Age | Commit message (Collapse) | Author |
|
In the case of a rename replacing an existing destination inode, ramfs
Rename failed to first remove the replaced inode. This caused:
1. A leak of a reference to the inode (making it live indefinitely).
2. For directories, a leak of the replaced directory's .. link to the
parent. This would cause the parent's link count to incorrectly
increase.
(2) is much simpler to test than (1), so that's what I've done.
agentfs has a similar bug with link count only, so the Dirent layer
informs the Inode if this is a replacing rename.
Fixes #133
PiperOrigin-RevId: 239105698
Change-Id: I4450af2462d8ae3339def812287213d2cbeebde0
|
|
More helper structs have been added to the fsutil package to make it easier to
implement fs.InodeOperations and fs.FileOperations.
PiperOrigin-RevId: 229305982
Change-Id: Ib6f8d3862f4216745116857913dbfa351530223b
|
|
By Walking before checking that the directory is writable and
executable, MayDelete may return the Walk error (e.g., ENOENT) which
would normally be masked by a permission error (EACCES).
PiperOrigin-RevId: 224222453
Change-Id: I108a7f730e6bdaa7f277eaddb776267c00805475
|
|
NAME_LENGTH must be enforced per component.
PiperOrigin-RevId: 224046749
Change-Id: Iba8105b00d951f2509dc768af58e4110dafbe1c9
|
|
PiperOrigin-RevId: 224025363
Change-Id: I98864403c779832e9e1436f7d3c3f6fb2fba9904
|
|
PiperOrigin-RevId: 217951017
Change-Id: Ie08bf6987f98467d07457bcf35b5f1ff6e43c035
|
|
PiperOrigin-RevId: 217557656
Change-Id: I63d27635b1a6c12877279995d2d9847b6a19da9b
|
|
- Change Dirent.Busy => Dirent.isMountPoint. The function body is unchanged,
and it is no longer exported.
- fs.MayDelete now checks that the victim is not the process root. This aligns
with Linux's namei.c:may_delete().
- Fix "is-ancestor" checks to actually compare all ancestors, not just the
parents.
- Fix handling of paths that end in dots, which are handled differently in
Rename vs. Unlink.
PiperOrigin-RevId: 217239274
Change-Id: I7a0eb768e70a1b2915017ce54f7f95cbf8edf1fb
|
|
PiperOrigin-RevId: 217155458
Change-Id: Id3265b1ec784787039e2131c80254ac4937330c7
|
|
Linux permits hard-linking if the target is owned by the user OR the target has
Read+Write permission.
PiperOrigin-RevId: 213024613
Change-Id: If642066317b568b99084edd33ee4e8822ec9cbb3
|
|
dirent.walk() takes renameMu, but is often called with renameMu already held,
which can lead to a deadlock.
Fix this by requiring renameMu to be held for reading when dirent.walk() is
called. This causes walks and existence checks to block while a rename
operation takes place, but that is what we were already trying to enforce by
taking renameMu in walk() anyways.
PiperOrigin-RevId: 210760780
Change-Id: Id61018e6e4adbeac53b9c1b3aa24ab77f75d8a54
|
|
dirent.go:Rename() walks to the file being replaced and defers
replaced.DecRef(). After the rename, the reference is dropped, triggering a
writeout and SettAttr call to the gofer. Because of lazyOpenForWrite, the gofer
opens the replaced file BY ITS OLD NAME and calls ftruncate on it.
This CL changes Remove to drop the reference on replaced (and thus trigger
writeout) before the actual rename call.
PiperOrigin-RevId: 210756097
Change-Id: I01ea09a5ee6c2e2d464560362f09943641638e0f
|
|
Weak references save / restore involves multiple interface indirection
and cause material latency overhead when there are lots of dirents, each
containing a weak reference map. The nil entries in the map should also
be purged.
PiperOrigin-RevId: 210593727
Change-Id: Ied6f4c3c0726fcc53a24b983d9b3a79121b6b758
|
|
When revalidating a Dirent, if the inode id is the same, then we don't need to
throw away the entire Dirent. We can just update the unstable attributes in
place.
If the inode id has changed, then the remote file has been deleted or moved,
and we have no choice but to throw away the dirent we have a look up another.
In this case, we may still end up losing a mounted dirent that is a child of
the revalidated dirent. However, that seems appropriate here because the entire
mount point has been pulled out from underneath us.
Because gVisor's overlay is at the Inode level rather than the Dirent level, we
must pass the parent Inode and name along with the Inode that is being
revalidated.
PiperOrigin-RevId: 210431270
Change-Id: I705caef9c68900234972d5aac4ae3a78c61c7d42
|
|
PiperOrigin-RevId: 210182476
Change-Id: I655a2a801e2069108d30323f7f5ae76deb3ea3ec
|
|
As required by the contract in Dirent.flush().
Also inline Dirent.freeze() into Dirent.Freeze(), since it is only called from
there.
PiperOrigin-RevId: 209783626
Change-Id: Ie6de4533d93dd299ffa01dabfa257c9cc259b1f4
|
|
PiperOrigin-RevId: 208533436
Change-Id: Ifc1a4e2d6438a424650bee831c301b1ac0d670a3
|
|
Previously, an overlay would panic if either the upper or lower fs required
revalidation for a given Dirent. Now, we allow revalidation from the upper
file, but not the lower.
If a cached overlay inode does need revalidation (because the upper needs
revalidation), then the entire overlay Inode will be discarded and a new
overlay Inode will be built with a fresh copy of the upper file.
As a side effect of this change, Revalidate must take an Inode instead of a
Dirent, since an overlay needs to revalidate individual Inodes.
PiperOrigin-RevId: 208293638
Change-Id: Ic8f8d1ffdc09114721745661a09522b54420c5f1
|
|
Previously, processes which used file-system Unix Domain Sockets could not be
checkpoint-ed in runsc because the sockets were saved with their inode
numbers which do not necessarily remain the same upon restore. Now,
the sockets are also saved with their paths so that the new inodes
can be determined for the sockets based on these paths after restoring.
Tests for cases with UDS use are included. Test cleanup to come.
PiperOrigin-RevId: 208268781
Change-Id: Ieaa5d5d9a64914ca105cae199fd8492710b1d7ec
|
|
PiperOrigin-RevId: 207125440
Change-Id: I6c572afb4d693ee72a0c458a988b0e96d191cd49
|
|
PiperOrigin-RevId: 207037226
Change-Id: I8b5f1a056d4f3eab17846f2e0193bb737ecb5428
|
|
PiperOrigin-RevId: 207007153
Change-Id: Ifedf1cc3758dc18be16647a4ece9c840c1c636c9
|
|
The current revalidation logic is very simple and does not do much
introspection of the dirent being revalidated (other than looking at the type
of file).
Fancier revalidation logic is coming soon, and we need to be able to look at
the cached and uncached attributes of a given dirent, and we need a context to
perform some of these operations.
PiperOrigin-RevId: 205307351
Change-Id: If17ea1c631d8f9489c0e05a263e23d7a8a3bf159
|
|
Dirent.FullName takes the global renameMu, but can be called during Create,
which itself takes dirent.mu and dirent.dirMu, which is a lock-order violation:
Dirent.Create
d.dirMu.Lock
d.mu.Lock
Inode.Create
gofer.inodeOperations.Create
gofer.NewFile
Dirent.FullName
d.renameMu.RLock
We only use the FullName here for logging, and in this case we can get by with
logging only the BaseName.
A `BaseName` method was added to Dirent, which simply returns the name, taking
d.parent.mu as required.
In the Create pathway, we can't call d.BaseName() because taking d.parent.mu
after d.mu violates the lock order. But we already know the base name of the
file we just created, so that's OK.
In the Open/GetFile pathway, we are free to call d.BaseName() because the other
dirent locks are not held.
PiperOrigin-RevId: 205112278
Change-Id: Ib45c734081aecc9b225249a65fa8093eb4995f10
|
|
PiperOrigin-RevId: 203041657
Change-Id: I120783d91712818e600505454c9276f8d9877f37
|
|
The arguments are backwards from the message.
PiperOrigin-RevId: 202054887
Change-Id: Id5750a84ca091f8b8fbe15be8c648d4fa3e31eb2
|
|
PiperOrigin-RevId: 200496070
Change-Id: I33adb717c44e5b4bcadece882be3ab1ee3920556
|
|
PiperOrigin-RevId: 200306715
Change-Id: I7c80059c77ebd3d9a5d7d48b05c8e7a597f10850
|
|
PiperOrigin-RevId: 194583126
Change-Id: Ica1d8821a90f74e7e745962d71801c598c652463
|