Age | Commit message (Collapse) | Author |
|
Singleton filesystem like devpts and devtmpfs have a single filesystem shared
among all mounts, so they acquire a "self-reference" when initialized that
must be released when the entire virtual filesystem is released at sandbox
exit.
PiperOrigin-RevId: 336828852
|
|
This change aims to fix the memory leak issue reported inĀ #3933.
Background:
VFS2 kernfs kept accumulating invalid dentries if those dentries were not
walked on. After substantial consideration of the problem by our team, we
decided to have an LRU cache solution. This change is the first part to that
solution, where we don't cache anything. The LRU cache can be added on top of
this.
What has changed:
- Introduced the concept of an inode tree in kernfs.OrderedChildren.
This is helpful is cases where the lifecycle of an inode is different from
that of a dentry.
- OrderedChildren now deals with initialized inodes instead of initialized
dentries. It now implements Lookup() where it constructs a new dentry
using the inode.
- OrderedChildren holds a ref on all its children inodes. With this change,
now an inode can "outlive" a dentry pointing to it. See comments in
kernfs.OrderedChildren.
- The kernfs dentry tree is solely maintained by kernfs only. Inode
implementations can not modify the dentry tree.
- Dentries that reach ref count 0 are removed from the dentry tree.
- revalidateChildLocked now defer-DecRefs the newly created dentry from
Inode.Lookup(), limiting its life to the current filesystem operation. If
refs are picked on the dentry during the FS op (via an FD or something),
then it will stick around and will be removed when the FD is closed. So there
is essentially _no caching_ for Look()ed up dentries.
- kernfs.DecRef does not have the precondition that fs.mu must be locked.
Fixes #3933
PiperOrigin-RevId: 336768576
|
|
- When the KCOV_ENABLE_TRACE ioctl is called with the trace kind KCOV_TRACE_PC,
the kcov mode should be set to KCOV_*MODE*_TRACE_PC.
- When the owning task of kcov exits, the memory mapping should not be cleared
so it can be used by other tasks.
- Add more tests (also tested on native Linux kcov).
PiperOrigin-RevId: 335202585
|
|
Updates #1663
PiperOrigin-RevId: 333539293
|
|
Update signatures for:
- walkExistingLocked
- checkDeleteLocked
- Inode.Open
Updates #1193
PiperOrigin-RevId: 333163381
|
|
Updates #1487
PiperOrigin-RevId: 330580699
|
|
This mainly involved enabling kernfs' client filesystems to provide a
StatFS implementation.
Fixes #3411, #3515.
PiperOrigin-RevId: 329009864
|
|
This uses the refs_vfs2 template in vfs2 as well as objects common to vfs1 and
vfs2. Note that vfs1-only refcounts are not replaced, since vfs1 will be deleted
soon anyway.
The following structs now use the new tool, with leak check enabled:
devpts:rootInode
fuse:inode
kernfs:Dentry
kernfs:dir
kernfs:readonlyDir
kernfs:StaticDirectory
proc:fdDirInode
proc:fdInfoDirInode
proc:subtasksInode
proc:taskInode
proc:tasksInode
vfs:FileDescription
vfs:MountNamespace
vfs:Filesystem
sys:dir
kernel:FSContext
kernel:ProcessGroup
kernel:Session
shm:Shm
mm:aioMappable
mm:SpecialMappable
transport:queue
And the following use the template, but because they currently are not leak
checked, a TODO is left instead of enabling leak check in this patch:
kernel:FDTable
tun:tunEndpoint
Updates #1486.
PiperOrigin-RevId: 328460377
|
|
In Linux, a kernel configuration is set that compiles the kernel with a
custom function that is called at the beginning of every basic block, which
updates the memory-mapped coverage information. The Go coverage tool does not
allow us to inject arbitrary instructions into basic blocks, but it does
provide data that we can convert to a kcov-like format and transfer them to
userspace through a memory mapping.
Note that this is not a strict implementation of kcov, which is especially
tricky to do because we do not have the same coverage tools available in Go
that that are available for the actual Linux kernel. In Linux, a kernel
configuration is set that compiles the kernel with a custom function that is
called at the beginning of every basic block to write program counters to the
kcov memory mapping. In Go, however, coverage tools only give us a count of
basic blocks as they are executed. Every time we return to userspace, we
collect the coverage information and write out PCs for each block that was
executed, providing userspace with the illusion that the kcov data is always
up to date. For convenience, we also generate a unique synthetic PC for each
block instead of using actual PCs. Finally, we do not provide thread-specific
coverage data (each kcov instance only contains PCs executed by the thread
owning it); instead, we will supply data for any file specified by --
instrumentation_filter.
Also, fix issue in nogo that was causing pkg/coverage:coverage_nogo
compilation to fail.
PiperOrigin-RevId: 328426526
|
|
- Remove comment about GenericDirectoryFD not being compatible with
dynamic directories. It is currently being used to implement dynamic
directories.
- Try to handle SEEK_END better than setting the offset to
infinity. SEEK_END is poorly defined for dynamic directories
anyways, so at least try make it work correctly for the static
entries.
Updates #1193.
PiperOrigin-RevId: 327890128
|
|
Fixes #3364
PiperOrigin-RevId: 324724614
|
|
context is passed to DecRef() and Release() which is
needed for SO_LINGER implementation.
PiperOrigin-RevId: 324672584
|
|
PiperOrigin-RevId: 321053634
|
|
PiperOrigin-RevId: 319143410
|
|
- Change FileDescriptionImpl Lock/UnlockPOSIX signature to
take {start,length,whence}, so the correct offset can be
calculated in the implementations.
- Create PosixLocker interface to make it possible to share
the same locking code from different implementations.
Closes #1480
PiperOrigin-RevId: 316910286
|
|
LockFD is the generic implementation that can be embedded in
FileDescriptionImpl implementations. Unique lock ID is
maintained in vfs.FileDescription and is created on demand.
Updates #1480
PiperOrigin-RevId: 315604825
|
|
Updates #1197, #1198, #1672
PiperOrigin-RevId: 310432006
|
|
Implement PrependPath() in host.filesystem to correctly format
name for host files.
Updates #1672
PiperOrigin-RevId: 309959135
|
|
PiperOrigin-RevId: 308304793
|
|
- Return ENOENT for /proc/[pid]/task if task is zoombied or terminated
- Allow directory to be Seek() to the end
- Construct synthetic files for /proc/[pid]/ns/*
- Changed GenericDirectoryFD.Init to not register with FileDescription,
otherwise other implementation cannot change behavior.
Updates #1195,1193
PiperOrigin-RevId: 308294649
|
|
Both have analogues in Linux:
* struct file_system_type has a char *name field.
* struct super_block keeps a pointer to the file_system_type.
These fields are necessary to support the `filesystem type` field in
/proc/[pid]/mountinfo.
PiperOrigin-RevId: 303434063
|
|
Updates #1035
PiperOrigin-RevId: 301255357
|
|
Only gofer filesystem was calling vfs.CheckSetStat for
vfs.FilesystemImpl.SetStatAt and vfs.FileDescriptionImpl.SetStat.
Updates #1193, #1672, #1197
PiperOrigin-RevId: 301226522
|
|
Updates #1195, #1193
PiperOrigin-RevId: 300950993
|
|
This saves one pointer dereference per VFS access.
Updates #1623
PiperOrigin-RevId: 295216176
|
|
- Added fsbridge package with interface that can be used to open
and read from VFS1 and VFS2 files.
- Converted ELF loader to use fsbridge
- Added VFS2 types to FSContext
- Added vfs.MountNamespace to ThreadGroup
Updates #1623
PiperOrigin-RevId: 295183950
|
|
This allow callers to say whether the file is being
opened to be executed, so that the proper checks can
be done from FilesystemImpl.OpenAt()
Updates #1623
PiperOrigin-RevId: 295042595
|
|
Because the abi will depend on the core types for marshalling (usermem,
context, safemem, safecopy), these need to be flattened from the sentry
directory. These packages contain no sentry-specific details.
PiperOrigin-RevId: 291811289
|
|
PiperOrigin-RevId: 291745021
|
|
PiperOrigin-RevId: 291041576
|
|
PiperOrigin-RevId: 290822487
|