and use "application kernel". The term "user-space
kernel" is confusing when some platform implementation do not run in
user-space (instead running in guest ring zero).
* Clear up the relationship between the Platform page in the user guide and the
Platform page in the architecture guide, and ensure they are cross-linked.
* Restore the call-to-action quick start link in the main page, and drop the
GitHub link (which also appears in the top-right).
* Improve image formatting by centering all doc and blog images, and move the
image captions to the alt text.
PiperOrigin-RevId: 311845158
|
|
Enables commands with -o (--out-interface) for iptables rules.
$ iptables -A OUTPUT -o eth0 -j ACCEPT
PiperOrigin-RevId: 310642286
|
|
Connection tracking is used to track packets in prerouting and
output hooks of iptables. The NAT rules modify the tuples in
connections. The connection tracking code modifies the packets by
looking at the modified tuples.
|
|
Support generating temporary (short-lived) IPv6 SLAAC addresses to
address privacy concerns outlined in RFC 4941.
Tests:
- stack_test.TestAutoGenTempAddr
- stack_test.TestNoAutoGenTempAddrForLinkLocal
- stack_test.TestAutoGenTempAddrRegen
- stack_test.TestAutoGenTempAddrRegenTimerUpdates
- stack_test.TestNoAutoGenTempAddrWithoutStableAddr
- stack_test.TestAutoGenAddrInResponseToDADConflicts
PiperOrigin-RevId: 308915566
|
|
This allows the link layer endpoints to consistenly hash a TCP
segment to a single underlying queue in case a link layer endpoint
does support multiple underlying queues.
Updates #231
PiperOrigin-RevId: 302760664
|
|
This is a precursor to be being able to build an intrusive list
of PacketBuffers for use in queuing disciplines being implemented.
Updates #2214
PiperOrigin-RevId: 302677662
|
|
Fixes #1510
Test:
- stack_test.TestForwardingWithStaticResolver
- stack_test.TestForwardingWithFakeResolver
- stack_test.TestForwardingWithNoResolver
- stack_test.TestForwardingWithFakeResolverPartialTimeout
- stack_test.TestForwardingWithFakeResolverTwoPackets
- stack_test.TestForwardingWithFakeResolverManyPackets
- stack_test.TestForwardingWithFakeResolverManyResolutions
PiperOrigin-RevId: 300182570
|
|
Ensures that all access to TransportEndpointInfo.ID is either:
* In a function ending in a Locked suffix.
* While holding the appropriate mutex.
This primary affects the checkV4Mapped method on affected endpoints, which has
been renamed to checkV4MappedLocked. Also document the method and change its
argument to be a value instead of a pointer which had caused some awkwardness.
This race was possible in the udp and icmp endpoints between Connect and uses
of TransportEndpointInfo.ID including in both itself and Bind.
The tcp endpoint did not suffer from this bug, but benefited from better
documentation.
Updates #357
PiperOrigin-RevId: 298682913
|
|
Protocol dispatchers were previously leaked. Bypassing TIME_WAIT is required to
test this change.
Also fix a race when a socket in SYN-RCVD is closed. This is also required to
test this change.
PiperOrigin-RevId: 296922548
|
|
PiperOrigin-RevId: 296526279
|
|
Tests: stack_test.TestAttachToLinkEndpointImmediately
PiperOrigin-RevId: 296474068
|
|
- Disabled NICs will have their associated NDP state cleared.
- Disabled NICs will not accept incoming packets.
- Writes through a Route with a disabled NIC will return an invalid
endpoint state error.
- stack.Stack.FindRoute will not return a route with a disabled NIC.
- NIC's Running flag will report the NIC's enabled status.
Tests:
- stack_test.TestDisableUnknownNIC
- stack_test.TestDisabledNICsNICInfoAndCheckNIC
- stack_test.TestRoutesWithDisabledNIC
- stack_test.TestRouteWritePacketWithDisabledNIC
- stack_test.TestStopStartSolicitingRouters
- stack_test.TestCleanupNDPState
- stack_test.TestAddRemoveIPv4BroadcastAddressOnNICEnableDisable
- stack_test.TestJoinLeaveAllNodesMulticastOnNICEnableDisable
PiperOrigin-RevId: 296298588
|
|
PiperOrigin-RevId: 294500858
|
|
PiperOrigin-RevId: 293271055
|
|
PiperOrigin-RevId: 290793754
|
|
This change adds support to send NDP Router Solicitation messages when a NIC
becomes enabled as a host, as per RFC 4861 section 6.3.7.
Note, Router Solicitations will only be sent when the stack has forwarding
disabled.
Tests: Unittests to make sure that the initial Router Solicitations are sent
as configured. The tests also validate the sent Router Solicitations' fields.
PiperOrigin-RevId: 289964095
|
|
PiperOrigin-RevId: 289718534
|
|
Do Source Address Selection when choosing an IPv6 source address as per RFC 6724
section 5 rules 1-3:
1) Prefer same address
2) Prefer appropriate scope
3) Avoid deprecated addresses.
A later change will update Source Address Selection to follow rules 4-8.
Tests:
Rule 1 & 2: stack.TestIPv6SourceAddressSelectionScopeAndSameAddress,
Rule 3: stack.TestAutoGenAddrTimerDeprecation,
stack.TestAutoGenAddrDeprecateFromPI
PiperOrigin-RevId: 289559373
|
|
Fixes #1490
Fixes #1495
PiperOrigin-RevId: 289523250
|
|
* Rename syncutil to sync.
* Add aliases to sync types.
* Replace existing usage of standard library sync package.
This will make it easier to swap out synchronization primitives. For example,
this will allow us to use primitives from github.com/sasha-s/go-deadlock to
check for lock ordering violations.
Updates #1472
PiperOrigin-RevId: 289033387
|
|
This makes it possible to call the sockopt from go even when the NIC has no
name.
PiperOrigin-RevId: 288955236
|
|
...retrievable later via stack.NICInfo().
Clients of this library can use it to add metadata that should be tracked
alongside a NIC, to avoid having to keep a map[tcpip.NICID]metadata mirroring
stack.Stack's nic map.
PiperOrigin-RevId: 288924900
|
|
PiperOrigin-RevId: 288779416
|
|
...enabling us to remove the "CreateNamedLoopbackNIC" variant of
CreateNIC and all the plumbing to connect it through to where the value
is read in FindRoute.
PiperOrigin-RevId: 288713093
|
|
Support deprecating network endpoints on a NIC. If an endpoint is deprecated, it
should not be used for new connections unless a more preferred endpoint is not
available, or unless the deprecated endpoint was explicitly requested.
Test: Test that deprecated endpoints are only returned when more preferred
endpoints are not available and SLAAC addresses are deprecated after its
preferred lifetime
PiperOrigin-RevId: 288562705
|
|
Test: Test that an IPv6 link-local address is not auto-generated for loopback
NICs, even when it is enabled for non-loopback NICS.
PiperOrigin-RevId: 288519591
|
|
Pass the NIC-internal name to the NIC name function when generating opaque IIDs
so implementations can use the name that was provided when the NIC was created.
Previously, explicit NICID to NIC name resolution was required from the netstack
integrator.
Tests: Test that the name provided when creating a NIC is passed to the NIC name
function when generating opaque IIDs.
PiperOrigin-RevId: 288395359
|
|
Support generating opaque interface identifiers as defined by RFC 7217 for
auto-generated IPv6 link-local addresses. Opaque interface identifiers will also
be used for IPv6 addresses auto-generated via SLAAC in a later change.
Note, this change does not handle retries in response to DAD conflicts yet.
That will also come in a later change.
Tests: Test that when configured to generated opaque IIDs, they are properly
generated as outlined by RFC 7217.
PiperOrigin-RevId: 288035349
|
|
PiperOrigin-RevId: 287217899
|
|
Added the ability to get/set the IP_RECVTOS socket option on UDP endpoints. If
enabled, TOS from the incoming Network Header passed as ancillary data in the
ControlMessages.
Test:
* Added unit test to udp_test.go that tests getting/setting as well as
verifying that we receive expected TOS from incoming packet.
* Added a syscall test
PiperOrigin-RevId: 287029703
|
|
This change supports clearing all host-only NDP state when NICs become routers.
All discovered routers, discovered on-link prefixes and auto-generated addresses
will be invalidated when becoming a router. This is because normally, routers do
not process Router Advertisements to discover routers or on-link prefixes, and
do not do SLAAC.
Tests: Unittest to make sure that all discovered routers, discovered prefixes
and auto-generated addresses get invalidated when transitioning from a host to
a router.
PiperOrigin-RevId: 286902309
|
|
PiperOrigin-RevId: 280455453
|
|
This change adds explicit support for honoring the 2MSL timeout
for sockets in TIME_WAIT state. It also adds support for the
TCP_LINGER2 option that allows modification of the FIN_WAIT2
state timeout duration for a given socket.
It also adds an option to modify the Stack wide TIME_WAIT timeout
but this is only for testing. On Linux this is fixed at 60s.
Further, we also now correctly process RST's in CLOSE_WAIT and
close the socket similar to linux without moving it to error
state.
We also now handle SYN in ESTABLISHED state as per
RFC5961#section-4.1. Earlier we would just drop these SYNs.
Which can result in some tests that pass on linux to fail on
gVisor.
Netstack now honors TIME_WAIT correctly as well as handles the
following cases correctly.
- TCP RSTs in TIME_WAIT are ignored.
- A duplicate TCP FIN during TIME_WAIT extends the TIME_WAIT
and a dup ACK is sent in response to the FIN as the dup FIN
indicates potential loss of the original final ACK.
- An out of order segment during TIME_WAIT generates a dup ACK.
- A new SYN w/ a sequence number > the highest sequence number
in the previous connection closes the TIME_WAIT early and
opens a new connection.
Further to make the SYN case work correctly the ISN (Initial
Sequence Number) generation for Netstack has been updated to
be as per RFC. Its not a pure random number anymore and follows
the recommendation in https://tools.ietf.org/html/rfc6528#page-3.
The current hash used is not a cryptographically secure hash
function. A separate change will update the hash function used
to Siphash similar to what is used in Linux.
PiperOrigin-RevId: 279106406
|
|
https://github.com/golang/go/wiki/CodeReviewComments#initialisms
This change does not introduce any new functionality. It just renames variables
from `nicid` to `nicID`.
PiperOrigin-RevId: 278992966
|
|
PacketBuffers are analogous to Linux's sk_buff. They hold all information about
a packet, headers, and payload. This is important for:
* iptables to access various headers of packets
* Preventing the clutter of passing different net and link headers along with
VectorisedViews to packet handling functions.
This change only affects the incoming packet path, and a future change will
change the outgoing path.
Benchmark Regular PacketBufferPtr PacketBufferConcrete
--------------------------------------------------------------------------------
BM_Recvmsg 400.715MB/s 373.676MB/s 396.276MB/s
BM_Sendmsg 361.832MB/s 333.003MB/s 335.571MB/s
BM_Recvfrom 453.336MB/s 393.321MB/s 381.650MB/s
BM_Sendto 378.052MB/s 372.134MB/s 341.342MB/s
BM_SendmsgTCP/0/1k 353.711MB/s 316.216MB/s 322.747MB/s
BM_SendmsgTCP/0/2k 600.681MB/s 588.776MB/s 565.050MB/s
BM_SendmsgTCP/0/4k 995.301MB/s 888.808MB/s 941.888MB/s
BM_SendmsgTCP/0/8k 1.517GB/s 1.274GB/s 1.345GB/s
BM_SendmsgTCP/0/16k 1.872GB/s 1.586GB/s 1.698GB/s
BM_SendmsgTCP/0/32k 1.017GB/s 1.020GB/s 1.133GB/s
BM_SendmsgTCP/0/64k 475.626MB/s 584.587MB/s 627.027MB/s
BM_SendmsgTCP/0/128k 416.371MB/s 503.434MB/s 409.850MB/s
BM_SendmsgTCP/0/256k 323.449MB/s 449.599MB/s 388.852MB/s
BM_SendmsgTCP/0/512k 243.992MB/s 267.676MB/s 314.474MB/s
BM_SendmsgTCP/0/1M 95.138MB/s 95.874MB/s 95.417MB/s
BM_SendmsgTCP/0/2M 96.261MB/s 94.977MB/s 96.005MB/s
BM_SendmsgTCP/0/4M 96.512MB/s 95.978MB/s 95.370MB/s
BM_SendmsgTCP/0/8M 95.603MB/s 95.541MB/s 94.935MB/s
BM_SendmsgTCP/0/16M 94.598MB/s 94.696MB/s 94.521MB/s
BM_SendmsgTCP/0/32M 94.006MB/s 94.671MB/s 94.768MB/s
BM_SendmsgTCP/0/64M 94.133MB/s 94.333MB/s 94.746MB/s
BM_SendmsgTCP/0/128M 93.615MB/s 93.497MB/s 93.573MB/s
BM_SendmsgTCP/0/256M 93.241MB/s 95.100MB/s 93.272MB/s
BM_SendmsgTCP/1/1k 303.644MB/s 316.074MB/s 308.430MB/s
BM_SendmsgTCP/1/2k 537.093MB/s 584.962MB/s 529.020MB/s
BM_SendmsgTCP/1/4k 882.362MB/s 939.087MB/s 892.285MB/s
BM_SendmsgTCP/1/8k 1.272GB/s 1.394GB/s 1.296GB/s
BM_SendmsgTCP/1/16k 1.802GB/s 2.019GB/s 1.830GB/s
BM_SendmsgTCP/1/32k 2.084GB/s 2.173GB/s 2.156GB/s
BM_SendmsgTCP/1/64k 2.515GB/s 2.463GB/s 2.473GB/s
BM_SendmsgTCP/1/128k 2.811GB/s 3.004GB/s 2.946GB/s
BM_SendmsgTCP/1/256k 3.008GB/s 3.159GB/s 3.171GB/s
BM_SendmsgTCP/1/512k 2.980GB/s 3.150GB/s 3.126GB/s
BM_SendmsgTCP/1/1M 2.165GB/s 2.233GB/s 2.163GB/s
BM_SendmsgTCP/1/2M 2.370GB/s 2.219GB/s 2.453GB/s
BM_SendmsgTCP/1/4M 2.005GB/s 2.091GB/s 2.214GB/s
BM_SendmsgTCP/1/8M 2.111GB/s 2.013GB/s 2.109GB/s
BM_SendmsgTCP/1/16M 1.902GB/s 1.868GB/s 1.897GB/s
BM_SendmsgTCP/1/32M 1.655GB/s 1.665GB/s 1.635GB/s
BM_SendmsgTCP/1/64M 1.575GB/s 1.547GB/s 1.575GB/s
BM_SendmsgTCP/1/128M 1.524GB/s 1.584GB/s 1.580GB/s
BM_SendmsgTCP/1/256M 1.579GB/s 1.607GB/s 1.593GB/s
PiperOrigin-RevId: 278940079
|
|
This change validates incoming NDP Router Advertisements as per RFC 4861 section
6.1.2. It also includes the skeleton to handle Router Advertiements that arrive
on some NIC.
Tests: Unittest to make sure only valid NDP Router Advertisements are received/
not dropped.
PiperOrigin-RevId: 278891972
|
|
It is required to guarantee the same order of endpoints after save/restore.
PiperOrigin-RevId: 277598665
|
|
Link endpoints still don't have a unified way to be requested to stop.
Updates #837
PiperOrigin-RevId: 277398952
|
|
In the future this will replace DanglingEndpoints. DanglingEndpoints must be
kept for now due to issues with save/restore.
This is arguably a cleaner design and allows the stack to know which transport
endpoints might still be using its link endpoints.
Updates #837
PiperOrigin-RevId: 277386633
|
|
This change makes it so that NDP work is done using the per-interface NDP
configurations instead of the stack-wide default NDP configurations to correctly
implement RFC 4861 section 6.3.2 (note here, a host is a single NIC operating
as a host device), and RFC 4862 section 5.1.
Test: Test that we can set NDP configurations on a per-interface basis without
affecting the configurations of other interfaces or the stack-wide default. Also
make sure that after the configurations are updated, the updated configurations
are used for NDP processes (e.g. Duplicate Address Detection).
PiperOrigin-RevId: 276525661
|
|
This change introduces a new interface, stack.NDPDispatcher. It can be
implemented by the netstack integrator to receive NDP related events. As of this
change, only DAD related events are supported.
Tests: Existing tests were modified to use the NDPDispatcher's DAD events for
DAD tests where it needed to wait for DAD completing (failing and resolving).
PiperOrigin-RevId: 276338733
|
|
This change adds support for optionally auto-generating an IPv6 link-local
address based on the NIC's MAC Address on NIC enable.
Note, this change will not break existing uses of netstack as the default
configuration for the stack options is set in such a way that a link-local
address will not be auto-generated unless the stack is explicitly configured.
See `stack.Options` for more details. Specifically, see
`stack.Options.AutoGenIPv6LinkLocal`.
Tests: Tests to make sure that the IPb6 link-local address is only
auto-generated if the stack is specifically configured to do so. Also tests to
make sure that an auto-generated address goes through the DAD process.
PiperOrigin-RevId: 276059813
|
|
Like (AF_INET, SOCK_RAW) sockets, AF_PACKET sockets require CAP_NET_RAW. With
runsc, you'll need to pass `--net-raw=true` to enable them.
Binding isn't supported yet.
PiperOrigin-RevId: 275909366
|
|
This change adds support for Duplicate Address Detection on IPv6 addresses
as defined by RFC 4862 section 5.4.
Note, this change will not break existing uses of netstack as the default
configuration for the stack options is set in such a way that DAD will not be
performed. See `stack.Options` and `stack.NDPConfigurations` for more details.
Tests: Tests to make sure that the DAD process properly resolves or fails.
That is, tests make sure that DAD resolves only if:
- No other node is performing DAD for the same address
- No other node owns the same address
PiperOrigin-RevId: 275189471
|
|
PiperOrigin-RevId: 274700093
|
|
PiperOrigin-RevId: 273861936
|
|
The behavior for sending and receiving local broadcast (255.255.255.255)
traffic is as follows:
Outgoing
--------
* A broadcast packet sent on a socket that is bound to an interface goes out
that interface
* A broadcast packet sent on an unbound socket follows the route table to
select the outgoing interface
+ if an explicit route entry exists for 255.255.255.255/32, use that one
+ else use the default route
* Broadcast packets are looped back and delivered following the rules for
incoming packets (see next). This is the same behavior as for multicast
packets, except that it cannot be disabled via sockopt.
Incoming
--------
* Sockets wishing to receive broadcast packets must bind to either INADDR_ANY
(0.0.0.0) or INADDR_BROADCAST (255.255.255.255). No other socket receives
broadcast packets.
* Broadcast packets are multiplexed to all sockets matching it. This is the
same behavior as for multicast packets.
* A socket can bind to 255.255.255.255:<port> and then receive its own
broadcast packets sent to 255.255.255.255:<port>
In addition, this change implicitly fixes an issue with multicast reception. If
two sockets want to receive a given multicast stream and one is bound to ANY
while the other is bound to the multicast address, only one of them will
receive the traffic.
PiperOrigin-RevId: 272792377
|
|
Netstack always picks a random start point everytime PickEphemeralPort
is called. While this is required for UDP so that DNS requests go
out through a randomized set of ports it is not required for TCP. Infact
Linux explicitly hashes the (srcip, dstip, dstport) and a one time secret
initialized at start of the application to get a random offset. But to
ensure it doesn't start from the same point on every scan it uses a static
hint that is incremented by 2 in every call to pick ephemeral ports.
The reason for 2 is Linux seems to split the port ranges where active connects
seem to use even ones while odd ones are used by listening sockets.
This CL implements a similar strategy where we use a hash + hint to generate
the offset to start the search for a free Ephemeral port.
This ensures that we cycle through the available port space in order for
repeated connects to the same destination and significantly reduces the
chance of picking a recently released port.
PiperOrigin-RevId: 272058370
|
|
PiperOrigin-RevId: 271644926
|
|
Also removes the need for protocol names.
PiperOrigin-RevId: 271186030
|