summaryrefslogtreecommitdiffhomepage
path: root/pkg/tcpip/link/sharedmem
AgeCommit message (Collapse)Author
2021-01-16Merge release-20210112.0-38-gfd5b52c87 (automated)gVisor bot
2021-01-15Only pass stack.Route's fields to LinkEndpointsGhanan Gowripalan
stack.Route is used to send network packets and resolve link addresses. A LinkEndpoint does not need to do either of these and only needs the route's fields at the time of the packet write request. Since LinkEndpoints only need the route's fields when writing packets, pass a stack.RouteInfo instead. PiperOrigin-RevId: 352108405
2021-01-13Switch uses of os.Getenv that check for empty string to os.LookupEnv.Dean Deng
Whether the variable was found is already returned by syscall.Getenv. os.Getenv drops this value while os.Lookupenv passes it along. PiperOrigin-RevId: 351674032
2020-12-22Invoke address resolution upon subsequent traffic to Failed neighborPeter Johnston
Removes the period of time in which subseqeuent traffic to a Failed neighbor immediately fails with ErrNoLinkAddress. A Failed neighbor is one in which address resolution fails; or in other words, the neighbor's IP address cannot be translated to a MAC address. This means removing the Failed state for linkAddrCache and allowing transitiong out of Failed into Incomplete for neighborCache. Previously, both caches would transition entries to Failed after address resolution fails. In this state, any subsequent traffic requested within an unreachable time would immediately fail with ErrNoLinkAddress. This does not follow RFC 4861 section 7.3.3: If address resolution fails, the entry SHOULD be deleted, so that subsequent traffic to that neighbor invokes the next-hop determination procedure again. Invoking next-hop determination at this point ensures that alternate default routers are tried. The API for getting a link address for a given address, whether through the link address cache or the neighbor table, is updated to optionally take a callback which will be called when address resolution completes. This allows `Route` to handle completing link resolution internally, so callers of (*Route).Resolve (e.g. endpoints) don’t have to keep track of when it completes and update the Route accordingly. This change also removes the wakers from LinkAddressCache, NeighborCache, and Route in favor of the callbacks, and callers that previously used a waker can now just pass a callback to (*Route).Resolve that will notify the waker on resolution completion. Fixes #4796 Startblock: has LGTM from sbalana and then add reviewer ghanan PiperOrigin-RevId: 348597478
2020-12-03Merge release-20201130.0-31-g3ff1aef54 (automated)gVisor bot
2020-12-03Make `stack.Route` thread safePeter Johnston
Currently we rely on the user to take the lock on the endpoint that owns the route, in order to modify it safely. We can instead move `Route.RemoteLinkAddress` under `Route`'s mutex, and allow non-locking and thread-safe access to other fields of `Route`. PiperOrigin-RevId: 345461586
2020-11-18Merge release-20201109.0-69-g9d148627f (automated)gVisor bot
2020-11-18Introduce stack.WritePacketToRemote, remove LinkEndpoint.WriteRawPacketBruno Dal Bo
Redefine stack.WritePacket into stack.WritePacketToRemote which lets the NIC decide whether to append link headers. PiperOrigin-RevId: 343071742
2020-10-20Fix nogo test in //pkg/tcpip/...Ting-Yu Wang
PiperOrigin-RevId: 338168977
2020-08-13Merge release-20200810.0-23-g47515f475 (automated)gVisor bot
2020-08-13Migrate to PacketHeader API for PacketBuffer.Ting-Yu Wang
Formerly, when a packet is constructed or parsed, all headers are set by the client code. This almost always involved prepending to pk.Header buffer or trimming pk.Data portion. This is known to prone to bugs, due to the complexity and number of the invariants assumed across netstack to maintain. In the new PacketHeader API, client will call Push()/Consume() method to construct/parse an outgoing/incoming packet. All invariants, such as slicing and trimming, are maintained by the API itself. NewPacketBuffer() is introduced to create new PacketBuffer. Zero value is no longer valid. PacketBuffer now assumes the packet is a concatenation of following portions: * LinkHeader * NetworkHeader * TransportHeader * Data Any of them could be empty, or zero-length. PiperOrigin-RevId: 326507688
2020-07-22Merge release-20200622.1-184-g71bf90c55 (automated)gVisor bot
2020-07-22Support for receiving outbound packets in AF_PACKET.Bhasker Hariharan
Updates #173 PiperOrigin-RevId: 322665518
2020-07-15Merge release-20200622.1-162-gfef90c61c (automated)gVisor bot
2020-07-15Fix minor bugs in a couple of interface IOCTLs.Bhasker Hariharan
gVisor incorrectly returns the wrong ARP type for SIOGIFHWADDR. This breaks tcpdump as it tries to interpret the packets incorrectly. Similarly, SIOCETHTOOL is used by tcpdump to query interface properties which fails with an EINVAL since we don't implement it. For now change it to return EOPNOTSUPP to indicate that we don't support the query rather than return EINVAL. NOTE: ARPHRD types for link endpoints are distinct from NIC capabilities and NIC flags. In Linux all 3 exist eg. ARPHRD types are stored in dev->type field while NIC capabilities are more like the device features which can be queried using SIOCETHTOOL but not modified and NIC Flags are fields that can be modified from user space. eg. NIC status (UP/DOWN/MULTICAST/BROADCAST) etc. Updates #2746 PiperOrigin-RevId: 321436525
2020-06-03Merge release-20200522.0-72-gd3a8bffe (automated)gVisor bot
2020-06-03Pass PacketBuffer as pointer.Ting-Yu Wang
Historically we've been passing PacketBuffer by shallow copying through out the stack. Right now, this is only correct as the caller would not use PacketBuffer after passing into the next layer in netstack. With new buffer management effort in gVisor/netstack, PacketBuffer will own a Buffer (to be added). Internally, both PacketBuffer and Buffer may have pointers and shallow copying shouldn't be used. Updates #2404. PiperOrigin-RevId: 314610879
2020-05-28Merge release-20200518.0-47-g835e8c89 (automated)gVisor bot
2020-05-27Remove linkEP from DeliverNetworkPacketSam Balana
The specified LinkEndpoint is not being used in a significant way. No behavior change, existing tests pass. This change is a breaking change. PiperOrigin-RevId: 313496602
2020-05-27Merge release-20200518.0-45-g0bc022b7 (automated)gVisor bot
2020-05-07Merge release-20200422.0-51-g1f4087e (automated)gVisor bot
2020-05-01Automated rollback of changelist 308674219Kevin Krakauer
PiperOrigin-RevId: 309491861
2020-04-27Automated rollback of changelist 308163542gVisor bot
PiperOrigin-RevId: 308674219
2020-04-23Remove View.First() and View.RemoveFirst()Kevin Krakauer
These methods let users eaily break the VectorisedView abstraction, and allowed netstack to slip into pseudo-enforcement of the "all headers are in the first View" invariant. Removing them and replacing with PullUp(n) breaks this reliance and will make it easier to add iptables support and rework network buffer management. The new View.PullUp(n) method is low cost in the common case, when when all the headers fit in the first View. PiperOrigin-RevId: 308163542
2020-04-21Automated rollback of changelist 307477185gVisor bot
PiperOrigin-RevId: 307598974
2020-04-17Remove View.First() and View.RemoveFirst()Kevin Krakauer
These methods let users eaily break the VectorisedView abstraction, and allowed netstack to slip into pseudo-enforcement of the "all headers are in the first View" invariant. Removing them and replacing with PullUp(n) breaks this reliance and will make it easier to add iptables support and rework network buffer management. The new View.PullUp(n) method is low cost in the common case, when when all the headers fit in the first View.
2020-04-04Merge release-20200323.0-69-gfc99a7e (automated)gVisor bot
2020-04-03Refactor software GSO code.Bhasker Hariharan
Software GSO implementation currently has a complicated code path with implicit assumptions that all packets to WritePackets carry same Data and it does this to avoid allocations on the path etc. But this makes it hard to reuse the WritePackets API. This change breaks all such assumptions by introducing a new Vectorised View API ReadToVV which can be used to cleanly split a VV into multiple independent VVs. Further this change also makes packet buffers linkable to form an intrusive list. This allows us to get rid of the array of packet buffers that are passed in the WritePackets API call and replace it with a list of packet buffers. While this code does introduce some more allocations in the benchmarks it doesn't cause any degradation. Updates #231 PiperOrigin-RevId: 304731742
2020-03-24Merge release-20200219.0-220-g7e4073a (automated)gVisor bot
2020-03-24Move tcpip.PacketBuffer and IPTables to stack package.Bhasker Hariharan
This is a precursor to be being able to build an intrusive list of PacketBuffers for use in queuing disciplines being implemented. Updates #2214 PiperOrigin-RevId: 302677662
2020-02-06Merge release-20200127.0-85-g1b6a12a (automated)gVisor bot
2020-02-04Merge release-20200127.0-65-g95ce8bb (automated)gVisor bot
2020-01-27Standardize on tools directory.Adin Scannell
PiperOrigin-RevId: 291745021
2020-01-10Merge release-20191213.0-96-g27500d5 (automated)gVisor bot
2020-01-09New sync package.Ian Gudger
* Rename syncutil to sync. * Add aliases to sync types. * Replace existing usage of standard library sync package. This will make it easier to swap out synchronization primitives. For example, this will allow us to use primitives from github.com/sasha-s/go-deadlock to check for lock ordering violations. Updates #1472 PiperOrigin-RevId: 289033387
2019-12-11Merge release-20191129.0-48-g0d02726 (automated)gVisor bot
2019-11-23Cleanup visibility.Adin Scannell
PiperOrigin-RevId: 282194656
2019-11-22Use PacketBuffers with GSO.Kevin Krakauer
PiperOrigin-RevId: 282045221
2019-11-14Use PacketBuffers for outgoing packets.Kevin Krakauer
PiperOrigin-RevId: 280455453
2019-11-06Use PacketBuffers, rather than VectorisedViews, in netstack.Kevin Krakauer
PacketBuffers are analogous to Linux's sk_buff. They hold all information about a packet, headers, and payload. This is important for: * iptables to access various headers of packets * Preventing the clutter of passing different net and link headers along with VectorisedViews to packet handling functions. This change only affects the incoming packet path, and a future change will change the outgoing path. Benchmark Regular PacketBufferPtr PacketBufferConcrete -------------------------------------------------------------------------------- BM_Recvmsg 400.715MB/s 373.676MB/s 396.276MB/s BM_Sendmsg 361.832MB/s 333.003MB/s 335.571MB/s BM_Recvfrom 453.336MB/s 393.321MB/s 381.650MB/s BM_Sendto 378.052MB/s 372.134MB/s 341.342MB/s BM_SendmsgTCP/0/1k 353.711MB/s 316.216MB/s 322.747MB/s BM_SendmsgTCP/0/2k 600.681MB/s 588.776MB/s 565.050MB/s BM_SendmsgTCP/0/4k 995.301MB/s 888.808MB/s 941.888MB/s BM_SendmsgTCP/0/8k 1.517GB/s 1.274GB/s 1.345GB/s BM_SendmsgTCP/0/16k 1.872GB/s 1.586GB/s 1.698GB/s BM_SendmsgTCP/0/32k 1.017GB/s 1.020GB/s 1.133GB/s BM_SendmsgTCP/0/64k 475.626MB/s 584.587MB/s 627.027MB/s BM_SendmsgTCP/0/128k 416.371MB/s 503.434MB/s 409.850MB/s BM_SendmsgTCP/0/256k 323.449MB/s 449.599MB/s 388.852MB/s BM_SendmsgTCP/0/512k 243.992MB/s 267.676MB/s 314.474MB/s BM_SendmsgTCP/0/1M 95.138MB/s 95.874MB/s 95.417MB/s BM_SendmsgTCP/0/2M 96.261MB/s 94.977MB/s 96.005MB/s BM_SendmsgTCP/0/4M 96.512MB/s 95.978MB/s 95.370MB/s BM_SendmsgTCP/0/8M 95.603MB/s 95.541MB/s 94.935MB/s BM_SendmsgTCP/0/16M 94.598MB/s 94.696MB/s 94.521MB/s BM_SendmsgTCP/0/32M 94.006MB/s 94.671MB/s 94.768MB/s BM_SendmsgTCP/0/64M 94.133MB/s 94.333MB/s 94.746MB/s BM_SendmsgTCP/0/128M 93.615MB/s 93.497MB/s 93.573MB/s BM_SendmsgTCP/0/256M 93.241MB/s 95.100MB/s 93.272MB/s BM_SendmsgTCP/1/1k 303.644MB/s 316.074MB/s 308.430MB/s BM_SendmsgTCP/1/2k 537.093MB/s 584.962MB/s 529.020MB/s BM_SendmsgTCP/1/4k 882.362MB/s 939.087MB/s 892.285MB/s BM_SendmsgTCP/1/8k 1.272GB/s 1.394GB/s 1.296GB/s BM_SendmsgTCP/1/16k 1.802GB/s 2.019GB/s 1.830GB/s BM_SendmsgTCP/1/32k 2.084GB/s 2.173GB/s 2.156GB/s BM_SendmsgTCP/1/64k 2.515GB/s 2.463GB/s 2.473GB/s BM_SendmsgTCP/1/128k 2.811GB/s 3.004GB/s 2.946GB/s BM_SendmsgTCP/1/256k 3.008GB/s 3.159GB/s 3.171GB/s BM_SendmsgTCP/1/512k 2.980GB/s 3.150GB/s 3.126GB/s BM_SendmsgTCP/1/1M 2.165GB/s 2.233GB/s 2.163GB/s BM_SendmsgTCP/1/2M 2.370GB/s 2.219GB/s 2.453GB/s BM_SendmsgTCP/1/4M 2.005GB/s 2.091GB/s 2.214GB/s BM_SendmsgTCP/1/8M 2.111GB/s 2.013GB/s 2.109GB/s BM_SendmsgTCP/1/16M 1.902GB/s 1.868GB/s 1.897GB/s BM_SendmsgTCP/1/32M 1.655GB/s 1.665GB/s 1.635GB/s BM_SendmsgTCP/1/64M 1.575GB/s 1.547GB/s 1.575GB/s BM_SendmsgTCP/1/128M 1.524GB/s 1.584GB/s 1.580GB/s BM_SendmsgTCP/1/256M 1.579GB/s 1.607GB/s 1.593GB/s PiperOrigin-RevId: 278940079
2019-10-22netstack/tcp: software segmentation offloadAndrei Vagin
Right now, we send each tcp packet separately, we call one system call per-packet. This patch allows to generate multiple tcp packets and send them by sendmmsg. The arguable part of this CL is a way how to handle multiple headers. This CL adds the next field to the Prepandable buffer. Nginx test results: Server Software: nginx/1.15.9 Server Hostname: 10.138.0.2 Server Port: 8080 Document Path: /10m.txt Document Length: 10485760 bytes w/o gso: Concurrency Level: 5 Time taken for tests: 5.491 seconds Complete requests: 100 Failed requests: 0 Total transferred: 1048600200 bytes HTML transferred: 1048576000 bytes Requests per second: 18.21 [#/sec] (mean) Time per request: 274.525 [ms] (mean) Time per request: 54.905 [ms] (mean, across all concurrent requests) Transfer rate: 186508.03 [Kbytes/sec] received sw-gso: Concurrency Level: 5 Time taken for tests: 3.852 seconds Complete requests: 100 Failed requests: 0 Total transferred: 1048600200 bytes HTML transferred: 1048576000 bytes Requests per second: 25.96 [#/sec] (mean) Time per request: 192.576 [ms] (mean) Time per request: 38.515 [ms] (mean, across all concurrent requests) Transfer rate: 265874.92 [Kbytes/sec] received w/o gso: $ ./tcp_benchmark --client --duration 15 --ideal [SUM] 0.0-15.1 sec 2.20 GBytes 1.25 Gbits/sec software gso: $ tcp_benchmark --client --duration 15 --ideal --gso $((1<<16)) --swgso [SUM] 0.0-15.1 sec 3.99 GBytes 2.26 Gbits/sec PiperOrigin-RevId: 276112677
2019-10-21AF_PACKET support for netstack (aka epsocket).Kevin Krakauer
Like (AF_INET, SOCK_RAW) sockets, AF_PACKET sockets require CAP_NET_RAW. With runsc, you'll need to pass `--net-raw=true` to enable them. Binding isn't supported yet. PiperOrigin-RevId: 275909366
2019-09-20Allow waiting for LinkEndpoint worker goroutines to finish.Ian Gudger
Previously, the only safe way to use an fdbased endpoint was to leak the FD. This change makes it possible to safely close the FD. This is the first step towards having stoppable stacks. Updates #837 PiperOrigin-RevId: 270346582
2019-09-12Remove go_test from go_stateify and go_marshalMichael Pratt
They are no-ops, so the standard rule works fine. PiperOrigin-RevId: 268776264
2019-09-06Remove reundant global tcpip.LinkEndpointID.Ian Gudger
PiperOrigin-RevId: 267709597
2019-06-21Deflake TestSimpleReceive failures due to timeoutsBrad Burlage
This test will occasionally fail waiting to read a packet. From repeated runs, I've seen it up to 1.5s for waitForPackets to complete. PiperOrigin-RevId: 254484627
2019-06-13Update canonical repository.Adin Scannell
This can be merged after: https://github.com/google/gvisor-website/pull/77 or https://github.com/google/gvisor-website/pull/78 PiperOrigin-RevId: 253132620
2019-04-29Change copyright notice to "The gVisor Authors"Michael Pratt
Based on the guidelines at https://opensource.google.com/docs/releasing/authors/. 1. $ rg -l "Google LLC" | xargs sed -i 's/Google LLC.*/The gVisor Authors./' 2. Manual fixup of "Google Inc" references. 3. Add AUTHORS file. Authors may request to be added to this file. 4. Point netstack AUTHORS to gVisor AUTHORS. Drop CONTRIBUTORS. Fixes #209 PiperOrigin-RevId: 245823212 Change-Id: I64530b24ad021a7d683137459cafc510f5ee1de9
2019-03-28netstack/fdbased: add generic segmentation offload (GSO) supportAndrei Vagin
The linux packet socket can handle GSO packets, so we can segment packets to 64K instead of the MTU which is usually 1500. Here are numbers for the nginx-1m test: runsc: 579330.01 [Kbytes/sec] received runsc-gso: 1794121.66 [Kbytes/sec] received runc: 2122139.06 [Kbytes/sec] received and for tcp_benchmark: $ tcp_benchmark --duration 15 --ideal [ 4] 0.0-15.0 sec 86647 MBytes 48456 Mbits/sec $ tcp_benchmark --client --duration 15 --ideal [ 4] 0.0-15.0 sec 2173 MBytes 1214 Mbits/sec $ tcp_benchmark --client --duration 15 --ideal --gso 65536 [ 4] 0.0-15.0 sec 19357 MBytes 10825 Mbits/sec PiperOrigin-RevId: 240809103 Change-Id: I2637f104db28b5d4c64e1e766c610162a195775a
2019-01-31Remove license commentsMichael Pratt
Nothing reads them and they can simply get stale. Generated with: $ sed -i "s/licenses(\(.*\)).*/licenses(\1)/" **/BUILD PiperOrigin-RevId: 231818945 Change-Id: Ibc3f9838546b7e94f13f217060d31f4ada9d4bf0