Age | Commit message (Collapse) | Author |
|
PiperOrigin-RevId: 258859507
|
|
tcpdump creates these.
PiperOrigin-RevId: 258611829
|
|
This proc file reports the stats of interfaces. We could use ifconfig
command to check the result.
Signed-off-by: Jianfeng Tan <henry.tjf@antfin.com>
Change-Id: Ia7c1e637f5c76c30791ffda68ee61e861b6ef827
COPYBARA_INTEGRATE_REVIEW=https://gvisor-review.googlesource.com/c/gvisor/+/18282/
PiperOrigin-RevId: 258303936
|
|
iptables also relies on IPPROTO_RAW in a way. It opens such a socket to
manipulate the kernel's tables, but it doesn't actually use any of the
functionality. Blegh.
PiperOrigin-RevId: 257903078
|
|
Adds support to set/get the TCP_MAXSEG value but does not
really change the segment sizes emitted by netstack or
alter the MSS advertised by the endpoint. This is currently
being added only to unblock iperf3 on gVisor. Plumbing
this correctly requires a bit more work which will come
in separate CLs.
PiperOrigin-RevId: 257859112
|
|
PiperOrigin-RevId: 256433283
|
|
This renames FDMap to FDTable and drops the kernel.FD type, which had an entire
package to itself and didn't serve much use (it was freely cast between types,
and served as more of an annoyance than providing any protection.)
Based on BenchmarkFDLookupAndDecRef-12, we can expect 5-10 ns per lookup
operation, and 10-15 ns per concurrent lookup operation of savings.
This also fixes two tangential usage issues with the FDMap. Namely, non-atomic
use of NewFDFrom and associated calls to Remove (that are both racy and fail to
drop the reference on the underlying file.)
PiperOrigin-RevId: 256285890
|
|
Fix two leaks for connectionless Unix sockets:
* Double connect: Subsequent connects would leak a reference on the previously
connected endpoint.
* Close unconnected: Sockets which were not connected at the time of closure
would leak a reference on their receiver.
PiperOrigin-RevId: 256070451
|
|
PiperOrigin-RevId: 255711454
|
|
Get/Set pipe size and ioctl support were missing from
overlayfs. It required moving the pipe.Sizer interface
to fs so that overlay could get access.
Fixes #318
PiperOrigin-RevId: 255511125
|
|
Addresses obvious typos, in the documentation only.
COPYBARA_INTEGRATE_REVIEW=https://github.com/google/gvisor/pull/443 from Pixep:fix/documentation-spelling 4d0688164eafaf0b3010e5f4824b35d1e7176d65
PiperOrigin-RevId: 255477779
|
|
sockets, pipes and other non-seekable file descriptors don't
use file.offset, so we don't need to update it.
With this change, we will be able to call file operations
without locking the file.mu mutex. This is already used for
pipes in the splice system call.
PiperOrigin-RevId: 253746644
|
|
The implementation is similar to linux where we track the number of bytes
consumed by the application to grow the receive buffer of a given TCP endpoint.
This ensures that the advertised window grows at a reasonable rate to accomodate
for the sender's rate and prevents large amounts of data being held in stack
buffers if the application is not actively reading or not reading fast enough.
The original paper that was used to implement the linux receive buffer auto-
tuning is available @ https://public.lanl.gov/radiant/pubs/drs/lacsi2001.pdf
NOTE: Linux does not implement DRS as defined in that paper, it's just a good
reference to understand the solution space.
Updates #230
PiperOrigin-RevId: 253168283
|
|
All functions which allocate objects containing AtomicRefCounts will soon need
a context.
PiperOrigin-RevId: 253147709
|
|
SO_TYPE was already implemented for everything but netlink sockets.
PiperOrigin-RevId: 253138157
|
|
This can be merged after:
https://github.com/google/gvisor-website/pull/77
or
https://github.com/google/gvisor-website/pull/78
PiperOrigin-RevId: 253132620
|
|
This CL also cleans up the error returned for setting congestion
control which was incorrectly returning EINVAL instead of ENOENT.
PiperOrigin-RevId: 252889093
|
|
Store enough information in the kernel socket table to distinguish
between different types of sockets. Previously we were only storing
the socket family, but this isn't enough to classify sockets. For
example, TCPv4 and UDPv4 sockets are both AF_INET, and ICMP sockets
are SOCK_DGRAM sockets with a particular protocol.
Instead of creating more sub-tables, flatten the socket table and
provide a filtering mechanism based on the socket entry.
Also generate and store a socket entry index ("sl" in linux) which
allows us to output entries in a stable order from procfs.
PiperOrigin-RevId: 252495895
|
|
SockType isn't specific to unix domain sockets, and the current
definition basically mirrors the linux ABI's definition.
PiperOrigin-RevId: 251956740
|
|
This is necessary for implementing network diagnostic interfaces like
/proc/net/{tcp,udp,unix} and sock_diag(7).
For pass-through endpoints such as hostinet, we obtain the socket
state from the backend. For netstack, we add explicit tracking of TCP
states.
PiperOrigin-RevId: 251934850
|
|
and don't report a sender address if it doesn't have one
PiperOrigin-RevId: 251371284
|
|
Netstack listen loop can get stuck if cookies are in-use and the app is slow to
accept incoming connections. Further we continue to complete handshake for a
connection even if the backlog is full. This creates a problem when a lots of
connections come in rapidly and we end up with lots of completed connections
just hanging around to be delivered.
These fixes change netstack behaviour to mirror what linux does as described
here in the following article
http://veithen.io/2014/01/01/how-tcp-backlog-works-in-linux.html
Now when cookies are not in-use Netstack will silently drop the ACK to a SYN-ACK
and not complete the handshake if the backlog is full. This will result in the
connection staying in a half-complete state. Eventually the sender will
retransmit the ACK and if backlog has space we will transition to a connected
state and deliver the endpoint.
Similarly when cookies are in use we do not try and create an endpoint unless
there is space in the accept queue to accept the newly created endpoint. If
there is no space then we again silently drop the ACK as we can just recreate it
when the ACK is retransmitted by the peer.
We also now use the backlog to cap the size of the SYN-RCVD queue for a given
endpoint. So at any time there can be N connections in the backlog and N in a
SYN-RCVD state if the application is not accepting connections. Any new SYNs
will be dropped.
This CL also fixes another small bug where we mark a new endpoint which has not
completed handshake as connected. We should wait till handshake successfully
completes before marking it connected.
Updates #236
PiperOrigin-RevId: 250717817
|
|
PiperOrigin-RevId: 250426407
|
|
PiperOrigin-RevId: 249511348
Change-Id: I34539092cc85032d9473ff4dd308fc29dc9bfd6b
|
|
This does not actually implement an efficient splice or sendfile. Rather, it
adds a generic plumbing to the file internals so that this can be added. All
file implementations use the stub fileutil.NoSplice implementation, which
causes sendfile and splice to fall back to an internal copy.
A basic splice system call interface is added, along with a test.
PiperOrigin-RevId: 249335960
Change-Id: Ic5568be2af0a505c19e7aec66d5af2480ab0939b
|
|
Updates google/gvisor#206
PiperOrigin-RevId: 245880573
Change-Id: Ifa715e98d47f64b8a32b04ae9378d6cd6bd4025e
|
|
Based on the guidelines at
https://opensource.google.com/docs/releasing/authors/.
1. $ rg -l "Google LLC" | xargs sed -i 's/Google LLC.*/The gVisor Authors./'
2. Manual fixup of "Google Inc" references.
3. Add AUTHORS file. Authors may request to be added to this file.
4. Point netstack AUTHORS to gVisor AUTHORS. Drop CONTRIBUTORS.
Fixes #209
PiperOrigin-RevId: 245823212
Change-Id: I64530b24ad021a7d683137459cafc510f5ee1de9
|
|
PiperOrigin-RevId: 245818639
Change-Id: I03703ef0fb9b6675955637b9fe2776204c545789
|
|
The MSG_TRUNC flag is set in the msghdr when a message is truncated.
Fixes google/gvisor#200
PiperOrigin-RevId: 244440486
Change-Id: I03c7d5e7f5935c0c6b8d69b012db1780ac5b8456
|
|
Only emit unimplemented syscall events for setting SO_OOBINLINE and SO_LINGER
when attempting to set unsupported values.
PiperOrigin-RevId: 244229675
Change-Id: Icc4562af8f733dd75a90404621711f01a32a9fc1
|
|
Current, doPoll copies the user struct pollfd array into a
[]syscalls.PollFD, which contains internal kdefs.FD and
waiter.EventMask types. While these are currently binary-compatible with
the Linux versions, we generally discourage copying directly to internal
types (someone may inadvertantly change kdefs.FD to uint64).
Instead, copy directly to a []linux.PollFD, which will certainly be
binary compatible. Most of syscalls/polling.go is included directly into
syscalls/linux/sys_poll.go, as it can then operate directly on
linux.PollFD. The additional syscalls.PollFD type is providing little
value.
I've also added explicit conversion functions for waiter.EventMask,
which creates the possibility of a different binary format.
PiperOrigin-RevId: 244042947
Change-Id: I24e5b642002a32b3afb95a9dcb80d4acd1288abf
|
|
PiperOrigin-RevId: 243018347
Change-Id: I1e5b80607c1df0747482abea61db7fcf24536d37
|
|
PiperOrigin-RevId: 242704699
Change-Id: I87db368ca343b3b4bf4f969b17d3aa4ce2f8bd4f
|
|
PiperOrigin-RevId: 240848882
Change-Id: I23dd4599f073263437aeab357c3f767e1a432b82
|
|
Track new sockets created during accept(2) in the socket table for all
families. Previously we were only doing this for unix domain sockets.
PiperOrigin-RevId: 239475550
Change-Id: I16f009f24a06245bfd1d72ffd2175200f837c6ac
|
|
PiperOrigin-RevId: 239221041
Change-Id: Icc19e32a00fa89167447ab2f45e90dcfd61bea04
|
|
getsockopt(IP_MULTICAST_IF) only supports struct in_addr.
Also adds support for setsockopt(IP_MULTICAST_IF) with struct in_addr.
PiperOrigin-RevId: 237620230
Change-Id: I75e7b5b3e08972164eb1906f43ddd67aedffc27c
|
|
This is the correct Linux behavior, and at least PHP depends on it.
PiperOrigin-RevId: 237565639
Change-Id: I931af09c8ed99a842cf70d22bfe0b65e330c4137
|
|
IP_MULTICAST_LOOP controls whether or not multicast packets sent on the default
route are looped back. In order to implement this switch, support for sending
and looping back multicast packets on the default route had to be implemented.
For now we only support IPv4 multicast.
PiperOrigin-RevId: 237534603
Change-Id: I490ac7ff8e8ebef417c7eb049a919c29d156ac1c
|
|
PiperOrigin-RevId: 236945145
Change-Id: I051760d95154ea5574c8bb6aea526f488af5e07b
|
|
PiperOrigin-RevId: 236926132
Change-Id: I5cf103f22766e6e65a581de780c7bb9ca0fa3181
|
|
Broadly, this change:
* Enables sockets to be created via `socket(AF_INET, SOCK_RAW, IPPROTO_ICMP)`.
* Passes the network-layer (IP) header up the stack to the transport endpoint,
which can pass it up to the socket layer. This allows a raw socket to return
the entire IP packet to users.
* Adds functions to stack.TransportProtocol, stack.Stack, stack.transportDemuxer
that enable incoming packets to be delivered to raw endpoints. New raw sockets
of other protocols (not ICMP) just need to register with the stack.
* Enables ping.endpoint to return IP headers when created via SOCK_RAW.
PiperOrigin-RevId: 235993280
Change-Id: I60ed994f5ff18b2cbd79f063a7fdf15d093d845a
|
|
PiperOrigin-RevId: 235818534
Change-Id: I99f7e3fd1dc808b35f7a08b96b7c3226603ab808
|
|
This change adds support for the SO_BROADCAST socket option in gVisor Netstack.
This support includes getsockopt()/setsockopt() functionality for both UDP and
TCP endpoints (the latter being a NOOP), dispatching broadcast messages up and
down the stack, and route finding/creation for broadcast packets. Finally, a
suite of tests have been implemented, exercising this functionality through the
Linux syscall API.
PiperOrigin-RevId: 234850781
Change-Id: If3e666666917d39f55083741c78314a06defb26c
|
|
Ping sometimes uses this instead of SO_TIMESTAMP.
PiperOrigin-RevId: 234699590
Change-Id: Ibec9c34fa0d443a931557a2b1b1ecd83effe7765
|
|
This allows setting a default send interface for IPv4 multicast. IPv6 support
will come later.
PiperOrigin-RevId: 234251379
Change-Id: I65922341cd8b8880f690fae3eeb7ddfa47c8c173
|
|
SO_TIMESTAMP is reimplemented in ping and UDP sockets (and needs to be added for
TCP), but can just be implemented in epsocket for simplicity. This will also
make SIOCGSTAMP easier to implement.
PiperOrigin-RevId: 234179300
Change-Id: Ib5ea0b1261dc218c1a8b15a65775de0050fe3230
|
|
PiperOrigin-RevId: 234147487
Change-Id: I779a6012832bb94a6b89f5bcc7d821b40ae969cc
|
|
Also includes a few fixes for IPv4 multicast support. IPv6 support is coming in
a followup CL.
PiperOrigin-RevId: 233008638
Change-Id: If7dae6222fef43fda48033f0292af77832d95e82
|
|
PiperOrigin-RevId: 232948478
Change-Id: Ib830121e5e79afaf5d38d17aeef5a1ef97913d23
|