Age | Commit message (Collapse) | Author |
|
Note that the raw faccessat system call does not actually take a flags argument;
according to faccessat(2), the glibc wrapper implements the flags by using
fstatat(2). Remove the flag argument that we try to extract from vfs1, which
would just be a garbage value.
Updates #1965
Fixes #2101
PiperOrigin-RevId: 300796067
|
|
Plumbs MS_NOEXEC and MS_RDONLY. Others are TODO.
Updates #1623 #1193
PiperOrigin-RevId: 300764669
|
|
In VFS2, imported file descriptors are stored in a kernfs-based filesystem.
Upon calling ImportFD, the host fd can be accessed in two ways:
1. a FileDescription that can be added to the FDTable, and
2. a Dentry in the host.filesystem mount, which we will want to access through
magic symlinks in /proc/[pid]/fd/.
An implementation of the kernfs.Inode interface stores a unique host fd. This
inode can be inserted into file descriptions as well as dentries.
This change also plumbs in three FileDescriptionImpls corresponding to fds for
sockets, TTYs, and other files (only the latter is implemented here).
These implementations will mostly make corresponding syscalls to the host.
Where possible, the logic is ported over from pkg/sentry/fs/host.
Updates #1672
PiperOrigin-RevId: 299417263
|
|
Analogous to Linux's kern_mount().
PiperOrigin-RevId: 297259580
|
|
pipe and pipe2 aren't ported, pending a slight rework of pipe FDs for VFS2.
mount and umount2 aren't ported out of temporary laziness. access and faccessat
need additional FSImpl methods to implement properly, but are stubbed to
prevent googletest from CHECK-failing. Other syscalls require additional
plumbing.
Updates #1623
PiperOrigin-RevId: 297188448
|
|
glibc defines struct epoll_event in such a way that epoll_event.data.fd exists.
However, the kernel's definition of struct epoll_event makes epoll_event.data
an opaque uint64, so naming half of it "fd" just introduces confusion. Remove
the Fd field, and make Data a [2]int32 to compensate.
Also add required padding to linux.EpollEvent on ARM64.
PiperOrigin-RevId: 295250424
|
|
This is easier than storing errors from e.g. CopyOut in the callback.
PiperOrigin-RevId: 295230021
|
|
This saves one pointer dereference per VFS access.
Updates #1623
PiperOrigin-RevId: 295216176
|
|
- Added fsbridge package with interface that can be used to open
and read from VFS1 and VFS2 files.
- Converted ELF loader to use fsbridge
- Added VFS2 types to FSContext
- Added vfs.MountNamespace to ThreadGroup
Updates #1623
PiperOrigin-RevId: 295183950
|
|
This allow callers to say whether the file is being
opened to be executed, so that the proper checks can
be done from FilesystemImpl.OpenAt()
Updates #1623
PiperOrigin-RevId: 295042595
|
|
Updates #1035
PiperOrigin-RevId: 293194631
|
|
Add a file lock implementation that can be embedded into various filesystem
implementations.
Updates #1480
PiperOrigin-RevId: 292614758
|
|
Updates #1480
PiperOrigin-RevId: 292180192
|
|
WritableSource is a convenience interface used for files that can
be written to, e.g. /proc/net/ipv4/tpc_sack. It reads max of 4KB
and only from offset 0 which should cover most cases. It can be
extended as neeed.
Updates #1195
PiperOrigin-RevId: 292056924
|
|
PiperOrigin-RevId: 291997879
|
|
PiperOrigin-RevId: 291986033
|
|
Because the abi will depend on the core types for marshalling (usermem,
context, safemem, safecopy), these need to be flattened from the sentry
directory. These packages contain no sentry-specific details.
PiperOrigin-RevId: 291811289
|
|
PiperOrigin-RevId: 291745021
|
|
Note that in VFS2, filesystem device numbers are per-vfs.FilesystemImpl rather
than global, avoiding the need for a "registry" type to handle save/restore.
(This is more consistent with Linux anyway: compare e.g.
mm/shmem.c:shmem_mount() => fs/super.c:mount_nodev() => (indirectly)
set_anon_super().)
PiperOrigin-RevId: 291425193
|
|
PiperOrigin-RevId: 291006713
|
|
Files not implemented require VFSv2 plumbing into the kernel.
Also, cgroup is not implemented yet.
Updates #1195
PiperOrigin-RevId: 290129176
|
|
* Rename syncutil to sync.
* Add aliases to sync types.
* Replace existing usage of standard library sync package.
This will make it easier to swap out synchronization primitives. For example,
this will allow us to use primitives from github.com/sasha-s/go-deadlock to
check for lock ordering violations.
Updates #1472
PiperOrigin-RevId: 289033387
|
|
- Add FileDescriptionOptions.UseDentryMetadata, which reduces the amount of
boilerplate needed for device FDs and the like between filesystems.
- Switch back to having FileDescription.Init() take references on the Mount and
Dentry; otherwise managing refcounts around failed calls to
OpenDeviceSpecialFile() / Device.Open() is tricky.
PiperOrigin-RevId: 287575574
|
|
Updates #1195
PiperOrigin-RevId: 287269106
|
|
Updates #1195
PiperOrigin-RevId: 287227722
|
|
- Make FilesystemImpl methods that operate on parent directories require
!rp.Done() (i.e. there is at least one path component to resolve) as
precondition and postcondition (in cases where they do not finish path
resolution due to mount boundary / absolute symlink), and require that they
do not need to follow the last path component (the file being created /
deleted) as a symlink. Check for these in VFS.
- Add FilesystemImpl.GetParentDentryAt(), which is required to obtain the old
parent directory for VFS.RenameAt(). (Passing the Dentry to be renamed
instead has the wrong semantics if the file named by the old path is a mount
point since the Dentry will be on the wrong Mount.)
- Update memfs to implement these methods correctly (?), including RenameAt.
- Change fspath.Parse() to allow empty paths (to simplify implementation of
AT_EMPTY_PATH).
- Change vfs.PathOperation to take a fspath.Path instead of a raw pathname;
non-test callers will need to fspath.Parse() pathnames themselves anyway in
order to detect absolute paths and select PathOperation.Start accordingly.
PiperOrigin-RevId: 286934941
|
|
PiperOrigin-RevId: 286666533
|
|
PiperOrigin-RevId: 286660774
|
|
PiperOrigin-RevId: 286616668
|
|
PiperOrigin-RevId: 286281274
|
|
PiperOrigin-RevId: 285255855
|
|
The former is needed for vfs.FileDescription to implement
memmap.MappingIdentity, and the latter is needed to implement getcwd(2).
PiperOrigin-RevId: 285051855
|
|
PiperOrigin-RevId: 284892289
|
|
PiperOrigin-RevId: 284033820
|
|
- Remove the Filesystem argument from DentryImpl.*Ref(); in general DentryImpls
that need the Filesystem for reference counting will probably also need it
for other interface methods that don't plumb Filesystem, so it's easier to
just store a pointer to the filesystem in the DentryImpl.
- Add a pointer to the VirtualFilesystem to Filesystem, which is needed by the
gofer client to disown dentries for cache eviction triggered by dentry
reference count changes.
- Rename FilesystemType.NewFilesystem to GetFilesystem; in some cases (e.g.
sysfs, cgroupfs) it's much cleaner for there to be only one Filesystem that
is used by all mounts, and in at least one case (devtmpfs) it's visibly
incorrect not to do so, so NewFilesystem doesn't always actually create and
return a *new* Filesystem.
- Require callers of FileDescription.Init() to increment Mount/Dentry
references. This is because the gofer client may, in the OpenAt() path, take
a reference on a dentry with 0 references, which is safe due to
synchronization that is outside the scope of this CL, and it would be safer
to still have its implementation of DentryImpl.IncRef() check for an
increment for 0 references in other cases.
- Add FileDescription.TryIncRef. This is used by the gofer client to take
references on "special file descriptions" (FDs for files such as pipes,
sockets, and devices), which use per-FD handles (fids) instead of
dentry-shared handles, for sync() and syncfs().
PiperOrigin-RevId: 282473364
|
|
This is required to test filesystems with a non-trivial implementation of
FilesystemImpl.Release(). Propagation isn't handled yet, and umount isn't yet
plumbed out to VirtualFilesystem.UmountAt(), but otherwise the implementation
of umount is believed to be correct.
- Move entering mountTable.seq writer critical sections to callers of
mountTable.{insert,remove}Seqed. This is required since umount(2) must ensure
that no new references are taken on the candidate mount after checking that
it isn't busy, which is only possible by entering a vfs.mountTable.seq writer
critical section before the check and remaining in it until after
VFS.umountRecursiveLocked() is complete. (Linux does the same thing:
fs/namespace.c:do_umount() => lock_mount_hash(),
fs/pnode.c:propagate_mount_busy(), umount_tree(), unlock_mount_hash().)
- It's not possible for dentry deletion to umount while only holding
VFS.mountMu for reading, but it's also very unappealing to hold VFS.mountMu
exclusively around e.g. gofer unlink RPCs. Introduce dentry.mu to avoid these
problems. This means that VFS.mountMu is never acquired for reading, so
change it to a sync.Mutex.
PiperOrigin-RevId: 282444343
|
|
PiperOrigin-RevId: 281795269
|
|
Equivalent to fs.GenericMountSourceOptions().
PiperOrigin-RevId: 281179287
|
|
Currently there are no ABI changes. We should check again closer to release.
PiperOrigin-RevId: 277349744
|
|
PiperOrigin-RevId: 275650307
|
|
- Pass context.Context to OnClose().
- Pass memmap.MMapOpts to ConfigureMMap() by pointer so that implementations
can actually mutate it as required.
PiperOrigin-RevId: 274934967
|
|
In Linux (include/linux/types.h), mode_t is an unsigned short.
PiperOrigin-RevId: 272956350
|
|
"d_off is the distance from the start of the directory to the start of the next
linux_dirent." - getdents(2).
PiperOrigin-RevId: 270349685
|
|
They are no-ops, so the standard rule works fine.
PiperOrigin-RevId: 268776264
|
|
This fixes the implementation ambiguity issues when a filesystem
implementation embeds vfs.DefaultDirectoryFD to its directory FD along
with an internal common fileDescription utility.
For similar reasons also removes FileDescriptionDefaultImpl from
DynamicBytesFileDescriptionImpl.
PiperOrigin-RevId: 263795513
|
|
This replaces fs/proc/seqfile for vfs2-based filesystems.
PiperOrigin-RevId: 263254647
|
|
Major differences from the current ("v1") sentry VFS:
- Path resolution is Filesystem-driven (FilesystemImpl methods call
vfs.ResolvingPath methods) rather than VFS-driven (fs package owns a
Dirent tree and calls fs.InodeOperations methods to populate it). This
drastically improves performance, primarily by reducing overhead from
inefficient synchronization and indirection. It also makes it possible
to implement remote filesystem protocols that translate FS system calls
into single RPCs, rather than having to make (at least) one RPC per path
component, significantly reducing the latency of remote filesystems
(especially during cold starts and for uncacheable shared filesystems).
- Mounts are correctly represented as a separate check based on
contextual state (current mount) rather than direct replacement in a
fs.Dirent tree. This makes it possible to support (non-recursive) bind
mounts and mount namespaces.
Included in this CL is fsimpl/memfs, an incomplete in-memory filesystem
that exists primarily to demonstrate intended filesystem implementation
patterns and for benchmarking:
BenchmarkVFS1TmpfsStat/1-6 3000000 497 ns/op
BenchmarkVFS1TmpfsStat/2-6 2000000 676 ns/op
BenchmarkVFS1TmpfsStat/3-6 2000000 904 ns/op
BenchmarkVFS1TmpfsStat/8-6 1000000 1944 ns/op
BenchmarkVFS1TmpfsStat/64-6 100000 14067 ns/op
BenchmarkVFS1TmpfsStat/100-6 50000 21700 ns/op
BenchmarkVFS2MemfsStat/1-6 10000000 197 ns/op
BenchmarkVFS2MemfsStat/2-6 5000000 233 ns/op
BenchmarkVFS2MemfsStat/3-6 5000000 268 ns/op
BenchmarkVFS2MemfsStat/8-6 3000000 477 ns/op
BenchmarkVFS2MemfsStat/64-6 500000 2592 ns/op
BenchmarkVFS2MemfsStat/100-6 300000 4045 ns/op
BenchmarkVFS1TmpfsMountStat/1-6 2000000 679 ns/op
BenchmarkVFS1TmpfsMountStat/2-6 2000000 912 ns/op
BenchmarkVFS1TmpfsMountStat/3-6 1000000 1113 ns/op
BenchmarkVFS1TmpfsMountStat/8-6 1000000 2118 ns/op
BenchmarkVFS1TmpfsMountStat/64-6 100000 14251 ns/op
BenchmarkVFS1TmpfsMountStat/100-6 100000 22397 ns/op
BenchmarkVFS2MemfsMountStat/1-6 5000000 317 ns/op
BenchmarkVFS2MemfsMountStat/2-6 5000000 361 ns/op
BenchmarkVFS2MemfsMountStat/3-6 5000000 387 ns/op
BenchmarkVFS2MemfsMountStat/8-6 3000000 582 ns/op
BenchmarkVFS2MemfsMountStat/64-6 500000 2699 ns/op
BenchmarkVFS2MemfsMountStat/100-6 300000 4133 ns/op
From this we can infer that, on this machine:
- Constant cost for tmpfs stat() is ~160ns in VFS2 and ~280ns in VFS1.
- Per-path-component cost is ~35ns in VFS2 and ~215ns in VFS1, a
difference of about 6x.
- The cost of crossing a mount boundary is about 80ns in VFS2
(MemfsMountStat/1 does approximately the same amount of work as
MemfsStat/2, except that it also crosses a mount boundary). This is an
inescapable cost of the separate mount lookup needed to support bind
mounts and mount namespaces.
PiperOrigin-RevId: 258853946
|