Age | Commit message (Collapse) | Author |
|
This requires several changes:
* Templates must preserve relevant tags.
* Pagetables templates are split into two targets, each preserving tags.
* The binary VDSO is similarly split into two targets, with some juggling.
* The top level tools/go_branch.sh now does a crossbuild of ARM64 as well,
and checks and merges the results of the two branches together.
Fixes #5178
PiperOrigin-RevId: 351304330
|
|
PiperOrigin-RevId: 350862699
|
|
PiperOrigin-RevId: 350691246
|
|
Read now takes a destination io.Writer, count, options. Keeping the method name
Read, in contrast to the Write method.
This enables:
* direct transfer of views under VV
* zero copy
It also eliminates the need for sentry to keep a slice of view because
userspace had requested a read that is smaller than the view returned, removing
the complexity there.
Read/Peek/ReadPacket are now consolidated together and some duplicate code is
removed.
PiperOrigin-RevId: 350636322
|
|
Signed-off-by: Andrei Vagin <avagin@gmail.com>
|
|
IPv4 was always supported but UDP never supported joining/leaving IPv6
multicast groups via socket options.
Add: IPPROTO_IPV6, IPV6_JOIN_GROUP/IPV6_ADD_MEMBERSHIP
Remove: IPPROTO_IPV6, IPV6_LEAVE_GROUP/IPV6_DROP_MEMBERSHIP
Test: integration_test.TestUDPAddRemoveMembershipSocketOption
PiperOrigin-RevId: 350396072
|
|
PiperOrigin-RevId: 350375461
|
|
PiperOrigin-RevId: 350223482
|
|
This includes minor fix-ups:
* Handle SIGTERM in runsc debug, to exit gracefully.
* Fix cmd.debug.go opening all profiles as RDONLY.
* Fix the test name in fio_test.go, and encode the block size in the test.
PiperOrigin-RevId: 350205718
|
|
Reported-by: syzbot+814105309d2ae8651084@syzkaller.appspotmail.com
PiperOrigin-RevId: 350159452
|
|
Syzkaller discovered this bug in pipefs by doing something quite strange:
creat(&(0x7f0000002a00)='./file1\x00', 0x0)
mount(&(0x7f0000000440)=ANY=[], &(0x7f00000002c0)='./file1\x00', &(0x7f0000000300)='devtmpfs\x00', 0x20000d, 0x0)
creat(&(0x7f0000000000)='./file1/file0\x00', 0x0)
This can be reproduced with:
touch mymount
mkfifo /dev/mypipe
mount -o ro -t devtmpfs devtmpfs mymount
echo 123 > mymount/mypipe
PiperOrigin-RevId: 349687714
|
|
This allows for a model of profiling when you can start collection, and
it will terminate when the sandbox terminates. Without this synchronous
call, it is effectively impossible to collect length blocking and mutex
profiles.
PiperOrigin-RevId: 349483418
|
|
global
In order to improve the performance, some kpti related codes(TCR.A1) have
been reverted, and set kernel pagetable as global.
Signed-off-by: Robin Luk <lubin.lu@antgroup.com>
|
|
open() has to return ENXIO in this case.
O_PATH isn't supported by vfs1.
PiperOrigin-RevId: 348820478
|
|
PiperOrigin-RevId: 348696094
|
|
PiperOrigin-RevId: 348092999
|
|
PiperOrigin-RevId: 348056159
|
|
PiperOrigin-RevId: 348055514
|
|
Closes #5128
PiperOrigin-RevId: 348052446
|
|
Introduces the per-socket error queue and the necessary cmsg mechanisms.
PiperOrigin-RevId: 348028508
|
|
PiperOrigin-RevId: 347890782
|
|
PiperOrigin-RevId: 347720083
|
|
PiperOrigin-RevId: 347711998
|
|
PiperOrigin-RevId: 347706953
|
|
syzkaller reported the closing of a nil channel. This is only possible when the
AIOContext was destroyed twice.
Some scenarios that could lead to this:
- It died and then some called aioCtx.Prepare() on it and then killed it again
which could cause the double destroy. The context could have been destroyed
in between the call to LookupAIOContext() and Prepare().
- aioManager was destroyed but it did not update the contexts map. So
Lookup could still return a dead AIOContext and then someone could call
Prepare on it and kill it again.
So added a check in aioCtx.Prepare() for the context being dead. This will
prevent a dead context from resurrecting.
Also refactored code to destroy the aioContext consistently. Earlier we were not
munmapping the aioContexts that were destroyed upon aioManager destruction.
Reported-by: syzbot+ef6a588d0ce6059991d2@syzkaller.appspotmail.com
PiperOrigin-RevId: 347704347
|
|
We want to make the recvmsg syscall to the host regardless of if the dst is
empty or not so that:
- Host can populate the control messages if necessary.
- Host can return sender address.
- Host can return appropriate errors.
Earlier because we were using the IOSequence.CopyOutFrom() API, the usermem
package does not even call the Reader function if the destination is empty (as
an optimization).
PiperOrigin-RevId: 347684566
|
|
PiperOrigin-RevId: 347671070
|
|
PiperOrigin-RevId: 347660920
|
|
There are surprisingly few syscall tests that run with hostinet. For example
running the following command only returns two results:
`bazel query test/syscalls:all | grep hostnet`
I think as a result, as our control messages evolved, hostinet was left
behind. Update it to support all control messages netstack supports.
This change also updates sentry's control message parsing logic to make it up to
date with all the control messages we support.
PiperOrigin-RevId: 347508892
|
|
PiperOrigin-RevId: 347437786
|
|
We should not assert that all resources are dropped after saving.
PiperOrigin-RevId: 347420131
|
|
SO_OOBINLINE option is set/get as boolean value, which is the same as linux.
As we currently do not support disabling this option, we always return it as
true.
PiperOrigin-RevId: 347413905
|
|
PiperOrigin-RevId: 347091372
|
|
PiperOrigin-RevId: 347047550
|
|
tcpip.ControlMessages can not contain Linux specific structures which makes it
painful to convert back and forth from Linux to tcpip back to Linux when passing
around control messages in hostinet and raw sockets.
Now we convert to the Linux version of the control message as soon as we are
out of tcpip.
PiperOrigin-RevId: 347027065
|
|
PiperOrigin-RevId: 346973338
|
|
PiperOrigin-RevId: 346923826
|
|
Fixes #5004
PiperOrigin-RevId: 346643745
|
|
AtomicPtrMap is a generic concurrent map from arbitrary keys to arbitrary
pointer values.
Benchmarks:
name time/op
StoreDelete/RWMutexMap-12 335ns ± 1%
StoreDelete/SyncMap-12 705ns ± 3%
StoreDelete/AtomicPtrMap-12 287ns ± 4%
StoreDelete/AtomicPtrMapSharded-12 289ns ± 1%
LoadOrStoreDelete/RWMutexMap-12 342ns ± 2%
LoadOrStoreDelete/SyncMap-12 662ns ± 2%
LoadOrStoreDelete/AtomicPtrMap-12 290ns ± 7%
LoadOrStoreDelete/AtomicPtrMapSharded-12 293ns ± 2%
LookupPositive/RWMutexMap-12 101ns ±26%
LookupPositive/SyncMap-12 202ns ± 2%
LookupPositive/AtomicPtrMap-12 71.1ns ± 2%
LookupPositive/AtomicPtrMapSharded-12 73.2ns ± 1%
LookupNegative/RWMutexMap-12 119ns ± 1%
LookupNegative/SyncMap-12 154ns ± 1%
LookupNegative/AtomicPtrMap-12 84.7ns ± 3%
LookupNegative/AtomicPtrMapSharded-12 86.8ns ± 1%
Concurrent/FixedKeys_1PercentWrites_RWMutexMap-12 1.32µs ± 2%
Concurrent/FixedKeys_1PercentWrites_SyncMap-12 52.7ns ±10%
Concurrent/FixedKeys_1PercentWrites_AtomicPtrMap-12 31.8ns ±20%
Concurrent/FixedKeys_1PercentWrites_AtomicPtrMapSharded-12 24.0ns ±15%
Concurrent/FixedKeys_10PercentWrites_RWMutexMap-12 860ns ± 3%
Concurrent/FixedKeys_10PercentWrites_SyncMap-12 68.8ns ±20%
Concurrent/FixedKeys_10PercentWrites_AtomicPtrMap-12 98.6ns ± 7%
Concurrent/FixedKeys_10PercentWrites_AtomicPtrMapSharded-12 42.0ns ±25%
Concurrent/FixedKeys_50PercentWrites_RWMutexMap-12 1.17µs ± 3%
Concurrent/FixedKeys_50PercentWrites_SyncMap-12 136ns ±34%
Concurrent/FixedKeys_50PercentWrites_AtomicPtrMap-12 286ns ± 3%
Concurrent/FixedKeys_50PercentWrites_AtomicPtrMapSharded-12 115ns ±35%
Concurrent/ChangingKeys_1PercentWrites_RWMutexMap-12 1.27µs ± 2%
Concurrent/ChangingKeys_1PercentWrites_SyncMap-12 5.01µs ± 3%
Concurrent/ChangingKeys_1PercentWrites_AtomicPtrMap-12 38.1ns ± 3%
Concurrent/ChangingKeys_1PercentWrites_AtomicPtrMapSharded-12 22.6ns ± 2%
Concurrent/ChangingKeys_10PercentWrites_RWMutexMap-12 1.08µs ± 2%
Concurrent/ChangingKeys_10PercentWrites_SyncMap-12 5.97µs ± 1%
Concurrent/ChangingKeys_10PercentWrites_AtomicPtrMap-12 390ns ± 2%
Concurrent/ChangingKeys_10PercentWrites_AtomicPtrMapSharded-12 93.6ns ± 1%
Concurrent/ChangingKeys_50PercentWrites_RWMutexMap-12 1.77µs ± 2%
Concurrent/ChangingKeys_50PercentWrites_SyncMap-12 8.07µs ± 2%
Concurrent/ChangingKeys_50PercentWrites_AtomicPtrMap-12 1.61µs ± 2%
Concurrent/ChangingKeys_50PercentWrites_AtomicPtrMapSharded-12 386ns ± 1%
Updates #231
PiperOrigin-RevId: 346614776
|
|
PiperOrigin-RevId: 346496532
|
|
Don't propagate arbitrary golang errors up from fusefs because errors
that don't map to an errno result in a sentry panic.
Reported-by: syzbot+697cb635346e456fddfc@syzkaller.appspotmail.com
PiperOrigin-RevId: 346220306
|
|
PiperOrigin-RevId: 346197760
|
|
PiperOrigin-RevId: 346143528
|
|
PiperOrigin-RevId: 346134026
|
|
Fixes #4991
PiperOrigin-RevId: 345800333
|
|
PiperOrigin-RevId: 345696124
|
|
This is the RWMutex equivalent to the preceding sync.Mutex CL.
Updates #4804
PiperOrigin-RevId: 345681051
|
|
PiperOrigin-RevId: 345589628
|
|
These options allow overriding the signal that gets sent to the process when
I/O operations are available on the file descriptor, rather than the default
`SIGIO` signal. Doing so also populates `siginfo` to contain extra information
about which file descriptor caused the event (`si_fd`) and what events happened
on it (`si_band`). The logic around which FD is populated within `si_fd`
matches Linux's, which means it has some weird edge cases where that value may
not actually refer to a file descriptor that is still valid.
This CL also ports extra S/R logic regarding async handler in VFS2.
Without this, async I/O handlers aren't properly re-registered after S/R.
PiperOrigin-RevId: 345436598
|
|
Previous experience has shown that these types of wrappers tends to create two
kinds of problems: hidden allocations (e.g. each call to
FileReadWriteSeeker.Read/Write allocates a usermem.BytesIO on the heap) and
hidden lock ordering problems (e.g. VFS1 splice deadlocks). Since this is only
needed by fsimpl/verity, move it there.
PiperOrigin-RevId: 345377830
|