Age | Commit message (Collapse) | Author |
|
Kernel.cpuClockTicker increments kernel.cpuClock, which tasks use as a clock to
track their CPU usage. This improves latency in the syscall path by avoid
expensive monotonic clock calls on every syscall entry/exit.
However, this timer fires every 10ms. Thus, when all tasks are idle (i.e.,
blocked or stopped), this forces a sentry wakeup every 10ms, when we may
otherwise be able to sleep until the next app-relevant event. These wakeups
cause the sentry to utilize approximately 2% CPU when the application is
otherwise idle.
Updates to clock are not strictly necessary when the app is idle, as there are
no readers of cpuClock. This commit reduces idle CPU by disabling the timer
when tasks are completely idle, and computing its effects at the next wakeup.
Rather than disabling the timer as soon as the app goes idle, we wait until the
next tick, which provides a window for short sleeps to sleep and wakeup without
doing the (relatively) expensive work of disabling and enabling the timer.
PiperOrigin-RevId: 272265822
|
|
|
|
PiperOrigin-RevId: 270680704
|
|
|
|
Adresses a deadlock with the rolled back change:
https://github.com/google/gvisor/commit/b6a5b950d28e0b474fdad160b88bc15314cf9259
Creating a session from an orphaned process group was causing a lock to be
acquired twice by a single goroutine. This behavior is addressed, and a test
(OrphanRegression) has been added to pty.cc.
Implemented the following ioctls:
- TIOCSCTTY - set controlling TTY
- TIOCNOTTY - remove controlling tty, maybe signal some other processes
- TIOCGPGRP - get foreground process group. Also enables tcgetpgrp().
- TIOCSPGRP - set foreground process group. Also enabled tcsetpgrp().
Next steps are to actually turn terminal-generated control characters (e.g. C^c)
into signals to the proper process groups, and to send SIGTTOU and SIGTTIN when
appropriate.
PiperOrigin-RevId: 270088599
|
|
|
|
Note that the exact semantics for these signalfds are slightly different from
Linux. These signalfds are bound to the process at creation time. Reads, polls,
etc. are all associated with signals directed at that task. In Linux, all
signalfd operations are associated with current, regardless of where the
signalfd originated.
In practice, this should not be an issue given how signalfds are used. In order
to fix this however, we will need to plumb the context through all the event
APIs. This gets complicated really quickly, because the waiter APIs are all
netstack-specific, and not generally exposed to the context. Probably not
worthwhile fixing immediately.
PiperOrigin-RevId: 269901749
|
|
|
|
This also allows the tee(2) implementation to be enabled, since dup can now be
properly supported via WriteTo.
Note that this change necessitated some minor restructoring with the
fs.FileOperations splice methods. If the *fs.File is passed through directly,
then only public API methods are accessible, which will deadlock immediately
since the locking is already done by fs.Splice. Instead, we pass through an
abstract io.Reader or io.Writer, which elide locks and use the underlying
fs.FileOperations directly.
PiperOrigin-RevId: 268805207
|
|
They are no-ops, so the standard rule works fine.
PiperOrigin-RevId: 268776264
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PiperOrigin-RevId: 266491264
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PiperOrigin-RevId: 264920977
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|