Age | Commit message (Collapse) | Author |
|
As new functionality is added to VFS2, corresponding files in VFS1
don't need to be changed.
PiperOrigin-RevId: 312153799
|
|
PiperOrigin-RevId: 311657502
|
|
Closes #2612.
PiperOrigin-RevId: 311548074
|
|
Closes #1197
PiperOrigin-RevId: 311438223
|
|
Linux 4.18 and later make reads and writes coherent between pre-copy-up and
post-copy-up FDs representing the same file on an overlay filesystem. However,
memory mappings remain incoherent:
- Documentation/filesystems/overlayfs.rst, "Non-standard behavior": "If a file
residing on a lower layer is opened for read-only and then memory mapped with
MAP_SHARED, then subsequent changes to the file are not reflected in the
memory mapping."
- fs/overlay/file.c:ovl_mmap() passes through to the underlying FD without any
management of coherence in the overlay.
- Experimentally on Linux 5.2:
```
$ cat mmap_cat_page.c
#include <err.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <unistd.h>
int main(int argc, char **argv) {
if (argc < 2) {
errx(1, "syntax: %s [FILE]", argv[0]);
}
const int fd = open(argv[1], O_RDONLY);
if (fd < 0) {
err(1, "open(%s)", argv[1]);
}
const size_t page_size = sysconf(_SC_PAGE_SIZE);
void* page = mmap(NULL, page_size, PROT_READ, MAP_SHARED, fd, 0);
if (page == MAP_FAILED) {
err(1, "mmap");
}
for (;;) {
write(1, page, strnlen(page, page_size));
if (getc(stdin) == EOF) {
break;
}
}
return 0;
}
$ gcc -O2 -o mmap_cat_page mmap_cat_page.c
$ mkdir lowerdir upperdir workdir overlaydir
$ echo old > lowerdir/file
$ sudo mount -t overlay -o "lowerdir=lowerdir,upperdir=upperdir,workdir=workdir" none overlaydir
$ ./mmap_cat_page overlaydir/file
old
^Z
[1]+ Stopped ./mmap_cat_page overlaydir/file
$ echo new > overlaydir/file
$ cat overlaydir/file
new
$ fg
./mmap_cat_page overlaydir/file
old
```
Therefore, while the VFS1 gofer client's behavior of reopening read FDs is only
necessary pre-4.18, replacing existing memory mappings (in both sentry and
application address spaces) with mappings of the new FD is required regardless
of kernel version, and this latter behavior is common to both VFS1 and VFS2.
Re-document accordingly, and change the runsc flag to enabled by default.
New test:
- Before this CL: https://source.cloud.google.com/results/invocations/5b222d2c-e918-4bae-afc4-407f5bac509b
- After this CL: https://source.cloud.google.com/results/invocations/f28c747e-d89c-4d8c-a461-602b33e71aab
PiperOrigin-RevId: 311361267
|
|
PiperOrigin-RevId: 311046755
|
|
PiperOrigin-RevId: 311014995
|
|
This has two effects: It makes flags passed to open("/proc/[pid]/fd/[hostfd]")
effective, and it prevents imported pipes/sockets/character devices from being
opened with O_NONBLOCK unconditionally (because the underlying host FD was set
to non-blocking in ImportFD()).
PiperOrigin-RevId: 310596062
|
|
Updates #1197, #1198, #1672
PiperOrigin-RevId: 310432006
|
|
They don't depend on anything in VFS2, so they should be their own packages.
PiperOrigin-RevId: 310416807
|
|
PiperOrigin-RevId: 310404113
|
|
PiperOrigin-RevId: 310179277
|
|
Three updates:
- Mark all vfs2 socket syscalls as supported.
- Use the same dev number and ino number generator for all types of sockets,
unlike in VFS1.
- Do not use host fd for hostinet metadata.
Fixes #1476, #1478, #1484, 1485, #2017.
PiperOrigin-RevId: 309994579
|
|
PiperOrigin-RevId: 309966538
|
|
Implement PrependPath() in host.filesystem to correctly format
name for host files.
Updates #1672
PiperOrigin-RevId: 309959135
|
|
p9.NoUID/GID (== uint32(-1) == auth.NoID) is not a valid auth.KUID/KGID; in
particular, using it for file ownership causes capabilities to be ineffective
since file capabilities require that the file's KUID and KGID are mapped into
the capability holder's user namespace [1], and auth.NoID is not mapped into
any user namespace. Map p9.NoUID/GID to a different, valid KUID/KGID; in the
unlikely case that an application actually using the overflow KUID/KGID
attempts an operation that is consequently permitted by client permission
checks, the remote operation will still fail with EPERM.
Since this changes the VFS2 gofer client to no longer ignore the invalid IDs
entirely, this CL both permits and requires that we change synthetic mount point
creation to use root credentials.
[1] See fs.Inode.CheckCapability or vfs.GenericCheckPermissions.
PiperOrigin-RevId: 309856455
|
|
This allows for kerfs.Filesystem to be overridden by
different implementations.
Updates #1672
PiperOrigin-RevId: 309809321
|
|
Updates #1623, #1487
PiperOrigin-RevId: 309777922
|
|
All three follow the same pattern:
1. Refactor VFS1 sockets into socketOpsCommon, so that most of the methods can
be shared with VFS2.
2. Create a FileDescriptionImpl with the corresponding socket operations,
rewriting the few that cannot be shared with VFS1.
3. Set up a VFS2 socket provider that creates a socket by setting up a dentry
in the global Kernel.socketMount and connecting it with a new
FileDescription.
This mostly completes the work for porting sockets to VFS2, and many syscall
tests can be enabled as a result.
There are several networking-related syscall tests that are still not passing:
1. net gofer tests
2. socketpair gofer tests
2. sendfile tests (splice is not implemented in VFS2 yet)
Updates #1478, #1484, #1485
PiperOrigin-RevId: 309457331
|
|
PiperOrigin-RevId: 309317605
|
|
This fixes bash in Ubuntu.
Updates #1672.
PiperOrigin-RevId: 309298252
|
|
The /proc/net/udp header was missing, and /proc/sys/net was set up as
/proc/sys/net/net. Discovered while trying to run networking tests for VFS2.
PiperOrigin-RevId: 309243758
|
|
Enforce write permission checks in BoundEndpointAt, which corresponds to the
permission checks in Linux (net/unix/af_unix.c:unix_find_other).
Also, create bound socket files with the correct permissions in VFS2.
Fixes #2324.
PiperOrigin-RevId: 308949084
|
|
Named pipes and sockets can be represented in two ways in gofer fs:
1. As a file on the remote filesystem. In this case, all file operations are
passed through 9p.
2. As a synthetic file that is internal to the sandbox. In this case, the
dentry stores an endpoint or VFSPipe for sockets and pipes respectively,
which replaces interactions with the remote fs through the gofer.
In gofer.filesystem.MknodAt, we attempt to call mknod(2) through 9p,
and if it fails, fall back to the synthetic version.
Updates #1200.
PiperOrigin-RevId: 308828161
|
|
The FileDescription implementation for hostfs sockets uses the standard Unix
socket implementation (unix.SocketVFS2), but is also tied to a hostfs dentry.
Updates #1672, #1476
PiperOrigin-RevId: 308716426
|
|
This change includes:
- Modifications to loader_test.go to get TestCreateMountNamespace to
pass with VFS2.
- Changes necessary to get TestHelloWorld in image tests to pass with
VFS2. This means runsc can run the hello-world container with docker
on VSF2.
Note: Containers that use sockets will not run with these changes.
See "//test/image/...". Any tests here with sockets currently fail
(which is all of them but HelloWorld).
PiperOrigin-RevId: 308363072
|
|
Fixes #1477.
PiperOrigin-RevId: 308317511
|
|
PiperOrigin-RevId: 308304793
|
|
- Return ENOENT for /proc/[pid]/task if task is zoombied or terminated
- Allow directory to be Seek() to the end
- Construct synthetic files for /proc/[pid]/ns/*
- Changed GenericDirectoryFD.Init to not register with FileDescription,
otherwise other implementation cannot change behavior.
Updates #1195,1193
PiperOrigin-RevId: 308294649
|
|
This is needed to set up host fds passed through a Unix socket. Note that
the host package depends on kernel, so we cannot set up the hostfs mount
directly in Kernel.Init as we do for sockfs and pipefs.
Also, adjust sockfs to make its setup look more like hostfs's and pipefs's.
PiperOrigin-RevId: 308274053
|
|
Just call syscall.Fstat directly each time mode/file owner are needed. This
feels more natural than using i.getPermissions().
PiperOrigin-RevId: 308257405
|
|
PiperOrigin-RevId: 308164359
|
|
PiperOrigin-RevId: 308143529
|
|
This change adds a layer of abstraction around the internal Docker APIs,
and eliminates all direct dependencies on Dockerfiles in the infrastructure.
A subsequent change will automated the generation of local images (with
efficient caching). Note that this change drops the use of bazel container
rules, as that experiment does not seem to be viable.
PiperOrigin-RevId: 308095430
|
|
Also fix returning EOF when 0 bytes are read.
PiperOrigin-RevId: 308089875
|
|
Even though BoundEndpointAt is not yet implemented for gofer fs, allow path
resolution errors to be returned so that we can jump to tmpfs, where it is
implemented.
Updates #1476.
PiperOrigin-RevId: 307718335
|
|
- Fix defer operation ordering in kernfs.Filesystem.AccessAt()
- Add AT_NULL entry in proc/pid/auvx
- Fix line padding in /proc/pid/maps
- Fix linux_dirent serialization for getdents(2)
- Remove file creation flags from vfs.FileDescription.statusFlags()
Updates #1193, #1035
PiperOrigin-RevId: 307704159
|
|
This change:
- Drastically simplifies the synchronization model: filesystem structure is
both implementation-defined and implementation-synchronized.
- Allows implementations of vfs.DentryImpl to use implementation-specific
dentry types, reducing casts during path traversal.
- Doesn't require dentries representing non-directory files to waste space on a
map of children.
- Allows dentry revalidation and mount lookup to be correctly ordered (fixed
FIXME in fsimpl/gofer/filesystem.go).
- Removes the need to have two separate maps in gofer.dentry
(dentry.vfsd.children and dentry.negativeChildren) for positive and negative
lookups respectively.
//pkg/sentry/fsimpl/tmpfs/benchmark_test.go:
name old time/op new time/op delta
VFS2TmpfsStat/1-112 172ns ± 4% 165ns ± 3% -4.08% (p=0.002 n=9+9)
VFS2TmpfsStat/2-112 199ns ± 3% 195ns ±10% ~ (p=0.132 n=8+9)
VFS2TmpfsStat/3-112 230ns ± 2% 216ns ± 2% -6.15% (p=0.000 n=8+8)
VFS2TmpfsStat/8-112 390ns ± 2% 358ns ± 4% -8.33% (p=0.000 n=9+8)
VFS2TmpfsStat/64-112 2.20µs ± 3% 2.01µs ± 3% -8.48% (p=0.000 n=10+8)
VFS2TmpfsStat/100-112 3.42µs ± 9% 3.08µs ± 2% -9.82% (p=0.000 n=9+8)
VFS2TmpfsMountStat/1-112 278ns ± 1% 286ns ±15% ~ (p=0.712 n=8+10)
VFS2TmpfsMountStat/2-112 311ns ± 4% 298ns ± 2% -4.27% (p=0.000 n=9+8)
VFS2TmpfsMountStat/3-112 339ns ± 3% 330ns ± 9% ~ (p=0.070 n=8+9)
VFS2TmpfsMountStat/8-112 503ns ± 3% 466ns ± 3% -7.38% (p=0.000 n=8+8)
VFS2TmpfsMountStat/64-112 2.53µs ±16% 2.17µs ± 7% -14.19% (p=0.000 n=10+9)
VFS2TmpfsMountStat/100-112 3.60µs ± 4% 3.30µs ± 8% -8.33% (p=0.001 n=8+9)
Updates #1035
PiperOrigin-RevId: 307655892
|
|
PiperOrigin-RevId: 307422746
|
|
Instead of plumbing error through kernfs.Inode.Mode, panic if err != nil.
The errors that can result from an fstat syscall all indicate that something
is fundamentally wrong, and panicking should be acceptable.
PiperOrigin-RevId: 307406847
|
|
Updates #1035
PiperOrigin-RevId: 306968644
|
|
As in VFS1, we only support the user.* namespace. Plumbing is added to tmpfs
and goferfs.
Note that because of the slightly different order of checks between VFS2 and
Linux, one of the xattr tests needs to be relaxed slightly.
Fixes #2363.
PiperOrigin-RevId: 305985121
|
|
The sentry doesn't allow execve, but it's a good defense
in-depth measure.
PiperOrigin-RevId: 305958737
|
|
PiperOrigin-RevId: 305807868
|
|
PiperOrigin-RevId: 305592245
|
|
FileDescription references are side-effectual; for example, holding a reference
on the write end of a pipe prevents reads from the read end from returning EOF.
This change is consistent with Linux, but not VFS1; while VFS1 also has this
bug, it's less visible there since VFS1 procfs disables caching.
Updates #1195
PiperOrigin-RevId: 305545099
|
|
Updates #164
PiperOrigin-RevId: 305544029
|
|
This fixes a bug in the proc net directory.
Updates #2243
|
|
Updates #2243
|
|
Required directory checks were being skipped when there was
no child cached. Now the code always loads the child file
before unlinking it.
Updates #1198
PiperOrigin-RevId: 305382323
|