Age | Commit message (Collapse) | Author |
|
This change adds support to send NDP Router Solicitation messages when a NIC
becomes enabled as a host, as per RFC 4861 section 6.3.7.
Note, Router Solicitations will only be sent when the stack has forwarding
disabled.
Tests: Unittests to make sure that the initial Router Solicitations are sent
as configured. The tests also validate the sent Router Solicitations' fields.
PiperOrigin-RevId: 289964095
|
|
PiperOrigin-RevId: 289718534
|
|
Do Source Address Selection when choosing an IPv6 source address as per RFC 6724
section 5 rules 1-3:
1) Prefer same address
2) Prefer appropriate scope
3) Avoid deprecated addresses.
A later change will update Source Address Selection to follow rules 4-8.
Tests:
Rule 1 & 2: stack.TestIPv6SourceAddressSelectionScopeAndSameAddress,
Rule 3: stack.TestAutoGenAddrTimerDeprecation,
stack.TestAutoGenAddrDeprecateFromPI
PiperOrigin-RevId: 289559373
|
|
* Rename syncutil to sync.
* Add aliases to sync types.
* Replace existing usage of standard library sync package.
This will make it easier to swap out synchronization primitives. For example,
this will allow us to use primitives from github.com/sasha-s/go-deadlock to
check for lock ordering violations.
Updates #1472
PiperOrigin-RevId: 289033387
|
|
...retrievable later via stack.NICInfo().
Clients of this library can use it to add metadata that should be tracked
alongside a NIC, to avoid having to keep a map[tcpip.NICID]metadata mirroring
stack.Stack's nic map.
PiperOrigin-RevId: 288924900
|
|
...enabling us to remove the "CreateNamedLoopbackNIC" variant of
CreateNIC and all the plumbing to connect it through to where the value
is read in FindRoute.
PiperOrigin-RevId: 288713093
|
|
Support deprecating network endpoints on a NIC. If an endpoint is deprecated, it
should not be used for new connections unless a more preferred endpoint is not
available, or unless the deprecated endpoint was explicitly requested.
Test: Test that deprecated endpoints are only returned when more preferred
endpoints are not available and SLAAC addresses are deprecated after its
preferred lifetime
PiperOrigin-RevId: 288562705
|
|
Test: Test that an IPv6 link-local address is not auto-generated for loopback
NICs, even when it is enabled for non-loopback NICS.
PiperOrigin-RevId: 288519591
|
|
Pass the NIC-internal name to the NIC name function when generating opaque IIDs
so implementations can use the name that was provided when the NIC was created.
Previously, explicit NICID to NIC name resolution was required from the netstack
integrator.
Tests: Test that the name provided when creating a NIC is passed to the NIC name
function when generating opaque IIDs.
PiperOrigin-RevId: 288395359
|
|
Support generating opaque interface identifiers as defined by RFC 7217 for
auto-generated IPv6 link-local addresses. Opaque interface identifiers will also
be used for IPv6 addresses auto-generated via SLAAC in a later change.
Note, this change does not handle retries in response to DAD conflicts yet.
That will also come in a later change.
Tests: Test that when configured to generated opaque IIDs, they are properly
generated as outlined by RFC 7217.
PiperOrigin-RevId: 288035349
|
|
PiperOrigin-RevId: 287217899
|
|
Added the ability to get/set the IP_RECVTOS socket option on UDP endpoints. If
enabled, TOS from the incoming Network Header passed as ancillary data in the
ControlMessages.
Test:
* Added unit test to udp_test.go that tests getting/setting as well as
verifying that we receive expected TOS from incoming packet.
* Added a syscall test
PiperOrigin-RevId: 287029703
|
|
This change supports clearing all host-only NDP state when NICs become routers.
All discovered routers, discovered on-link prefixes and auto-generated addresses
will be invalidated when becoming a router. This is because normally, routers do
not process Router Advertisements to discover routers or on-link prefixes, and
do not do SLAAC.
Tests: Unittest to make sure that all discovered routers, discovered prefixes
and auto-generated addresses get invalidated when transitioning from a host to
a router.
PiperOrigin-RevId: 286902309
|
|
This change allows the netstack to do SLAAC as outlined by RFC 4862 section 5.5.
Note, this change will not break existing uses of netstack as the default
configuration for the stack options is set in such a way that SLAAC
will not be performed. See `stack.Options` and `stack.NDPConfigurations` for
more details.
This change reuses 1 option and introduces a new one that is required to take
advantage of SLAAC, all available under NDPConfigurations:
- HandleRAs: Whether or not NDP RAs are processes
- AutoGenGlobalAddresses: Whether or not SLAAC is performed.
Also note, this change does not deprecate SLAAC generated addresses after the
preferred lifetime. That will come in a later change (b/143713887). Currently,
only the valid lifetime is honoured.
Tests: Unittest to make sure that SLAAC generates and adds addresses only when
configured to do so. Tests also makes sure that conflicts with static addresses
do not modify the static address.
PiperOrigin-RevId: 284265317
|
|
PiperOrigin-RevId: 280455453
|
|
This change allows the netstack to do NDP's Prefix Discovery as outlined by
RFC 4861 section 6.3.4. If configured to do so, when a new on-link prefix is
discovered, the routing table will be updated with a device route through
the nic the RA arrived at. Likewise, when such a prefix gets invalidated, the
device route will be removed.
Note, this change will not break existing uses of netstack as the default
configuration for the stack options is set in such a way that Prefix Discovery
will not be performed. See `stack.Options` and `stack.NDPConfigurations` for
more details.
This change reuses 1 option and introduces a new one that is required to take
advantage of Prefix Discovery, all available under NDPConfigurations:
- HandleRAs: Whether or not NDP RAs are processes
- DiscoverOnLinkPrefixes: Whether or not Prefix Discovery is performed (new)
Another note: for a NIC to process Prefix Information options (in Router
Advertisements), it must not be a router itself. Currently the netstack does not
have per-interface routing configuration; the routing/forwarding configuration
is controlled stack-wide. Therefore, if the stack is configured to enable
forwarding/routing, no router Advertisements (and by extension the Prefix
Information options) will be processed.
Tests: Unittest to make sure that Prefix Discovery and updates to the routing
table only occur if explicitly configured to do so. Unittest to make sure at
max stack.MaxDiscoveredOnLinkPrefixes discovered on-link prefixes are
remembered.
PiperOrigin-RevId: 280049278
|
|
PacketBuffers are analogous to Linux's sk_buff. They hold all information about
a packet, headers, and payload. This is important for:
* iptables to access various headers of packets
* Preventing the clutter of passing different net and link headers along with
VectorisedViews to packet handling functions.
This change only affects the incoming packet path, and a future change will
change the outgoing path.
Benchmark Regular PacketBufferPtr PacketBufferConcrete
--------------------------------------------------------------------------------
BM_Recvmsg 400.715MB/s 373.676MB/s 396.276MB/s
BM_Sendmsg 361.832MB/s 333.003MB/s 335.571MB/s
BM_Recvfrom 453.336MB/s 393.321MB/s 381.650MB/s
BM_Sendto 378.052MB/s 372.134MB/s 341.342MB/s
BM_SendmsgTCP/0/1k 353.711MB/s 316.216MB/s 322.747MB/s
BM_SendmsgTCP/0/2k 600.681MB/s 588.776MB/s 565.050MB/s
BM_SendmsgTCP/0/4k 995.301MB/s 888.808MB/s 941.888MB/s
BM_SendmsgTCP/0/8k 1.517GB/s 1.274GB/s 1.345GB/s
BM_SendmsgTCP/0/16k 1.872GB/s 1.586GB/s 1.698GB/s
BM_SendmsgTCP/0/32k 1.017GB/s 1.020GB/s 1.133GB/s
BM_SendmsgTCP/0/64k 475.626MB/s 584.587MB/s 627.027MB/s
BM_SendmsgTCP/0/128k 416.371MB/s 503.434MB/s 409.850MB/s
BM_SendmsgTCP/0/256k 323.449MB/s 449.599MB/s 388.852MB/s
BM_SendmsgTCP/0/512k 243.992MB/s 267.676MB/s 314.474MB/s
BM_SendmsgTCP/0/1M 95.138MB/s 95.874MB/s 95.417MB/s
BM_SendmsgTCP/0/2M 96.261MB/s 94.977MB/s 96.005MB/s
BM_SendmsgTCP/0/4M 96.512MB/s 95.978MB/s 95.370MB/s
BM_SendmsgTCP/0/8M 95.603MB/s 95.541MB/s 94.935MB/s
BM_SendmsgTCP/0/16M 94.598MB/s 94.696MB/s 94.521MB/s
BM_SendmsgTCP/0/32M 94.006MB/s 94.671MB/s 94.768MB/s
BM_SendmsgTCP/0/64M 94.133MB/s 94.333MB/s 94.746MB/s
BM_SendmsgTCP/0/128M 93.615MB/s 93.497MB/s 93.573MB/s
BM_SendmsgTCP/0/256M 93.241MB/s 95.100MB/s 93.272MB/s
BM_SendmsgTCP/1/1k 303.644MB/s 316.074MB/s 308.430MB/s
BM_SendmsgTCP/1/2k 537.093MB/s 584.962MB/s 529.020MB/s
BM_SendmsgTCP/1/4k 882.362MB/s 939.087MB/s 892.285MB/s
BM_SendmsgTCP/1/8k 1.272GB/s 1.394GB/s 1.296GB/s
BM_SendmsgTCP/1/16k 1.802GB/s 2.019GB/s 1.830GB/s
BM_SendmsgTCP/1/32k 2.084GB/s 2.173GB/s 2.156GB/s
BM_SendmsgTCP/1/64k 2.515GB/s 2.463GB/s 2.473GB/s
BM_SendmsgTCP/1/128k 2.811GB/s 3.004GB/s 2.946GB/s
BM_SendmsgTCP/1/256k 3.008GB/s 3.159GB/s 3.171GB/s
BM_SendmsgTCP/1/512k 2.980GB/s 3.150GB/s 3.126GB/s
BM_SendmsgTCP/1/1M 2.165GB/s 2.233GB/s 2.163GB/s
BM_SendmsgTCP/1/2M 2.370GB/s 2.219GB/s 2.453GB/s
BM_SendmsgTCP/1/4M 2.005GB/s 2.091GB/s 2.214GB/s
BM_SendmsgTCP/1/8M 2.111GB/s 2.013GB/s 2.109GB/s
BM_SendmsgTCP/1/16M 1.902GB/s 1.868GB/s 1.897GB/s
BM_SendmsgTCP/1/32M 1.655GB/s 1.665GB/s 1.635GB/s
BM_SendmsgTCP/1/64M 1.575GB/s 1.547GB/s 1.575GB/s
BM_SendmsgTCP/1/128M 1.524GB/s 1.584GB/s 1.580GB/s
BM_SendmsgTCP/1/256M 1.579GB/s 1.607GB/s 1.593GB/s
PiperOrigin-RevId: 278940079
|
|
This change validates incoming NDP Router Advertisements as per RFC 4861 section
6.1.2. It also includes the skeleton to handle Router Advertiements that arrive
on some NIC.
Tests: Unittest to make sure only valid NDP Router Advertisements are received/
not dropped.
PiperOrigin-RevId: 278891972
|
|
When VectorisedViews were passed up the stack from packet_dispatchers, we were
passing a sub-slice of the dispatcher's views fields. The dispatchers then
immediately set those views to nil.
This wasn't caught before because every implementer copied the data in these
views before returning.
PiperOrigin-RevId: 277615351
|
|
This change supports using a user supplied TCP MSS for new active TCP
connections. Note, the user supplied MSS must be less than or equal to the
maximum possible MSS for a TCP connection's route. If it is greater than the
maximum possible MSS, the maximum possible MSS will be used as the connection's
MSS instead.
This change does not use this user supplied MSS for connections accepted from
listening sockets - that will come in a later change.
Test: Test that outgoing TCP SYN segments contain a TCP MSS option with the user
supplied MSS if it is not greater than the maximum possible MSS for the route.
PiperOrigin-RevId: 277185125
|
|
This change makes it so that NDP work is done using the per-interface NDP
configurations instead of the stack-wide default NDP configurations to correctly
implement RFC 4861 section 6.3.2 (note here, a host is a single NIC operating
as a host device), and RFC 4862 section 5.1.
Test: Test that we can set NDP configurations on a per-interface basis without
affecting the configurations of other interfaces or the stack-wide default. Also
make sure that after the configurations are updated, the updated configurations
are used for NDP processes (e.g. Duplicate Address Detection).
PiperOrigin-RevId: 276525661
|
|
This change introduces a new interface, stack.NDPDispatcher. It can be
implemented by the netstack integrator to receive NDP related events. As of this
change, only DAD related events are supported.
Tests: Existing tests were modified to use the NDPDispatcher's DAD events for
DAD tests where it needed to wait for DAD completing (failing and resolving).
PiperOrigin-RevId: 276338733
|
|
This change makes sure that when an address which is already known by a NIC and
has kind = permanentExpired gets promoted to permanent, the new
PrimaryEndpointBehavior is respected.
PiperOrigin-RevId: 276136317
|
|
This change adds support for optionally auto-generating an IPv6 link-local
address based on the NIC's MAC Address on NIC enable.
Note, this change will not break existing uses of netstack as the default
configuration for the stack options is set in such a way that a link-local
address will not be auto-generated unless the stack is explicitly configured.
See `stack.Options` for more details. Specifically, see
`stack.Options.AutoGenIPv6LinkLocal`.
Tests: Tests to make sure that the IPb6 link-local address is only
auto-generated if the stack is specifically configured to do so. Also tests to
make sure that an auto-generated address goes through the DAD process.
PiperOrigin-RevId: 276059813
|
|
Like (AF_INET, SOCK_RAW) sockets, AF_PACKET sockets require CAP_NET_RAW. With
runsc, you'll need to pass `--net-raw=true` to enable them.
Binding isn't supported yet.
PiperOrigin-RevId: 275909366
|
|
There's no need for a linked list here.
PiperOrigin-RevId: 275565920
|
|
It is quite legal to send from the ANY address (it is required for
DHCP). I can't figure out why the broadcast address was included here,
so removing that as well.
PiperOrigin-RevId: 275541954
|
|
This change adds support for Duplicate Address Detection on IPv6 addresses
as defined by RFC 4862 section 5.4.
Note, this change will not break existing uses of netstack as the default
configuration for the stack options is set in such a way that DAD will not be
performed. See `stack.Options` and `stack.NDPConfigurations` for more details.
Tests: Tests to make sure that the DAD process properly resolves or fails.
That is, tests make sure that DAD resolves only if:
- No other node is performing DAD for the same address
- No other node owns the same address
PiperOrigin-RevId: 275189471
|
|
...and do not populate link address cache at dispatch. This partially
reverts 313c767b0001bf6271405f1b765b60a334d6e911, which caused malformed
packets (e.g. NDP Neighbor Adverts with incorrect hop limit values) to
populate the address cache. In particular, this masked a bug that was
introduced to the Neighbor Advert generation code in
7c1587e3401a010d1865df61dbaf117c77dd062e.
PiperOrigin-RevId: 274865182
|
|
The behavior for sending and receiving local broadcast (255.255.255.255)
traffic is as follows:
Outgoing
--------
* A broadcast packet sent on a socket that is bound to an interface goes out
that interface
* A broadcast packet sent on an unbound socket follows the route table to
select the outgoing interface
+ if an explicit route entry exists for 255.255.255.255/32, use that one
+ else use the default route
* Broadcast packets are looped back and delivered following the rules for
incoming packets (see next). This is the same behavior as for multicast
packets, except that it cannot be disabled via sockopt.
Incoming
--------
* Sockets wishing to receive broadcast packets must bind to either INADDR_ANY
(0.0.0.0) or INADDR_BROADCAST (255.255.255.255). No other socket receives
broadcast packets.
* Broadcast packets are multiplexed to all sockets matching it. This is the
same behavior as for multicast packets.
* A socket can bind to 255.255.255.255:<port> and then receive its own
broadcast packets sent to 255.255.255.255:<port>
In addition, this change implicitly fixes an issue with multicast reception. If
two sockets want to receive a given multicast stream and one is bound to ANY
while the other is bound to the multicast address, only one of them will
receive the traffic.
PiperOrigin-RevId: 272792377
|
|
PiperOrigin-RevId: 271644926
|
|
Non-primary addresses are used for endpoints created to accept multicast and
broadcast packets, as well as "helper" endpoints (0.0.0.0) that allow sending
packets when no proper address has been assigned yet (e.g., for DHCP). These
addresses are not real addresses from a user point of view and should not be
part of the NICInfo() value. Also see b/127321246 for more info.
This switches NICInfo() to call a new NIC.PrimaryAddresses() function. To still
allow an option to get all addresses (mostly for testing) I added
Stack.GetAllAddresses() and NIC.AllAddresses().
In addition, the return value for GetMainNICAddress() was changed for the case
where the NIC has no primary address. Instead of returning an error here,
it now returns an empty AddressWithPrefix() value. The rational for this
change is that it is a valid case for a NIC to have no primary addresses.
Lastly, I refactored the code based on the new additions.
PiperOrigin-RevId: 270971764
|
|
PiperOrigin-RevId: 269658971
|
|
PiperOrigin-RevId: 268757842
|
|
The IPv6 all-nodes multicast address will be joined on NIC enable, and the
appropriate IPv6 solicited-node multicast address will be joined when IPv6
addresses are added.
Tests: Test receiving packets destined to the IPv6 link-local all-nodes
multicast address and the IPv6 solicted node address of an added IPv6 address.
PiperOrigin-RevId: 268047073
|
|
This also renames "subnet" to "addressRange" to avoid any more confusion with
an interface IP's subnet.
Lastly, this also removes the Stack.ContainsSubnet(..) API since it isn't used
by anyone. Plus the same information can be obtained from
Stack.NICAddressRanges().
PiperOrigin-RevId: 267229843
|
|
Adds support to generate Port Unreachable messages for UDP
datagrams received on a port for which there is no valid
endpoint.
Fixes #703
PiperOrigin-RevId: 267034418
|
|
Wrapping "kind" into atomic access functions.
Fixes #789
PiperOrigin-RevId: 266485501
|
|
This allows the stack to learn remote link addresses on incoming
packets, reducing the need to ARP to send responses.
This also reduces the number of round trips to the system clock,
since that may also prove to be performance-sensitive.
Fixes #739.
PiperOrigin-RevId: 265815816
|
|
This addresses the problem where an endpoint has its address removed but still
has outstanding references held by routes used in connected TCP/UDP sockets
which prevent the removal of the endpoint.
The fix adds a new "expired" flag to the referenced network endpoint, which is
set when an endpoint has its address removed. Incoming packets are not
delivered to an expired endpoint (unless in promiscuous mode), while sending
outgoing packets triggers an error to the caller (unless in spoofing mode).
In addition, a few helper functions were added to stack_test.go to reduce
code duplications.
PiperOrigin-RevId: 265514326
|
|
This adds the same logic to NIC.findEndpoint that is already done in
NIC.getRef. Since this makes the two functions very similar they were combined
into one with the originals being wrappers.
PiperOrigin-RevId: 263864708
|
|
PiperOrigin-RevId: 260803517
|
|
This allows the user code to add a network address with a subnet prefix length.
The prefix length value is stored in the network endpoint and provided back to
the user in the ProtocolAddress type.
PiperOrigin-RevId: 259807693
|
|
This can be merged after:
https://github.com/google/gvisor-website/pull/77
or
https://github.com/google/gvisor-website/pull/78
PiperOrigin-RevId: 253132620
|
|
PiperOrigin-RevId: 249511348
Change-Id: I34539092cc85032d9473ff4dd308fc29dc9bfd6b
|
|
This requires two changes:
1) Support for more than one socket to join a given multicast group.
2) Duplicate delivery of incoming multicast packets to all sockets listening
for it.
In addition, I tweaked the code (and added a test) to disallow duplicates
IP_ADD_MEMBERSHIP calls for the same group and NIC. This is how Linux does
it.
PiperOrigin-RevId: 246437315
Change-Id: Icad8300b4a8c3f501d9b4cd283bd3beabef88b72
|
|
Based on the guidelines at
https://opensource.google.com/docs/releasing/authors/.
1. $ rg -l "Google LLC" | xargs sed -i 's/Google LLC.*/The gVisor Authors./'
2. Manual fixup of "Google Inc" references.
3. Add AUTHORS file. Authors may request to be added to this file.
4. Point netstack AUTHORS to gVisor AUTHORS. Drop CONTRIBUTORS.
Fixes #209
PiperOrigin-RevId: 245823212
Change-Id: I64530b24ad021a7d683137459cafc510f5ee1de9
|
|
PiperOrigin-RevId: 245818639
Change-Id: I03703ef0fb9b6675955637b9fe2776204c545789
|
|
The linux packet socket can handle GSO packets, so we can segment packets to
64K instead of the MTU which is usually 1500.
Here are numbers for the nginx-1m test:
runsc: 579330.01 [Kbytes/sec] received
runsc-gso: 1794121.66 [Kbytes/sec] received
runc: 2122139.06 [Kbytes/sec] received
and for tcp_benchmark:
$ tcp_benchmark --duration 15 --ideal
[ 4] 0.0-15.0 sec 86647 MBytes 48456 Mbits/sec
$ tcp_benchmark --client --duration 15 --ideal
[ 4] 0.0-15.0 sec 2173 MBytes 1214 Mbits/sec
$ tcp_benchmark --client --duration 15 --ideal --gso 65536
[ 4] 0.0-15.0 sec 19357 MBytes 10825 Mbits/sec
PiperOrigin-RevId: 240809103
Change-Id: I2637f104db28b5d4c64e1e766c610162a195775a
|
|
PiperOrigin-RevId: 239194420
Change-Id: Ie193e8ac2b7a6db21195ac85824a335930483971
|