Age | Commit message (Collapse) | Author |
|
In Linux, a kernel configuration is set that compiles the kernel with a
custom function that is called at the beginning of every basic block, which
updates the memory-mapped coverage information. The Go coverage tool does not
allow us to inject arbitrary instructions into basic blocks, but it does
provide data that we can convert to a kcov-like format and transfer them to
userspace through a memory mapping.
Note that this is not a strict implementation of kcov, which is especially
tricky to do because we do not have the same coverage tools available in Go
that that are available for the actual Linux kernel. In Linux, a kernel
configuration is set that compiles the kernel with a custom function that is
called at the beginning of every basic block to write program counters to the
kcov memory mapping. In Go, however, coverage tools only give us a count of
basic blocks as they are executed. Every time we return to userspace, we
collect the coverage information and write out PCs for each block that was
executed, providing userspace with the illusion that the kcov data is always
up to date. For convenience, we also generate a unique synthetic PC for each
block instead of using actual PCs. Finally, we do not provide thread-specific
coverage data (each kcov instance only contains PCs executed by the thread
owning it); instead, we will supply data for any file specified by --
instrumentation_filter.
Also, fix issue in nogo that was causing pkg/coverage:coverage_nogo
compilation to fail.
PiperOrigin-RevId: 328426526
|
|
Some VFS operations (those which operate on FDs) get their credentials via the
context instead of via an explicit creds param. For these cases, we must pass
the overlay credentials on the context.
PiperOrigin-RevId: 327881259
|
|
Our "Preconditions:" blocks are very useful to determine the input invariants,
but they are bit inconsistent throughout the codebase, which makes them harder
to read (particularly cases with 5+ conditions in a single paragraph).
I've reformatted all of the cases to fit in simple rules:
1. Cases with a single condition are placed on a single line.
2. Cases with multiple conditions are placed in a bulleted list.
This format has been added to the style guide.
I've also mentioned "Postconditions:", though those are much less frequently
used, and all uses already match this style.
PiperOrigin-RevId: 327687465
|
|
This is needed to avoid circular dependencies between the vfs and kernel
packages.
PiperOrigin-RevId: 327355524
|
|
The abstract socket namespace no longer holds any references on sockets.
Instead, TryIncRef() is used when a socket is being retrieved in
BoundEndpoint(). Abstract sockets are now responsible for removing themselves
from the namespace they are in, when they are destroyed.
Updates #1486.
PiperOrigin-RevId: 327064173
|
|
It indicates that the Sentry has changed the state of the thread and
next calls of PullFullState() has to do nothing.
PiperOrigin-RevId: 325567415
|
|
PiperOrigin-RevId: 324748508
|
|
context is passed to DecRef() and Release() which is
needed for SO_LINGER implementation.
PiperOrigin-RevId: 324672584
|
|
The subsequent systrap changes will need to import memmap from
the platform package.
PiperOrigin-RevId: 323409486
|
|
Changes the API of tcpip.Clock to also provide a method for scheduling and
rescheduling work after a specified duration. This change also implements the
AfterFunc method for existing implementations of tcpip.Clock.
This is the groundwork required to mock time within tests. All references to
CancellableTimer has been replaced with the tcpip.Job interface, allowing for
custom implementations of scheduling work.
This is a BREAKING CHANGE for clients that implement their own tcpip.Clock or
use tcpip.CancellableTimer. Migration plan:
1. Add AfterFunc(d, f) to tcpip.Clock
2. Replace references of tcpip.CancellableTimer with tcpip.Job
3. Replace calls to tcpip.CancellableTimer#StopLocked with tcpip.Job#Cancel
4. Replace calls to tcpip.CancellableTimer#Reset with tcpip.Job#Schedule
5. Replace calls to tcpip.NewCancellableTimer with tcpip.NewJob.
PiperOrigin-RevId: 322906897
|
|
PiperOrigin-RevId: 322904430
|
|
Like task_work in Linux, this allows us to register callbacks to be executed
before returning to userspace. This is needed for kcov support, which requires
coverage information to be up-to-date whenever we are in user mode. We will
provide coverage data through the kcov interface to enable coverage-directed
fuzzing in syzkaller.
One difference from Linux is that task work cannot queue work before the
transition to userspace that it precedes; queued work will be picked up before
the next transition.
PiperOrigin-RevId: 322889984
|
|
PiperOrigin-RevId: 321411758
|
|
When --debug is enabled, the following log messages are
printed every second filling up the log:
D0430 18:04:42.823775 129561 parameters.go:238] Clock(Monotonic): error: 46 ns, adjusted frequency from 3591713733 Hz to 3591714196 Hz
D0430 18:04:42.823870 129561 parameters.go:238] Clock(Realtime): error: 36 ns, adjusted frequency from 3591714003 Hz to 3591714169 Hz
D0430 18:04:42.823892 129561 timekeeper.go:209] Updating VDSO parameters: {monotonicReady:1 monotonicBaseCycles:15758797714254696 monotonicBaseRef:29000233837 monotonicFrequency:3591714196 realtimeReady:1 realtimeBaseCycles:15758797714610880 realtimeBaseRef:1588269882823867374 realtimeFrequency:3591714169}
Info and warning messages for larger changes are kept the same.
PiperOrigin-RevId: 321048523
|
|
This change gates all FUSE commands (by gating /dev/fuse) behind a runsc
flag. In order to use FUSE commands, use the --fuse flag with the --vfs2
flag. Check if FUSE is enabled by running dmesg in the sandbox.
|
|
PiperOrigin-RevId: 319283715
|
|
- Support FIOASYNC, FIO{SET,GET}OWN, SIOC{G,S}PGRP (refactor getting/setting
owner in the process).
- Unset signal recipient when setting owner with pid == 0 and
valid owner type.
Updates #2923.
PiperOrigin-RevId: 319231420
|
|
Also make some fixes to vfs1's F_SETOWN. The fcntl test now entirely passes
on vfs2.
Fixes #2920.
PiperOrigin-RevId: 318669529
|
|
PiperOrigin-RevId: 318563543
|
|
PiperOrigin-RevId: 318346153
|
|
This field is redundant since state can be stored in the callback.
PiperOrigin-RevId: 318134855
|
|
Previously, it was not possible to encode/decode an object graph which
contained a pointer to a field within another type. This was because the
encoder was previously unable to disambiguate a pointer to an object and a
pointer within the object.
This CL remedies this by constructing an address map tracking the full memory
range object occupy. The encoded Refvalue message has been extended to allow
references to children objects within another object. Because the encoding
process may learn about object structure over time, we cannot encode any
objects under the entire graph has been generated.
This CL also updates the state package to use standard interfaces intead of
reflection-based dispatch in order to improve performance overall. This
includes a custom wire protocol to significantly reduce the number of
allocations and take advantage of structure packing.
As part of these changes, there are a small number of minor changes in other
places of the code base:
* The lists used during encoding are changed to use intrusive lists with the
objectEncodeState directly, which required that the ilist Len() method is
updated to work properly with the ElementMapper mechanism.
* A bug is fixed in the list code wherein Remove() called on an element that is
already removed can corrupt the list (removing the element if there's only a
single element). Now the behavior is correct.
* Standard error wrapping is introduced.
* Compressio was updated to implement the new wire.Reader and wire.Writer
inteface methods directly. The lack of a ReadByte and WriteByte caused issues
not due to interface dispatch, but because underlying slices for a Read or
Write call through an interface would always escape to the heap!
* Statify has been updated to support the new APIs.
See README.md for a description of how the new mechanism works.
PiperOrigin-RevId: 318010298
|
|
- Change FileDescriptionImpl Lock/UnlockPOSIX signature to
take {start,length,whence}, so the correct offset can be
calculated in the implementations.
- Create PosixLocker interface to make it possible to share
the same locking code from different implementations.
Closes #1480
PiperOrigin-RevId: 316910286
|
|
In order to make sure all aio goroutines have stopped during S/R, a new
WaitGroup was added to TaskSet, analagous to runningGoroutines. This WaitGroup
is incremented with each aio goroutine, and waited on during kernel.Pause.
The old VFS1 aio code was changed to use this new WaitGroup, rather than
fs.Async. The only uses of fs.Async are now inode and mount Release operations,
which do not call fs.Async recursively. This fixes a lock-ordering violation
that can cause deadlocks.
Updates #1035.
PiperOrigin-RevId: 316689380
|
|
PiperOrigin-RevId: 316627764
|
|
PiperOrigin-RevId: 316148074
|
|
gaurav1086:sentry_kernel_timekeeper_use_buffered_channel
PiperOrigin-RevId: 315803553
|
|
Signed-off-by: Gaurav Singh <gaurav1086@gmail.com>
|
|
LockFD is the generic implementation that can be embedded in
FileDescriptionImpl implementations. Unique lock ID is
maintained in vfs.FileDescription and is created on demand.
Updates #1480
PiperOrigin-RevId: 315604825
|
|
This is mostly syscall plumbing, VFS2 already implements the internals of
mounts. In addition to the syscall defintions, the following mount-related
mechanisms are updated:
- Implement MS_NOATIME for VFS2, but only for tmpfs and goferfs. The other VFS2
filesystems don't implement node-level timestamps yet.
- Implement the 'mode', 'uid' and 'gid' mount options for VFS2's tmpfs.
- Plumb mount namespace ownership, which is necessary for checking appropriate
capabilities during mount(2).
Updates #1035
PiperOrigin-RevId: 315035352
|
|
The current task can share its fdtable with a few other tasks,
but after exec, this should be a completely separate process.
PiperOrigin-RevId: 314999565
|
|
Limited to tmpfs. Inotify support in other filesystem implementations to
follow.
Updates #1479
PiperOrigin-RevId: 313828648
|
|
Support in other filesystem impls is still needed. Unlike in Linux and vfs1, we
need to plumb inotify down to each filesystem implementation in order to keep
track of links/inode structures properly.
IN_EXCL_UNLINK still needs to be implemented, as well as a few inotify hooks
that are not present in either vfs1 or vfs2. Those will be addressed in
subsequent changes.
Updates #1479.
PiperOrigin-RevId: 313781995
|
|
Updates #138
PiperOrigin-RevId: 313326354
|
|
* Aggregate architecture Overview in "What is gVisor?" as it makes more sense
in one place.
* Drop "user-space kernel" and use "application kernel". The term "user-space
kernel" is confusing when some platform implementation do not run in
user-space (instead running in guest ring zero).
* Clear up the relationship between the Platform page in the user guide and the
Platform page in the architecture guide, and ensure they are cross-linked.
* Restore the call-to-action quick start link in the main page, and drop the
GitHub link (which also appears in the top-right).
* Improve image formatting by centering all doc and blog images, and move the
image captions to the alt text.
PiperOrigin-RevId: 311845158
|
|
Closes #2612.
PiperOrigin-RevId: 311548074
|
|
Updates #1197, #1198, #1672
PiperOrigin-RevId: 310432006
|
|
They don't depend on anything in VFS2, so they should be their own packages.
PiperOrigin-RevId: 310416807
|
|
We can register any number of tables with any number of architectures, and
need not limit the definitions to the architecture in question. This allows
runsc to generate documentation for all architectures simultaneously.
Similarly, this simplifies the VFSv2 patching process.
PiperOrigin-RevId: 310224827
|
|
This change ensures that even platforms with some TSC issues (e.g. KVM),
can get reliable monotonic time by applied a lower bound on each read.
PiperOrigin-RevId: 309773801
|
|
PiperOrigin-RevId: 308617610
|
|
PiperOrigin-RevId: 308472331
|
|
This is needed to set up host fds passed through a Unix socket. Note that
the host package depends on kernel, so we cannot set up the hostfs mount
directly in Kernel.Init as we do for sockfs and pipefs.
Also, adjust sockfs to make its setup look more like hostfs's and pipefs's.
PiperOrigin-RevId: 308274053
|
|
PiperOrigin-RevId: 308170679
|
|
Ensure we use the correct architecture-specific defintion of epoll
event, and use go-marshal for serialization.
PiperOrigin-RevId: 308145677
|
|
PiperOrigin-RevId: 308100771
|
|
PiperOrigin-RevId: 307941984
|
|
Included:
- loader_test.go RunTest and TestStartSignal VFS2
- container_test.go TestAppExitStatus on VFS2
- experimental flag added to runsc to turn on VFS2
Note: shared mounts are not yet supported.
PiperOrigin-RevId: 307070753
|
|
Updates #1035
PiperOrigin-RevId: 306968644
|
|
PiperOrigin-RevId: 306891171
|