summaryrefslogtreecommitdiffhomepage
path: root/pkg/tcpip/stack/nic.go
AgeCommit message (Collapse)Author
2021-01-28Change tcpip.Error to an interfaceTamir Duberstein
This makes it possible to add data to types that implement tcpip.Error. ErrBadLinkEndpoint is removed as it is unused. PiperOrigin-RevId: 354437314
2021-01-27Confirm neighbor reachability with TCP ACKsGhanan Gowripalan
As per RFC 4861 section 7.3.1, A neighbor is considered reachable if the node has recently received a confirmation that packets sent recently to the neighbor were received by its IP layer. Positive confirmation can be gathered in two ways: hints from upper-layer protocols that indicate a connection is making "forward progress", or receipt of a Neighbor Advertisement message that is a response to a Neighbor Solicitation message. This change adds support for TCP to let the IP/link layers know that a neighbor is reachable. Test: integration_test.TestTCPConfirmNeighborReachability PiperOrigin-RevId: 354222833
2021-01-21Only use callback for GetLinkAddressGhanan Gowripalan
GetLinkAddress's callback will be called immediately with a stack.LinkResolutionResult which will hold the link address so no need to also return the link address from the function. Fixes #5151. PiperOrigin-RevId: 353157857
2021-01-21Do not cache remote link address in RouteGhanan Gowripalan
...unless explicitly requested via ResolveWith. Remove cancelled channels from pending packets as we can use the link resolution channel in a FIFO to limit the number of maximum pending resolutions we should queue packets for. This change also defers starting the goroutine that handles link resolution completion to when link resolution succeeds, fails or gets cancelled due to the max number of pending resolutions being reached. Fixes #751. PiperOrigin-RevId: 353130577
2021-01-21Queue packets in WritePackets when resolving link addressGhanan Gowripalan
Test: integration_test.TestWritePacketsLinkResolution Fixes #4458. PiperOrigin-RevId: 353108826
2021-01-21Populate EgressRoute, GSO, Netproto in NICGhanan Gowripalan
fdbased and qdisc layers expect these fields to already be populated before being reached. PiperOrigin-RevId: 353099492
2021-01-19Do not have a stack-wide linkAddressCacheGhanan Gowripalan
Link addresses are cached on a per NIC basis so instead of having a single cache that includes the NIC ID for neighbor entry lookups, use a single cache per NIC. PiperOrigin-RevId: 352684111
2021-01-17Do not use a stack-wide queue of pending packetsGhanan Gowripalan
Packets may be pending on link resolution to complete before being sent. Link resolution is performed for neighbors which are unique to a NIC so hold link resolution related state under the NIC, not the stack. Note, this change may result in more queued packets but that is okay as RFC 4861 section 7.2.2 recommends that the stack maintain a queue of packets for each neighbor that is waiting for link resolution to complete, not a fixed limit per stack. PiperOrigin-RevId: 352322155
2021-01-15Support GetLinkAddress with neighborCacheGhanan Gowripalan
Test: integration_test.TestGetLinkAddress PiperOrigin-RevId: 352119404
2021-01-15Only pass stack.Route's fields to LinkEndpointsGhanan Gowripalan
stack.Route is used to send network packets and resolve link addresses. A LinkEndpoint does not need to do either of these and only needs the route's fields at the time of the packet write request. Since LinkEndpoints only need the route's fields when writing packets, pass a stack.RouteInfo instead. PiperOrigin-RevId: 352108405
2021-01-13Clear neighbor table on NIC downGhanan Gowripalan
Note, this includes static entries to match linux's behaviour. ``` $ ip neigh show dev eth0 192.168.42.1 lladdr fc:ec:da:70:6e:f9 STALE $ sudo ip neigh add 192.168.42.172 lladdr 22:33:44:55:66:77 dev eth0 $ ip neigh show dev eth0 192.168.42.1 lladdr fc:ec:da:70:6e:f9 STALE 192.168.42.172 lladdr 22:33:44:55:66:77 PERMANENT $ sudo ifconfig eth0 down $ ip neigh show dev eth0 $ sudo ifconfig eth0 up $ ip neigh show dev eth0 ``` Test: stack_test.TestClearNeighborCacheOnNICDisable PiperOrigin-RevId: 351696306
2020-12-22Invoke address resolution upon subsequent traffic to Failed neighborPeter Johnston
Removes the period of time in which subseqeuent traffic to a Failed neighbor immediately fails with ErrNoLinkAddress. A Failed neighbor is one in which address resolution fails; or in other words, the neighbor's IP address cannot be translated to a MAC address. This means removing the Failed state for linkAddrCache and allowing transitiong out of Failed into Incomplete for neighborCache. Previously, both caches would transition entries to Failed after address resolution fails. In this state, any subsequent traffic requested within an unreachable time would immediately fail with ErrNoLinkAddress. This does not follow RFC 4861 section 7.3.3: If address resolution fails, the entry SHOULD be deleted, so that subsequent traffic to that neighbor invokes the next-hop determination procedure again. Invoking next-hop determination at this point ensures that alternate default routers are tried. The API for getting a link address for a given address, whether through the link address cache or the neighbor table, is updated to optionally take a callback which will be called when address resolution completes. This allows `Route` to handle completing link resolution internally, so callers of (*Route).Resolve (e.g. endpoints) don’t have to keep track of when it completes and update the Route accordingly. This change also removes the wakers from LinkAddressCache, NeighborCache, and Route in favor of the callbacks, and callers that previously used a waker can now just pass a callback to (*Route).Resolve that will notify the waker on resolution completion. Fixes #4796 Startblock: has LGTM from sbalana and then add reviewer ghanan PiperOrigin-RevId: 348597478
2020-12-15Fix a data race in packetEPsTing-Yu Wang
packetEPs may get into a state that `len < cap`, casuing append() modifying the original slice storage. Reported-by: syzbot+978dd0e9c2600ab7a76b@syzkaller.appspotmail.com PiperOrigin-RevId: 347634351
2020-12-10Use specified source address for IGMP/MLD packetsGhanan Gowripalan
This change also considers interfaces and network endpoints enabled up up to the point all work to disable them are complete. This was needed so that protocols can perform shutdown work while being disabled (e.g. sending a packet which requires the endpoint to be enabled to obtain a source address). Bug #4682, #4861 Fixes #4888 Startblock: has LGTM from peterjohnston and then add reviewer brunodalbo PiperOrigin-RevId: 346869702
2020-12-03Make `stack.Route` thread safePeter Johnston
Currently we rely on the user to take the lock on the endpoint that owns the route, in order to modify it safely. We can instead move `Route.RemoteLinkAddress` under `Route`'s mutex, and allow non-locking and thread-safe access to other fields of `Route`. PiperOrigin-RevId: 345461586
2020-12-01Track join count in multicast group protocol stateGhanan Gowripalan
Before this change, the join count and the state for IGMP/MLD was held across different types which required multiple locks to be held when accessing a multicast group's state. Bug #4682, #4861 Fixes #4916 PiperOrigin-RevId: 345019091
2020-11-25Make stack.Route safe to access concurrentlyGhanan Gowripalan
Multiple goroutines may use the same stack.Route concurrently so the stack.Route should make sure that any functions called on it are thread-safe. Fixes #4073 PiperOrigin-RevId: 344320491
2020-11-24Track number of packets queued to Failed neighborsSam Balana
Add a NIC-specific neighbor table statistic so we can determine how many packets have been queued to Failed neighbors, indicating an unhealthy local network. This change assists us to debug in-field issues where subsequent traffic to a neighbor fails. Fixes #4819 PiperOrigin-RevId: 344131119
2020-11-16Remove ARP address workaroundGhanan Gowripalan
- Make AddressableEndpoint optional for NetworkEndpoint. Not all NetworkEndpoints need to support addressing (e.g. ARP), so AddressableEndpoint should only be implemented for protocols that support addressing such as IPv4 and IPv6. With this change, tcpip.ErrNotSupported will be returned by the stack when attempting to modify addresses on a network endpoint that does not support addressing. Now that packets are fully handled at the network layer, and (with this change) addresses are optional for network endpoints, we no longer need the workaround for ARP where a fake ARP address was added to each NIC that performs ARP so that packets would be delivered to the ARP layer. PiperOrigin-RevId: 342722547
2020-11-12Move packet handling to NetworkEndpointGhanan Gowripalan
The NIC should not hold network-layer state or logic - network packet handling/forwarding should be performed at the network layer instead of the NIC. Fixes #4688 PiperOrigin-RevId: 342166985
2020-11-05Use stack.Route exclusively for writing packetsGhanan Gowripalan
* Remove stack.Route from incoming packet path. There is no need to pass around a stack.Route during the incoming path of a packet. Instead, pass around the packet's link/network layer information in the packet buffer since all layers may need this information. * Support address bound and outgoing packet NIC in routes. When forwarding is enabled, the source address of a packet may be bound to a different interface than the outgoing interface. This change updates stack.Route to hold both NICs so that one can be used to write packets while the other is used to check if the route's bound address is valid. Note, we need to hold the address's interface so we can check if the address is a spoofed address. * Introduce the concept of a local route. Local routes are routes where the packet never needs to leave the stack; the destination is stack-local. We can now route between interfaces within a stack if the packet never needs to leave the stack, even when forwarding is disabled. * Always obtain a route from the stack before sending a packet. If a packet needs to be sent in response to an incoming packet, a route must be obtained from the stack to ensure the stack is configured to send packets to the packet's source from the packet's destination. * Enable spoofing if a stack may send packets from unowned addresses. This change required changes to some netgophers since previously, promiscuous mode was enough to let the netstack respond to all incoming packets regardless of the packet's destination address. Now that a stack.Route is not held for each incoming packet, finding a route may fail with local addresses we don't own but accepted packets for while in promiscuous mode. Since we also want to be able to send from any address (in response the received promiscuous mode packets), we need to enable spoofing. * Skip transport layer checksum checks for locally generated packets. If a packet is locally generated, the stack can safely assume that no errors were introduced while being locally routed since the packet is never sent out the wire. Some bugs fixed: - transport layer checksum was never calculated after NAT. - handleLocal didn't handle routing across interfaces. - stack didn't support forwarding across interfaces. - always consult the routing table before creating an endpoint. Updates #4688 Fixes #3906 PiperOrigin-RevId: 340943442
2020-10-30Automated rollback of changelist 339750876Dean Deng
PiperOrigin-RevId: 339945377
2020-10-29Automated rollback of changelist 339675182Dean Deng
PiperOrigin-RevId: 339750876
2020-10-29Delay goroutine creation during TCP handshake for accept/connect.Dean Deng
Refactor TCP handshake code so that when connect is initiated, the initial SYN is sent before creating a goroutine to handle the rest of the handshake (which blocks). Similarly, the initial SYN-ACK is sent inline when SYN is received during accept. Some additional cleanup is done as well. Eventually we would like to complete connections in the dispatcher without requiring a wakeup to complete the handshake. This refactor makes that easier. Updates #231 PiperOrigin-RevId: 339675182
2020-10-27Add support for Timestamp and RecordRoute IP optionsJulian Elischer
IPv4 options extend the size of the IP header and have a basic known format. The framework can process that format without needing to know about every possible option. We can add more code to handle additional option types as we need them. Bad options or mangled option entries can result in ICMP Parameter Problem packets. The first types we support are the Timestamp option and the Record Route option, included in this change. The options are processed at several points in the packet flow within the Network stack, with slightly different requirements. The framework includes a mechanism to control this at each point. Support has been added for such points which are only present in upcoming CLs such as during packet forwarding and fragmentation. With this change, 'ping -R' and 'ping -T' work against gVisor and Fuchsia. $ ping -R 192.168.1.2 PING 192.168.1.2 (192.168.1.2) 56(124) bytes of data. 64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=0.990 ms NOP RR: 192.168.1.1 192.168.1.2 192.168.1.1 $ ping -T tsprespec 192.168.1.2 192.168.1.1 192.168.1.2 PING 192.168.1.2 (192.168.1.2) 56(124) bytes of data. 64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=1.20 ms TS: 192.168.1.2 71486821 absolute 192.168.1.1 746 Unit tests included for generic options, Timestamp options and Record Route options. PiperOrigin-RevId: 339379076
2020-10-22Pass NetworkInterface to LinkAddressRequestGhanan Gowripalan
Previously a link endpoint was passed to stack.LinkAddressResolver.LinkAddressRequest. With this change, implementations that want a route for the link address request may find one through the stack. Other implementations that want to send a packet without a route may continue to do so using the network interface directly. Test: - arp_test.TestLinkAddressRequest - ipv6.TestLinkAddressRequest PiperOrigin-RevId: 338577474
2020-10-16Don't include link header when forwarding packetsGhanan Gowripalan
Before this change, if a link header was included in an incoming packet that is forwarded, the packet that gets sent out will take the original packet and add a link header to it while keeping the old link header. This would make the sent packet look like: OUTGOING LINK HDR | INCOMING LINK HDR | NETWORK HDR | ... Obviously this is incorrect as we should drop the incoming link header and only include the outgoing link header. This change fixes this bug. Test: integration_test.TestForwarding PiperOrigin-RevId: 337571447
2020-10-09Automated rollback of changelist 336304024Ghanan Gowripalan
PiperOrigin-RevId: 336339194
2020-10-09Automated rollback of changelist 336185457Bhasker Hariharan
PiperOrigin-RevId: 336304024
2020-10-08Do not resolve routes immediatelyGhanan Gowripalan
When a response needs to be sent to an incoming packet, the stack should consult its neighbour table to determine the remote address's link address. When an entry does not exist in the stack's neighbor table, the stack should queue the packet while link resolution completes. See comments. PiperOrigin-RevId: 336185457
2020-10-05Remove AssignableAddressEndpoint.NetworkEndpointGhanan Gowripalan
We can get the network endpoint directly from the NIC. This is a preparatory CL for when a Route needs to hold a dedicated NIC as its output interface. This is because when forwarding is enabled, packets may be sent from a NIC different from the NIC a route's local address is associated with. PiperOrigin-RevId: 335484500
2020-09-30Use the ICMP error response facilityJulian Elischer
Add code in IPv6 to send ICMP packets while processing extension headers. Add some accounting in processing IPV6 Extension headers which allows us to report meaningful information back in ICMP parameter problem packets. IPv4 also needs to send a message when an unsupported protocol is requested. Add some tests to generate both ipv4 and ipv6 packets with various errors and check the responses. Add some new checkers and cleanup some inconsistencies in the messages in that file. Add new error types for the ICMPv4/6 generators. Fix a bug in the ICMPv4 generator that stopped it from generating "Unknown protocol" messages. Updates #2211 PiperOrigin-RevId: 334661716
2020-09-29Return permanent addresses when NIC is downGhanan Gowripalan
Test: stack_test.TestGetMainNICAddressWhenNICDisabled PiperOrigin-RevId: 334513286
2020-09-29Trim Network/Transport Endpoint/ProtocolGhanan Gowripalan
* Remove Capabilities and NICID methods from NetworkEndpoint. * Remove linkEP and stack parameters from NetworkProtocol.NewEndpoint. The LinkEndpoint can be fetched from the NetworkInterface. The stack is passed to the NetworkProtocol when it is created so the NetworkEndpoint can get it from its protocol. * Remove stack parameter from TransportProtocol.NewEndpoint. Like the NetworkProtocol/Endpoint, the stack is passed to the TransportProtocol when it is created. PiperOrigin-RevId: 334332721
2020-09-29Move IP state from NIC to NetworkEndpoint/ProtocolGhanan Gowripalan
* Add network address to network endpoints. Hold network-specific state in the NetworkEndpoint instead of the stack. This results in the stack no longer needing to "know" about the network endpoints and special case certain work for various endpoints (e.g. IPv6 DAD). * Provide NetworkEndpoints with an NetworkInterface interface. Instead of just passing the NIC ID of a NIC, pass an interface so the network endpoint may query other information about the NIC such as whether or not it is a loopback device. * Move NDP code and state to the IPv6 package. NDP is IPv6 specific so there is no need for it to live in the stack. * Control forwarding through NetworkProtocols instead of Stack Forwarding should be controlled on a per-network protocol basis so forwarding configurations are now controlled through network protocols. * Remove stack.referencedNetworkEndpoint. Now that addresses are exposed via AddressEndpoint and only one NetworkEndpoint is created per interface, there is no need for a referenced NetworkEndpoint. * Assume network teardown methods are infallible. Fixes #3871, #3916 PiperOrigin-RevId: 334319433
2020-09-26Remove generic ICMP errorsGhanan Gowripalan
Generic ICMP errors were required because the transport dispatcher was given the responsibility of sending ICMP errors in response to transport packet delivery failures. Instead, the transport dispatcher should let network layer know it failed to deliver a packet (and why) and let the network layer make the decision as to what error to send (if any). Fixes #4068 PiperOrigin-RevId: 333962333
2020-09-23Extract ICMP error sender from UDPJulian Elischer
Store transport protocol number on packet buffers for use in ICMP error generation. Updates #2211. PiperOrigin-RevId: 333252762
2020-09-20Merge pull request #3651 from ianlewis:ip-forwardinggVisor bot
PiperOrigin-RevId: 332760843
2020-09-18Count packets dropped by iptables in IPStatsKevin Krakauer
PiperOrigin-RevId: 332486383
2020-09-17ip6tables: filter table supportKevin Krakauer
`ip6tables -t filter` is now usable. NAT support will come in a future CL. #3549 PiperOrigin-RevId: 332381801
2020-09-16Bind loopback subnets' lifetime to perm addressGhanan Gowripalan
The lifetime of addreses in a loopback interface's associated subnets should be bound to their respective permanent addresses. This change also fixes a race when the stack attempts to get an IPv4 rereferencedNetworkEndpoint for an address in an associated subnet on a loopback interface. Before this change, the stack would only check if an IPv4 address is contained in an associated subnet while holding a read lock but wouldn't do this same check after releasing the read lock for a write lock to create a temporary address. This may cause the stack to bind the lifetime of the address to a new (temporary) endpoint instead of the associated subnet's permanent address. Test: integration_test.TestLoopbackSubnetLifetimeBoundToAddr PiperOrigin-RevId: 332094719
2020-08-28Don't bind loopback to all IPs in an IPv6 subnetGhanan Gowripalan
An earlier change considered the loopback bound to all addresses in an assigned subnet. This should have only be done for IPv4 to maintain compatability with Linux: ``` $ ip addr show dev lo 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group ... link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever $ ping 2001:db8::1 PING 2001:db8::1(2001:db8::1) 56 data bytes ^C --- 2001:db8::1 ping statistics --- 4 packets transmitted, 0 received, 100% packet loss, time 3062ms $ ping 2001:db8::2 PING 2001:db8::2(2001:db8::2) 56 data bytes ^C --- 2001:db8::2 ping statistics --- 3 packets transmitted, 0 received, 100% packet loss, time 2030ms $ sudo ip addr add 2001:db8::1/64 dev lo $ ping 2001:db8::1 PING 2001:db8::1(2001:db8::1) 56 data bytes 64 bytes from 2001:db8::1: icmp_seq=1 ttl=64 time=0.055 ms 64 bytes from 2001:db8::1: icmp_seq=2 ttl=64 time=0.074 ms 64 bytes from 2001:db8::1: icmp_seq=3 ttl=64 time=0.073 ms 64 bytes from 2001:db8::1: icmp_seq=4 ttl=64 time=0.071 ms ^C --- 2001:db8::1 ping statistics --- 4 packets transmitted, 4 received, 0% packet loss, time 3075ms rtt min/avg/max/mdev = 0.055/0.068/0.074/0.007 ms $ ping 2001:db8::2 PING 2001:db8::2(2001:db8::2) 56 data bytes From 2001:db8::1 icmp_seq=1 Destination unreachable: No route From 2001:db8::1 icmp_seq=2 Destination unreachable: No route From 2001:db8::1 icmp_seq=3 Destination unreachable: No route From 2001:db8::1 icmp_seq=4 Destination unreachable: No route ^C --- 2001:db8::2 ping statistics --- 4 packets transmitted, 0 received, +4 errors, 100% packet loss, time 3070ms ``` Test: integration_test.TestLoopbackAcceptAllInSubnet PiperOrigin-RevId: 329011566
2020-08-28Use a single NetworkEndpoint per addressGhanan Gowripalan
This change was already done as of https://github.com/google/gvisor/commit/1736b2208f but https://github.com/google/gvisor/commit/a174aa7597 conflicted with that change and it was missed in reviews. This change fixes the conflict. PiperOrigin-RevId: 328920372
2020-08-25Add option to replace linkAddrCache with neighborCacheSam Balana
This change adds an option to replace the current implementation of ARP through linkAddrCache, with an implementation of NUD through neighborCache. Switching to using NUD for both ARP and NDP is beneficial for the reasons described by RFC 4861 Section 3.1: "[Using NUD] significantly improves the robustness of packet delivery in the presence of failing routers, partially failing or partitioned links, or nodes that change their link-layer addresses. For instance, mobile nodes can move off-link without losing any connectivity due to stale ARP caches." "Unlike ARP, Neighbor Unreachability Detection detects half-link failures and avoids sending traffic to neighbors with which two-way connectivity is absent." Along with these changes exposes the API for querying and operating the neighbor cache. Operations include: - Create a static entry - List all entries - Delete all entries - Remove an entry by address This also exposes the API to change the NUD protocol constants on a per-NIC basis to allow Neighbor Discovery to operate over links with widely varying performance characteristics. See [RFC 4861 Section 10][1] for the list of constants. Finally, an API for subscribing to NUD state changes is exposed through NUDDispatcher. See [RFC 4861 Appendix C][3] for the list of edges. Tests: pkg/tcpip/network/arp:arp_test + TestDirectRequest pkg/tcpip/network/ipv6:ipv6_test + TestLinkResolution + TestNDPValidation + TestNeighorAdvertisementWithTargetLinkLayerOption + TestNeighorSolicitationResponse + TestNeighorSolicitationWithSourceLinkLayerOption + TestRouterAdvertValidation pkg/tcpip/stack:stack_test + TestCacheWaker + TestForwardingWithFakeResolver + TestForwardingWithFakeResolverManyPackets + TestForwardingWithFakeResolverManyResolutions + TestForwardingWithFakeResolverPartialTimeout + TestForwardingWithFakeResolverTwoPackets + TestIPv6SourceAddressSelectionScopeAndSameAddress [1]: https://tools.ietf.org/html/rfc4861#section-10 [2]: https://tools.ietf.org/html/rfc4861#appendix-C Fixes #1889 Fixes #1894 Fixes #1895 Fixes #1947 Fixes #1948 Fixes #1949 Fixes #1950 PiperOrigin-RevId: 328365034
2020-08-24Consider loopback bound to all addresses in subnetGhanan Gowripalan
When a loopback interface is configurd with an address and associated subnet, the loopback should treat all addresses in that subnet as an address it owns. This is mimicking linux behaviour as seen below: ``` $ ip addr show dev lo 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group ... link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever $ ping 192.0.2.1 PING 192.0.2.1 (192.0.2.1) 56(84) bytes of data. ^C --- 192.0.2.1 ping statistics --- 2 packets transmitted, 0 received, 100% packet loss, time 1018ms $ ping 192.0.2.2 PING 192.0.2.2 (192.0.2.2) 56(84) bytes of data. ^C --- 192.0.2.2 ping statistics --- 3 packets transmitted, 0 received, 100% packet loss, time 2039ms $ sudo ip addr add 192.0.2.1/24 dev lo $ ip addr show dev lo 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group ... link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet 192.0.2.1/24 scope global lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever $ ping 192.0.2.1 PING 192.0.2.1 (192.0.2.1) 56(84) bytes of data. 64 bytes from 192.0.2.1: icmp_seq=1 ttl=64 time=0.131 ms 64 bytes from 192.0.2.1: icmp_seq=2 ttl=64 time=0.046 ms 64 bytes from 192.0.2.1: icmp_seq=3 ttl=64 time=0.048 ms ^C --- 192.0.2.1 ping statistics --- 3 packets transmitted, 3 received, 0% packet loss, time 2042ms rtt min/avg/max/mdev = 0.046/0.075/0.131/0.039 ms $ ping 192.0.2.2 PING 192.0.2.2 (192.0.2.2) 56(84) bytes of data. 64 bytes from 192.0.2.2: icmp_seq=1 ttl=64 time=0.131 ms 64 bytes from 192.0.2.2: icmp_seq=2 ttl=64 time=0.069 ms 64 bytes from 192.0.2.2: icmp_seq=3 ttl=64 time=0.049 ms 64 bytes from 192.0.2.2: icmp_seq=4 ttl=64 time=0.035 ms ^C --- 192.0.2.2 ping statistics --- 4 packets transmitted, 4 received, 0% packet loss, time 3049ms rtt min/avg/max/mdev = 0.035/0.071/0.131/0.036 ms ``` Test: integration_test.TestLoopbackAcceptAllInSubnet PiperOrigin-RevId: 328188546
2020-08-17Merge branch 'master' into ip-forwardingIan Lewis
- Merges aleksej-paschenko's with HEAD - Adds vfs2 support for ip_forward
2020-08-17Remove address range functionsGhanan Gowripalan
Should have been removed in cl/326791119 https://github.com/google/gvisor/commit/9a7b5830aa063895f67ca0fdf653a46906374613 PiperOrigin-RevId: 327074156
2020-08-15Don't support address rangesGhanan Gowripalan
Previously the netstack supported assignment of a range of addresses. This feature is not used so remove it. PiperOrigin-RevId: 326791119
2020-08-14Use a single NetworkEndpoint per NIC per protocolGhanan Gowripalan
The NetworkEndpoint does not need to be created for each address. Most of the work the NetworkEndpoint does is address agnostic. PiperOrigin-RevId: 326759605
2020-08-13Migrate to PacketHeader API for PacketBuffer.Ting-Yu Wang
Formerly, when a packet is constructed or parsed, all headers are set by the client code. This almost always involved prepending to pk.Header buffer or trimming pk.Data portion. This is known to prone to bugs, due to the complexity and number of the invariants assumed across netstack to maintain. In the new PacketHeader API, client will call Push()/Consume() method to construct/parse an outgoing/incoming packet. All invariants, such as slicing and trimming, are maintained by the API itself. NewPacketBuffer() is introduced to create new PacketBuffer. Zero value is no longer valid. PacketBuffer now assumes the packet is a concatenation of following portions: * LinkHeader * NetworkHeader * TransportHeader * Data Any of them could be empty, or zero-length. PiperOrigin-RevId: 326507688