Age | Commit message (Collapse) | Author |
|
...returning unsupported errors.
PiperOrigin-RevId: 393388991
|
|
With this change, GSO options no longer needs to be passed around as
a function argument in the write path.
This change is done in preparation for a later change that defers
segmentation, and may change GSO options for a packet as it flows
down the stack.
Updates #170.
PiperOrigin-RevId: 369774872
|
|
The syscall package has been deprecated in favor of golang.org/x/sys.
Note that syscall is still used in the following places:
- pkg/sentry/socket/hostinet/stack.go: some netlink related functionalities
are not yet available in golang.org/x/sys.
- syscall.Stat_t is still used in some places because os.FileInfo.Sys() still
returns it and not unix.Stat_t.
Updates #214
PiperOrigin-RevId: 360701387
|
|
This makes it possible to add data to types that implement tcpip.Error.
ErrBadLinkEndpoint is removed as it is unused.
PiperOrigin-RevId: 354437314
|
|
stack.Route is used to send network packets and resolve link addresses.
A LinkEndpoint does not need to do either of these and only needs the
route's fields at the time of the packet write request.
Since LinkEndpoints only need the route's fields when writing packets,
pass a stack.RouteInfo instead.
PiperOrigin-RevId: 352108405
|
|
Removes the period of time in which subseqeuent traffic to a Failed neighbor
immediately fails with ErrNoLinkAddress. A Failed neighbor is one in which
address resolution fails; or in other words, the neighbor's IP address cannot
be translated to a MAC address.
This means removing the Failed state for linkAddrCache and allowing transitiong
out of Failed into Incomplete for neighborCache. Previously, both caches would
transition entries to Failed after address resolution fails. In this state, any
subsequent traffic requested within an unreachable time would immediately fail
with ErrNoLinkAddress. This does not follow RFC 4861 section 7.3.3:
If address resolution fails, the entry SHOULD be deleted, so that subsequent
traffic to that neighbor invokes the next-hop determination procedure again.
Invoking next-hop determination at this point ensures that alternate default
routers are tried.
The API for getting a link address for a given address, whether through the link
address cache or the neighbor table, is updated to optionally take a callback
which will be called when address resolution completes. This allows `Route` to
handle completing link resolution internally, so callers of (*Route).Resolve
(e.g. endpoints) don’t have to keep track of when it completes and update the
Route accordingly.
This change also removes the wakers from LinkAddressCache, NeighborCache, and
Route in favor of the callbacks, and callers that previously used a waker can
now just pass a callback to (*Route).Resolve that will notify the waker on
resolution completion.
Fixes #4796
Startblock:
has LGTM from sbalana
and then
add reviewer ghanan
PiperOrigin-RevId: 348597478
|
|
Redefine stack.WritePacket into stack.WritePacketToRemote which lets the NIC
decide whether to append link headers.
PiperOrigin-RevId: 343071742
|
|
Formerly, when a packet is constructed or parsed, all headers are set by the
client code. This almost always involved prepending to pk.Header buffer or
trimming pk.Data portion. This is known to prone to bugs, due to the complexity
and number of the invariants assumed across netstack to maintain.
In the new PacketHeader API, client will call Push()/Consume() method to
construct/parse an outgoing/incoming packet. All invariants, such as slicing
and trimming, are maintained by the API itself.
NewPacketBuffer() is introduced to create new PacketBuffer. Zero value is no
longer valid.
PacketBuffer now assumes the packet is a concatenation of following portions:
* LinkHeader
* NetworkHeader
* TransportHeader
* Data
Any of them could be empty, or zero-length.
PiperOrigin-RevId: 326507688
|
|
Updates #173
PiperOrigin-RevId: 322665518
|
|
gVisor incorrectly returns the wrong ARP type for SIOGIFHWADDR. This breaks
tcpdump as it tries to interpret the packets incorrectly.
Similarly, SIOCETHTOOL is used by tcpdump to query interface properties which
fails with an EINVAL since we don't implement it. For now change it to return
EOPNOTSUPP to indicate that we don't support the query rather than return
EINVAL.
NOTE: ARPHRD types for link endpoints are distinct from NIC capabilities
and NIC flags. In Linux all 3 exist eg. ARPHRD types are stored in dev->type
field while NIC capabilities are more like the device features which can be
queried using SIOCETHTOOL but not modified and NIC Flags are fields that can
be modified from user space. eg. NIC status (UP/DOWN/MULTICAST/BROADCAST) etc.
Updates #2746
PiperOrigin-RevId: 321436525
|
|
Historically we've been passing PacketBuffer by shallow copying through out
the stack. Right now, this is only correct as the caller would not use
PacketBuffer after passing into the next layer in netstack.
With new buffer management effort in gVisor/netstack, PacketBuffer will
own a Buffer (to be added). Internally, both PacketBuffer and Buffer may
have pointers and shallow copying shouldn't be used.
Updates #2404.
PiperOrigin-RevId: 314610879
|
|
The specified LinkEndpoint is not being used in a significant way.
No behavior change, existing tests pass.
This change is a breaking change.
PiperOrigin-RevId: 313496602
|
|
Software GSO implementation currently has a complicated code path with
implicit assumptions that all packets to WritePackets carry same Data
and it does this to avoid allocations on the path etc. But this makes it
hard to reuse the WritePackets API.
This change breaks all such assumptions by introducing a new Vectorised
View API ReadToVV which can be used to cleanly split a VV into multiple
independent VVs. Further this change also makes packet buffers linkable
to form an intrusive list. This allows us to get rid of the array of
packet buffers that are passed in the WritePackets API call and replace
it with a list of packet buffers.
While this code does introduce some more allocations in the benchmarks
it doesn't cause any degradation.
Updates #231
PiperOrigin-RevId: 304731742
|
|
This is a precursor to be being able to build an intrusive list
of PacketBuffers for use in queuing disciplines being implemented.
Updates #2214
PiperOrigin-RevId: 302677662
|
|
PiperOrigin-RevId: 291745021
|
|
PiperOrigin-RevId: 282194656
|
|
PiperOrigin-RevId: 282045221
|
|
PiperOrigin-RevId: 280455453
|
|
PacketBuffers are analogous to Linux's sk_buff. They hold all information about
a packet, headers, and payload. This is important for:
* iptables to access various headers of packets
* Preventing the clutter of passing different net and link headers along with
VectorisedViews to packet handling functions.
This change only affects the incoming packet path, and a future change will
change the outgoing path.
Benchmark Regular PacketBufferPtr PacketBufferConcrete
--------------------------------------------------------------------------------
BM_Recvmsg 400.715MB/s 373.676MB/s 396.276MB/s
BM_Sendmsg 361.832MB/s 333.003MB/s 335.571MB/s
BM_Recvfrom 453.336MB/s 393.321MB/s 381.650MB/s
BM_Sendto 378.052MB/s 372.134MB/s 341.342MB/s
BM_SendmsgTCP/0/1k 353.711MB/s 316.216MB/s 322.747MB/s
BM_SendmsgTCP/0/2k 600.681MB/s 588.776MB/s 565.050MB/s
BM_SendmsgTCP/0/4k 995.301MB/s 888.808MB/s 941.888MB/s
BM_SendmsgTCP/0/8k 1.517GB/s 1.274GB/s 1.345GB/s
BM_SendmsgTCP/0/16k 1.872GB/s 1.586GB/s 1.698GB/s
BM_SendmsgTCP/0/32k 1.017GB/s 1.020GB/s 1.133GB/s
BM_SendmsgTCP/0/64k 475.626MB/s 584.587MB/s 627.027MB/s
BM_SendmsgTCP/0/128k 416.371MB/s 503.434MB/s 409.850MB/s
BM_SendmsgTCP/0/256k 323.449MB/s 449.599MB/s 388.852MB/s
BM_SendmsgTCP/0/512k 243.992MB/s 267.676MB/s 314.474MB/s
BM_SendmsgTCP/0/1M 95.138MB/s 95.874MB/s 95.417MB/s
BM_SendmsgTCP/0/2M 96.261MB/s 94.977MB/s 96.005MB/s
BM_SendmsgTCP/0/4M 96.512MB/s 95.978MB/s 95.370MB/s
BM_SendmsgTCP/0/8M 95.603MB/s 95.541MB/s 94.935MB/s
BM_SendmsgTCP/0/16M 94.598MB/s 94.696MB/s 94.521MB/s
BM_SendmsgTCP/0/32M 94.006MB/s 94.671MB/s 94.768MB/s
BM_SendmsgTCP/0/64M 94.133MB/s 94.333MB/s 94.746MB/s
BM_SendmsgTCP/0/128M 93.615MB/s 93.497MB/s 93.573MB/s
BM_SendmsgTCP/0/256M 93.241MB/s 95.100MB/s 93.272MB/s
BM_SendmsgTCP/1/1k 303.644MB/s 316.074MB/s 308.430MB/s
BM_SendmsgTCP/1/2k 537.093MB/s 584.962MB/s 529.020MB/s
BM_SendmsgTCP/1/4k 882.362MB/s 939.087MB/s 892.285MB/s
BM_SendmsgTCP/1/8k 1.272GB/s 1.394GB/s 1.296GB/s
BM_SendmsgTCP/1/16k 1.802GB/s 2.019GB/s 1.830GB/s
BM_SendmsgTCP/1/32k 2.084GB/s 2.173GB/s 2.156GB/s
BM_SendmsgTCP/1/64k 2.515GB/s 2.463GB/s 2.473GB/s
BM_SendmsgTCP/1/128k 2.811GB/s 3.004GB/s 2.946GB/s
BM_SendmsgTCP/1/256k 3.008GB/s 3.159GB/s 3.171GB/s
BM_SendmsgTCP/1/512k 2.980GB/s 3.150GB/s 3.126GB/s
BM_SendmsgTCP/1/1M 2.165GB/s 2.233GB/s 2.163GB/s
BM_SendmsgTCP/1/2M 2.370GB/s 2.219GB/s 2.453GB/s
BM_SendmsgTCP/1/4M 2.005GB/s 2.091GB/s 2.214GB/s
BM_SendmsgTCP/1/8M 2.111GB/s 2.013GB/s 2.109GB/s
BM_SendmsgTCP/1/16M 1.902GB/s 1.868GB/s 1.897GB/s
BM_SendmsgTCP/1/32M 1.655GB/s 1.665GB/s 1.635GB/s
BM_SendmsgTCP/1/64M 1.575GB/s 1.547GB/s 1.575GB/s
BM_SendmsgTCP/1/128M 1.524GB/s 1.584GB/s 1.580GB/s
BM_SendmsgTCP/1/256M 1.579GB/s 1.607GB/s 1.593GB/s
PiperOrigin-RevId: 278940079
|
|
Right now, we send each tcp packet separately, we call one system
call per-packet. This patch allows to generate multiple tcp packets
and send them by sendmmsg.
The arguable part of this CL is a way how to handle multiple headers.
This CL adds the next field to the Prepandable buffer.
Nginx test results:
Server Software: nginx/1.15.9
Server Hostname: 10.138.0.2
Server Port: 8080
Document Path: /10m.txt
Document Length: 10485760 bytes
w/o gso:
Concurrency Level: 5
Time taken for tests: 5.491 seconds
Complete requests: 100
Failed requests: 0
Total transferred: 1048600200 bytes
HTML transferred: 1048576000 bytes
Requests per second: 18.21 [#/sec] (mean)
Time per request: 274.525 [ms] (mean)
Time per request: 54.905 [ms] (mean, across all concurrent requests)
Transfer rate: 186508.03 [Kbytes/sec] received
sw-gso:
Concurrency Level: 5
Time taken for tests: 3.852 seconds
Complete requests: 100
Failed requests: 0
Total transferred: 1048600200 bytes
HTML transferred: 1048576000 bytes
Requests per second: 25.96 [#/sec] (mean)
Time per request: 192.576 [ms] (mean)
Time per request: 38.515 [ms] (mean, across all concurrent requests)
Transfer rate: 265874.92 [Kbytes/sec] received
w/o gso:
$ ./tcp_benchmark --client --duration 15 --ideal
[SUM] 0.0-15.1 sec 2.20 GBytes 1.25 Gbits/sec
software gso:
$ tcp_benchmark --client --duration 15 --ideal --gso $((1<<16)) --swgso
[SUM] 0.0-15.1 sec 3.99 GBytes 2.26 Gbits/sec
PiperOrigin-RevId: 276112677
|
|
Like (AF_INET, SOCK_RAW) sockets, AF_PACKET sockets require CAP_NET_RAW. With
runsc, you'll need to pass `--net-raw=true` to enable them.
Binding isn't supported yet.
PiperOrigin-RevId: 275909366
|
|
Previously, the only safe way to use an fdbased endpoint was to leak the FD.
This change makes it possible to safely close the FD.
This is the first step towards having stoppable stacks.
Updates #837
PiperOrigin-RevId: 270346582
|
|
They are no-ops, so the standard rule works fine.
PiperOrigin-RevId: 268776264
|
|
PiperOrigin-RevId: 267709597
|
|
This can be merged after:
https://github.com/google/gvisor-website/pull/77
or
https://github.com/google/gvisor-website/pull/78
PiperOrigin-RevId: 253132620
|
|
PiperOrigin-RevId: 252918338
|
|
And stop storing the Filesystem in the MountSource.
This allows us to decouple the MountSource filesystem type from the name of the
filesystem.
PiperOrigin-RevId: 247292982
Change-Id: I49cbcce3c17883b7aa918ba76203dfd6d1b03cc8
|
|
Based on the guidelines at
https://opensource.google.com/docs/releasing/authors/.
1. $ rg -l "Google LLC" | xargs sed -i 's/Google LLC.*/The gVisor Authors./'
2. Manual fixup of "Google Inc" references.
3. Add AUTHORS file. Authors may request to be added to this file.
4. Point netstack AUTHORS to gVisor AUTHORS. Drop CONTRIBUTORS.
Fixes #209
PiperOrigin-RevId: 245823212
Change-Id: I64530b24ad021a7d683137459cafc510f5ee1de9
|
|
PiperOrigin-RevId: 242704699
Change-Id: I87db368ca343b3b4bf4f969b17d3aa4ce2f8bd4f
|
|
The linux packet socket can handle GSO packets, so we can segment packets to
64K instead of the MTU which is usually 1500.
Here are numbers for the nginx-1m test:
runsc: 579330.01 [Kbytes/sec] received
runsc-gso: 1794121.66 [Kbytes/sec] received
runc: 2122139.06 [Kbytes/sec] received
and for tcp_benchmark:
$ tcp_benchmark --duration 15 --ideal
[ 4] 0.0-15.0 sec 86647 MBytes 48456 Mbits/sec
$ tcp_benchmark --client --duration 15 --ideal
[ 4] 0.0-15.0 sec 2173 MBytes 1214 Mbits/sec
$ tcp_benchmark --client --duration 15 --ideal --gso 65536
[ 4] 0.0-15.0 sec 19357 MBytes 10825 Mbits/sec
PiperOrigin-RevId: 240809103
Change-Id: I2637f104db28b5d4c64e1e766c610162a195775a
|
|
Also exposes ipv4.MaxTotalSize since it is a generally useful constant.
PiperOrigin-RevId: 235799755
Change-Id: I1fa8d5294bf355acf5527cfdf274b3687d3c8b13
|
|
PiperOrigin-RevId: 233139020
Change-Id: I2e7089fa25d20e5662eb941054a684d41f5d3e12
|
|
PiperOrigin-RevId: 232937200
Change-Id: I5c3709cc8f1313313ff618a45e48c14a3a111cb4
|