Age | Commit message (Collapse) | Author |
|
The IPv4 RFCs are specific (though obtuse) that an echo response
packet needs to contain all the options from the echo request,
much as if it been routed back to the sender, though apparently
with a new TTL. They suggest copying the incoming packet header
to achieve this so that is what this patch does.
PiperOrigin-RevId: 335559176
|
|
Before this change, OutgoingPacketErrors was incremented in the
stack.Route methods. This was going to be a problem once
IPv4/IPv6 WritePackets support fragmentation because Route.WritePackets
might now know how many packets are left after an error occurs.
Test:
- pkg/tcpip/network/ipv4:ipv4_test
- pkg/tcpip/network/ipv6:ipv6_test
PiperOrigin-RevId: 334687983
|
|
Add code in IPv6 to send ICMP packets while processing extension headers.
Add some accounting in processing IPV6 Extension headers which
allows us to report meaningful information back in ICMP parameter
problem packets.
IPv4 also needs to send a message when an unsupported protocol
is requested.
Add some tests to generate both ipv4 and ipv6 packets with
various errors and check the responses.
Add some new checkers and cleanup some inconsistencies in
the messages in that file.
Add new error types for the ICMPv4/6 generators.
Fix a bug in the ICMPv4 generator that stopped it from generating
"Unknown protocol" messages.
Updates #2211
PiperOrigin-RevId: 334661716
|
|
Test: stack_test.TestGetMainNICAddressWhenNICDisabled
PiperOrigin-RevId: 334513286
|
|
As per relevant IP RFCS (see code comments), broadcast (for IPv4) and
multicast addresses are not allowed. Currently checks for these are
done at the transport layer, but since it is explicitly forbidden at
the IP layers, check for them there.
This change also removes the UDP.InvalidSourceAddress stat since there
is no longer a need for it.
Test: ip_test.TestSourceAddressValidation
PiperOrigin-RevId: 334490971
|
|
Like matchers, targets should use a module-like register/lookup system. This
replaces the brittle switch statements we had before.
The only behavior change is supporing IPT_GET_REVISION_TARGET. This makes it
much easier to add IPv6 redirect in the next change.
Updates #3549.
PiperOrigin-RevId: 334469418
|
|
Linux doesn't generate a link-local address for the loopback interface.
Test: integration_test.TestInitialLoopbackAddresses
PiperOrigin-RevId: 334453182
|
|
Currently expired IP fragments are discarded only if another fragment for the
same IP datagram is received after timeout or the total size of the fragment
queue exceeded a predefined value.
Test: fragmentation.TestReassemblingTimeout
Fixes #3960
PiperOrigin-RevId: 334423710
|
|
* Remove Capabilities and NICID methods from NetworkEndpoint.
* Remove linkEP and stack parameters from NetworkProtocol.NewEndpoint.
The LinkEndpoint can be fetched from the NetworkInterface. The stack
is passed to the NetworkProtocol when it is created so the
NetworkEndpoint can get it from its protocol.
* Remove stack parameter from TransportProtocol.NewEndpoint.
Like the NetworkProtocol/Endpoint, the stack is passed to the
TransportProtocol when it is created.
PiperOrigin-RevId: 334332721
|
|
* Add network address to network endpoints.
Hold network-specific state in the NetworkEndpoint instead of the stack.
This results in the stack no longer needing to "know" about the network
endpoints and special case certain work for various endpoints
(e.g. IPv6 DAD).
* Provide NetworkEndpoints with an NetworkInterface interface.
Instead of just passing the NIC ID of a NIC, pass an interface so the
network endpoint may query other information about the NIC such as
whether or not it is a loopback device.
* Move NDP code and state to the IPv6 package.
NDP is IPv6 specific so there is no need for it to live in the stack.
* Control forwarding through NetworkProtocols instead of Stack
Forwarding should be controlled on a per-network protocol basis so
forwarding configurations are now controlled through network protocols.
* Remove stack.referencedNetworkEndpoint.
Now that addresses are exposed via AddressEndpoint and only one
NetworkEndpoint is created per interface, there is no need for a
referenced NetworkEndpoint.
* Assume network teardown methods are infallible.
Fixes #3871, #3916
PiperOrigin-RevId: 334319433
|
|
Network or transport protocols may want to reach the stack. Support this
by letting the stack create the protocol instances so it can pass a
reference to itself at protocol creation time.
Note, protocols do not yet use the stack in this CL but later CLs will
make use of the stack from protocols.
PiperOrigin-RevId: 334260210
|
|
Generic ICMP errors were required because the transport dispatcher was
given the responsibility of sending ICMP errors in response to transport
packet delivery failures. Instead, the transport dispatcher should let
network layer know it failed to deliver a packet (and why) and let the
network layer make the decision as to what error to send (if any).
Fixes #4068
PiperOrigin-RevId: 333962333
|
|
Store transport protocol number on packet buffers for use in ICMP error
generation.
Updates #2211.
PiperOrigin-RevId: 333252762
|
|
The new testutil.MockLinkEndpoint implementation is not composed by
channel.Channel anymore because none of its features were used.
PiperOrigin-RevId: 333167753
|
|
PiperOrigin-RevId: 332760843
|
|
PiperOrigin-RevId: 332486383
|
|
Extract parsing utilities so they can be used by the sniffer.
Fixes #3930
PiperOrigin-RevId: 332401880
|
|
IPv6 tests will be added in another CL along with ip6tables.
PiperOrigin-RevId: 332389102
|
|
`ip6tables -t filter` is now usable. NAT support will come in a future CL.
#3549
PiperOrigin-RevId: 332381801
|
|
The refactor aims to simplify the package, by replacing the Go channel with a
PacketBuffer slice.
This code will be reused by tests for IPv6 fragmentation.
PiperOrigin-RevId: 331860411
|
|
IPv4 can accept 65536-octet reassembled packets.
Test:
- ipv4_test.TestInvalidFragments
- ipv4_test.TestReceiveFragments
- ipv6.TestInvalidIPv6Fragments
- ipv6.TestReceiveIPv6Fragments
Fixes #3770
PiperOrigin-RevId: 331382977
|
|
The existing implementation for NetworkProtocol.{Set}Option take
arguments of an empty interface type which all types (implicitly)
implement; any type may be passed to the functions.
This change introduces marker interfaces for network protocol options
that may be set or queried which network protocol option types implement
to ensure that invalid types are caught at compile time. Different
interfaces are used to allow the compiler to enforce read-only or
set-only socket options.
PiperOrigin-RevId: 328980359
|
|
This change adds an option to replace the current implementation of ARP through
linkAddrCache, with an implementation of NUD through neighborCache. Switching
to using NUD for both ARP and NDP is beneficial for the reasons described by
RFC 4861 Section 3.1:
"[Using NUD] significantly improves the robustness of packet delivery in the
presence of failing routers, partially failing or partitioned links, or nodes
that change their link-layer addresses. For instance, mobile nodes can move
off-link without losing any connectivity due to stale ARP caches."
"Unlike ARP, Neighbor Unreachability Detection detects half-link failures and
avoids sending traffic to neighbors with which two-way connectivity is
absent."
Along with these changes exposes the API for querying and operating the
neighbor cache. Operations include:
- Create a static entry
- List all entries
- Delete all entries
- Remove an entry by address
This also exposes the API to change the NUD protocol constants on a per-NIC
basis to allow Neighbor Discovery to operate over links with widely varying
performance characteristics. See [RFC 4861 Section 10][1] for the list of
constants.
Finally, an API for subscribing to NUD state changes is exposed through
NUDDispatcher. See [RFC 4861 Appendix C][3] for the list of edges.
Tests:
pkg/tcpip/network/arp:arp_test
+ TestDirectRequest
pkg/tcpip/network/ipv6:ipv6_test
+ TestLinkResolution
+ TestNDPValidation
+ TestNeighorAdvertisementWithTargetLinkLayerOption
+ TestNeighorSolicitationResponse
+ TestNeighorSolicitationWithSourceLinkLayerOption
+ TestRouterAdvertValidation
pkg/tcpip/stack:stack_test
+ TestCacheWaker
+ TestForwardingWithFakeResolver
+ TestForwardingWithFakeResolverManyPackets
+ TestForwardingWithFakeResolverManyResolutions
+ TestForwardingWithFakeResolverPartialTimeout
+ TestForwardingWithFakeResolverTwoPackets
+ TestIPv6SourceAddressSelectionScopeAndSameAddress
[1]: https://tools.ietf.org/html/rfc4861#section-10
[2]: https://tools.ietf.org/html/rfc4861#appendix-C
Fixes #1889
Fixes #1894
Fixes #1895
Fixes #1947
Fixes #1948
Fixes #1949
Fixes #1950
PiperOrigin-RevId: 328365034
|
|
As per RFC 8200 Section 4.5:
The Next Header field of the last header of the Per-Fragment
headers is obtained from the Next Header field of the first
fragment's Fragment header.
Test:
- pkg/tcpip/network/ipv6:ipv6_test
- pkg/tcpip/network/ipv4:ipv4_test
- pkg/tcpip/network/fragmentation:fragmentation_test
Updates #2197
PiperOrigin-RevId: 327671635
|
|
PiperOrigin-RevId: 327042869
|
|
The NetworkEndpoint does not need to be created for each address.
Most of the work the NetworkEndpoint does is address agnostic.
PiperOrigin-RevId: 326759605
|
|
This is a preparatory commit for a larger commit working on
ICMP generation in error cases.
This is removal of technical debt and cleanup in the gvisor code
as part of gvisor issue 2211.
Updates #2211.
PiperOrigin-RevId: 326615389
|
|
Formerly, when a packet is constructed or parsed, all headers are set by the
client code. This almost always involved prepending to pk.Header buffer or
trimming pk.Data portion. This is known to prone to bugs, due to the complexity
and number of the invariants assumed across netstack to maintain.
In the new PacketHeader API, client will call Push()/Consume() method to
construct/parse an outgoing/incoming packet. All invariants, such as slicing
and trimming, are maintained by the API itself.
NewPacketBuffer() is introduced to create new PacketBuffer. Zero value is no
longer valid.
PacketBuffer now assumes the packet is a concatenation of following portions:
* LinkHeader
* NetworkHeader
* TransportHeader
* Data
Any of them could be empty, or zero-length.
PiperOrigin-RevId: 326507688
|
|
NetworkEndpoints set the number on outgoing packets in Write() and
NetworkProtocols set them on incoming packets in Parse().
Needed for #3549.
PiperOrigin-RevId: 325938745
|
|
Packets MUST NOT use a non-unicast source address for ICMP
Echo Replies.
Test: integration_test.TestPingMulticastBroadcast
PiperOrigin-RevId: 325634380
|
|
This will help manage memory consumption by IP reassembly when
receiving IP fragments on multiple network endpoints. Previously,
each endpoint would cap memory consumption at 4MB, but with this
change, each IP stack will cap memory consumption at 4MB.
No behaviour changes.
PiperOrigin-RevId: 324913904
|
|
Prevent fragments with different source-destination pairs from
conflicting with each other.
Test:
- ipv6_test.TestReceiveIPv6Fragments
- ipv4_test.TestReceiveIPv6Fragments
PiperOrigin-RevId: 324283246
|
|
Allow configuring fragmentation.Fragmentation with a fragment
block size which will be enforced when processing fragments. Also
validate arguments when processing fragments.
Test:
- fragmentation.TestErrors
- ipv6_test.TestReceiveIPv6Fragments
- ipv4_test.TestReceiveIPv6Fragments
PiperOrigin-RevId: 324081521
|
|
The previous implementation of LinkAddressRequest only supported sending
broadcast ARP requests and multicast Neighbor Solicitations. The ability to
send these packets as unicast is required for Neighbor Unreachability
Detection.
Tests:
pkg/tcpip/network/arp:arp_test
- TestLinkAddressRequest
pkg/tcpip/network/ipv6:ipv6_test
- TestLinkAddressRequest
Updates #1889
Updates #1894
Updates #1895
Updates #1947
Updates #1948
Updates #1949
Updates #1950
PiperOrigin-RevId: 323451569
|
|
Previously, ICMP destination unreachable datagrams were ignored by TCP
endpoints. This caused connect to hang when an intermediate router
couldn't find a route to the host.
This manifested as a Kokoro error when Docker IPv6 was enabled. The Ruby
image test would try to install the sinatra gem and hang indefinitely
attempting to use an IPv6 address.
Fixes #3079.
|
|
Updates #173
PiperOrigin-RevId: 322665518
|
|
PiperOrigin-RevId: 321620517
|
|
gVisor incorrectly returns the wrong ARP type for SIOGIFHWADDR. This breaks
tcpdump as it tries to interpret the packets incorrectly.
Similarly, SIOCETHTOOL is used by tcpdump to query interface properties which
fails with an EINVAL since we don't implement it. For now change it to return
EOPNOTSUPP to indicate that we don't support the query rather than return
EINVAL.
NOTE: ARPHRD types for link endpoints are distinct from NIC capabilities
and NIC flags. In Linux all 3 exist eg. ARPHRD types are stored in dev->type
field while NIC capabilities are more like the device features which can be
queried using SIOCETHTOOL but not modified and NIC Flags are fields that can
be modified from user space. eg. NIC status (UP/DOWN/MULTICAST/BROADCAST) etc.
Updates #2746
PiperOrigin-RevId: 321436525
|
|
PiperOrigin-RevId: 321053634
|
|
RFC 6864 imposes various restrictions on the uniqueness of the IPv4
Identification field for non-atomic datagrams, defined as an IP datagram that
either can be fragmented (DF=0) or is already a fragment (MF=1 or positive
fragment offset). In order to be compliant, the ID field is assigned for all
non-atomic datagrams.
Add a TCP unit test that induces retransmissions and checks that the IPv4
ID field is unique every time. Add basic handling of the IP_MTU_DISCOVER
socket option so that the option can be used to disable PMTU discovery,
effectively setting DF=0. Attempting to set the sockopt to anything other
than disabled will fail because PMTU discovery is currently not implemented,
and the default behavior matches that of disabled.
PiperOrigin-RevId: 320081842
|
|
Netstack has traditionally parsed headers on-demand as a packet moves up the
stack. This is conceptually simple and convenient, but incompatible with
iptables, where headers can be inspected and mangled before even a routing
decision is made.
This changes header parsing to happen early in the incoming packet path, as soon
as the NIC gets the packet from a link endpoint. Even if an invalid packet is
found (e.g. a TCP header of insufficient length), the packet is passed up the
stack for proper stats bookkeeping.
PiperOrigin-RevId: 315179302
|
|
Loopback traffic is not affected by rules in the PREROUTING chain.
This change is also necessary for istio's envoy to talk to other
components in the same pod.
|
|
Historically we've been passing PacketBuffer by shallow copying through out
the stack. Right now, this is only correct as the caller would not use
PacketBuffer after passing into the next layer in netstack.
With new buffer management effort in gVisor/netstack, PacketBuffer will
own a Buffer (to be added). Internally, both PacketBuffer and Buffer may
have pointers and shallow copying shouldn't be used.
Updates #2404.
PiperOrigin-RevId: 314610879
|
|
Enables commands with -o (--out-interface) for iptables rules.
$ iptables -A OUTPUT -o eth0 -j ACCEPT
PiperOrigin-RevId: 310642286
|
|
Based on ipv6's TestReceiveIPv6Fragments.
|
|
Connection tracking is used to track packets in prerouting and
output hooks of iptables. The NAT rules modify the tuples in
connections. The connection tracking code modifies the packets by
looking at the modified tuples.
|
|
PiperOrigin-RevId: 309491861
|
|
Updates #231
PiperOrigin-RevId: 309323808
|
|
PiperOrigin-RevId: 308674219
|
|
These methods let users eaily break the VectorisedView abstraction, and
allowed netstack to slip into pseudo-enforcement of the "all headers are
in the first View" invariant. Removing them and replacing with PullUp(n)
breaks this reliance and will make it easier to add iptables support and
rework network buffer management.
The new View.PullUp(n) method is low cost in the common case, when when
all the headers fit in the first View.
PiperOrigin-RevId: 308163542
|