summaryrefslogtreecommitdiffhomepage
path: root/tools/checklocks/facts.go
diff options
context:
space:
mode:
Diffstat (limited to 'tools/checklocks/facts.go')
-rw-r--r--tools/checklocks/facts.go614
1 files changed, 614 insertions, 0 deletions
diff --git a/tools/checklocks/facts.go b/tools/checklocks/facts.go
new file mode 100644
index 000000000..1a43dbbe6
--- /dev/null
+++ b/tools/checklocks/facts.go
@@ -0,0 +1,614 @@
+// Copyright 2020 The gVisor Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package checklocks
+
+import (
+ "fmt"
+ "go/ast"
+ "go/token"
+ "go/types"
+ "regexp"
+ "strings"
+
+ "golang.org/x/tools/go/ssa"
+)
+
+// atomicAlignment is saved per type.
+//
+// This represents the alignment required for the type, which may
+// be implied and imposed by other types within the aggregate type.
+type atomicAlignment int
+
+// AFact implements analysis.Fact.AFact.
+func (*atomicAlignment) AFact() {}
+
+// atomicDisposition is saved per field.
+//
+// This represents how the field must be accessed. It must either
+// be non-atomic (default), atomic or ignored.
+type atomicDisposition int
+
+const (
+ atomicDisallow atomicDisposition = iota
+ atomicIgnore
+ atomicRequired
+)
+
+// fieldList is a simple list of fields, used in two types below.
+//
+// Note that the integers in this list refer to one of two things:
+// - A positive integer refers to a field index in a struct.
+// - A negative integer refers to a field index in a struct, where
+// that field is a pointer and must be subsequently resolved.
+type fieldList []int
+
+// resolvedValue is an ssa.Value with additional fields.
+//
+// This can be resolved to a string as part of a lock state.
+type resolvedValue struct {
+ value ssa.Value
+ valid bool
+ fieldList []int
+}
+
+// findExtract finds a relevant extract. This must exist within the referrers
+// to the call object. If this doesn't then the object which is locked is never
+// consumed, and we should consider this a bug.
+func findExtract(v ssa.Value, index int) (ssa.Value, bool) {
+ if refs := v.Referrers(); refs != nil {
+ for _, inst := range *refs {
+ if x, ok := inst.(*ssa.Extract); ok && x.Tuple == v && x.Index == index {
+ return inst.(ssa.Value), true
+ }
+ }
+ }
+ return nil, false
+}
+
+// resolve resolves the given field list.
+func (fl fieldList) resolve(v ssa.Value) (rv resolvedValue) {
+ return resolvedValue{
+ value: v,
+ fieldList: fl,
+ valid: true,
+ }
+}
+
+// valueAsString returns a string representing this value.
+//
+// This must align with how the string is generated in valueAsString.
+func (rv resolvedValue) valueAsString(ls *lockState) string {
+ typ := rv.value.Type()
+ s := ls.valueAsString(rv.value)
+ for i, fieldNumber := range rv.fieldList {
+ switch {
+ case fieldNumber > 0:
+ field, ok := findField(typ, fieldNumber-1)
+ if !ok {
+ // This can't be resolved, return for debugging.
+ return fmt.Sprintf("{%s+%v}", s, rv.fieldList[i:])
+ }
+ s = fmt.Sprintf("&(%s.%s)", s, field.Name())
+ typ = field.Type()
+ case fieldNumber < 1:
+ field, ok := findField(typ, (-fieldNumber)-1)
+ if !ok {
+ // See above.
+ return fmt.Sprintf("{%s+%v}", s, rv.fieldList[i:])
+ }
+ s = fmt.Sprintf("*(&(%s.%s))", s, field.Name())
+ typ = field.Type()
+ }
+ }
+ return s
+}
+
+// lockFieldFacts apply on every struct field.
+type lockFieldFacts struct {
+ // IsMutex is true if the field is of type sync.Mutex.
+ IsMutex bool
+
+ // IsRWMutex is true if the field is of type sync.RWMutex.
+ IsRWMutex bool
+
+ // IsPointer indicates if the field is a pointer.
+ IsPointer bool
+
+ // FieldNumber is the number of this field in the struct.
+ FieldNumber int
+}
+
+// AFact implements analysis.Fact.AFact.
+func (*lockFieldFacts) AFact() {}
+
+// lockGuardFacts contains guard information.
+type lockGuardFacts struct {
+ // GuardedBy is the set of locks that are guarding this field. The key
+ // is the original annotation value, and the field list is the object
+ // traversal path.
+ GuardedBy map[string]fieldList
+
+ // AtomicDisposition is the disposition for this field. Note that this
+ // can affect the interpretation of the GuardedBy field above, see the
+ // relevant comment.
+ AtomicDisposition atomicDisposition
+}
+
+// AFact implements analysis.Fact.AFact.
+func (*lockGuardFacts) AFact() {}
+
+// functionGuard is used by lockFunctionFacts, below.
+type functionGuard struct {
+ // ParameterNumber is the index of the object that contains the
+ // guarding mutex. From this parameter, a walk is performed
+ // subsequently using the resolve method.
+ //
+ // Note that is ParameterNumber is beyond the size of parameters, then
+ // it may return to a return value. This applies only for the Acquires
+ // relation below.
+ ParameterNumber int
+
+ // NeedsExtract is used in the case of a return value, and indicates
+ // that the field must be extracted from a tuple.
+ NeedsExtract bool
+
+ // FieldList is the traversal path to the object.
+ FieldList fieldList
+}
+
+// resolveReturn resolves a return value.
+//
+// Precondition: rv is either an ssa.Value, or an *ssa.Return.
+func (fg *functionGuard) resolveReturn(rv interface{}, args int) resolvedValue {
+ if rv == nil {
+ // For defers and other objects, this may be nil. This is
+ // handled in state.go in the actual lock checking logic.
+ return resolvedValue{
+ value: nil,
+ valid: false,
+ }
+ }
+ index := fg.ParameterNumber - args
+ // If this is a *ssa.Return object, i.e. we are analyzing the function
+ // and not the call site, then we can just pull the result directly.
+ if r, ok := rv.(*ssa.Return); ok {
+ return fg.FieldList.resolve(r.Results[index])
+ }
+ if fg.NeedsExtract {
+ // Resolve on the extracted field, this is necessary if the
+ // type here is not an explicit return. Note that rv must be an
+ // ssa.Value, since it is not an *ssa.Return.
+ v, ok := findExtract(rv.(ssa.Value), index)
+ if !ok {
+ return resolvedValue{
+ value: v,
+ valid: false,
+ }
+ }
+ return fg.FieldList.resolve(v)
+ }
+ if index != 0 {
+ // This should not happen, NeedsExtract should always be set.
+ panic("NeedsExtract is false, but return value index is non-zero")
+ }
+ // Resolve on the single return.
+ return fg.FieldList.resolve(rv.(ssa.Value))
+}
+
+// resolveStatic returns an ssa.Value representing the given field.
+//
+// Precondition: per resolveReturn.
+func (fg *functionGuard) resolveStatic(fn *ssa.Function, rv interface{}) resolvedValue {
+ if fg.ParameterNumber >= len(fn.Params) {
+ return fg.resolveReturn(rv, len(fn.Params))
+ }
+ return fg.FieldList.resolve(fn.Params[fg.ParameterNumber])
+}
+
+// resolveCall returns an ssa.Value representing the given field.
+func (fg *functionGuard) resolveCall(args []ssa.Value, rv ssa.Value) resolvedValue {
+ if fg.ParameterNumber >= len(args) {
+ return fg.resolveReturn(rv, len(args))
+ }
+ return fg.FieldList.resolve(args[fg.ParameterNumber])
+}
+
+// lockFunctionFacts apply on every method.
+type lockFunctionFacts struct {
+ // HeldOnEntry tracks the names and number of parameter (including receiver)
+ // lockFuncfields that guard calls to this function.
+ //
+ // The key is the name specified in the checklocks annotation. e.g given
+ // the following code:
+ //
+ // ```
+ // type A struct {
+ // mu sync.Mutex
+ // a int
+ // }
+ //
+ // // +checklocks:a.mu
+ // func xyz(a *A) {..}
+ // ```
+ //
+ // '`+checklocks:a.mu' will result in an entry in this map as shown below.
+ // HeldOnEntry: {"a.mu" => {ParameterNumber: 0, FieldNumbers: {0}}
+ //
+ // Unlikely lockFieldFacts, there is no atomic interpretation.
+ HeldOnEntry map[string]functionGuard
+
+ // HeldOnExit tracks the locks that are expected to be held on exit.
+ HeldOnExit map[string]functionGuard
+
+ // Ignore means this function has local analysis ignores.
+ //
+ // This is not used outside the local package.
+ Ignore bool
+}
+
+// AFact implements analysis.Fact.AFact.
+func (*lockFunctionFacts) AFact() {}
+
+// checkGuard validates the guardName.
+func (lff *lockFunctionFacts) checkGuard(pc *passContext, d *ast.FuncDecl, guardName string, allowReturn bool) (functionGuard, bool) {
+ if _, ok := lff.HeldOnEntry[guardName]; ok {
+ pc.maybeFail(d.Pos(), "annotation %s specified more than once, already required", guardName)
+ return functionGuard{}, false
+ }
+ if _, ok := lff.HeldOnExit[guardName]; ok {
+ pc.maybeFail(d.Pos(), "annotation %s specified more than once, already acquired", guardName)
+ return functionGuard{}, false
+ }
+ fg, ok := pc.findFunctionGuard(d, guardName, allowReturn)
+ return fg, ok
+}
+
+// addGuardedBy adds a field to both HeldOnEntry and HeldOnExit.
+func (lff *lockFunctionFacts) addGuardedBy(pc *passContext, d *ast.FuncDecl, guardName string) {
+ if fg, ok := lff.checkGuard(pc, d, guardName, false /* allowReturn */); ok {
+ if lff.HeldOnEntry == nil {
+ lff.HeldOnEntry = make(map[string]functionGuard)
+ }
+ if lff.HeldOnExit == nil {
+ lff.HeldOnExit = make(map[string]functionGuard)
+ }
+ lff.HeldOnEntry[guardName] = fg
+ lff.HeldOnExit[guardName] = fg
+ }
+}
+
+// addAcquires adds a field to HeldOnExit.
+func (lff *lockFunctionFacts) addAcquires(pc *passContext, d *ast.FuncDecl, guardName string) {
+ if fg, ok := lff.checkGuard(pc, d, guardName, true /* allowReturn */); ok {
+ if lff.HeldOnExit == nil {
+ lff.HeldOnExit = make(map[string]functionGuard)
+ }
+ lff.HeldOnExit[guardName] = fg
+ }
+}
+
+// addReleases adds a field to HeldOnEntry.
+func (lff *lockFunctionFacts) addReleases(pc *passContext, d *ast.FuncDecl, guardName string) {
+ if fg, ok := lff.checkGuard(pc, d, guardName, false /* allowReturn */); ok {
+ if lff.HeldOnEntry == nil {
+ lff.HeldOnEntry = make(map[string]functionGuard)
+ }
+ lff.HeldOnEntry[guardName] = fg
+ }
+}
+
+// fieldListFor returns the fieldList for the given object.
+func (pc *passContext) fieldListFor(pos token.Pos, fieldObj types.Object, index int, fieldName string, checkMutex bool) (int, bool) {
+ var lff lockFieldFacts
+ if !pc.pass.ImportObjectFact(fieldObj, &lff) {
+ // This should not happen: we export facts for all fields.
+ panic(fmt.Sprintf("no lockFieldFacts available for field %s", fieldName))
+ }
+ // Check that it is indeed a mutex.
+ if checkMutex && !lff.IsMutex && !lff.IsRWMutex {
+ pc.maybeFail(pos, "field %s is not a mutex or an rwmutex", fieldName)
+ return 0, false
+ }
+ // Return the resolution path.
+ if lff.IsPointer {
+ return -(index + 1), true
+ }
+ return (index + 1), true
+}
+
+// resolveOneField resolves a field in a single struct.
+func (pc *passContext) resolveOneField(pos token.Pos, structType *types.Struct, fieldName string, checkMutex bool) (fl fieldList, fieldObj types.Object, ok bool) {
+ // Scan to match the next field.
+ for i := 0; i < structType.NumFields(); i++ {
+ fieldObj := structType.Field(i)
+ if fieldObj.Name() != fieldName {
+ continue
+ }
+ flOne, ok := pc.fieldListFor(pos, fieldObj, i, fieldName, checkMutex)
+ if !ok {
+ return nil, nil, false
+ }
+ fl = append(fl, flOne)
+ return fl, fieldObj, true
+ }
+ // Is this an embed?
+ for i := 0; i < structType.NumFields(); i++ {
+ fieldObj := structType.Field(i)
+ if !fieldObj.Embedded() {
+ continue
+ }
+ // Is this an embedded struct?
+ structType, ok := resolveStruct(fieldObj.Type())
+ if !ok {
+ continue
+ }
+ // Need to check that there is a resolution path. If there is
+ // no resolution path that's not a failure: we just continue
+ // scanning the next embed to find a match.
+ flEmbed, okEmbed := pc.fieldListFor(pos, fieldObj, i, fieldName, false)
+ flCont, fieldObjCont, okCont := pc.resolveOneField(pos, structType, fieldName, checkMutex)
+ if okEmbed && okCont {
+ fl = append(fl, flEmbed)
+ fl = append(fl, flCont...)
+ return fl, fieldObjCont, true
+ }
+ }
+ pc.maybeFail(pos, "field %s does not exist", fieldName)
+ return nil, nil, false
+}
+
+// resolveField resolves a set of fields given a string, such a 'a.b.c'.
+//
+// Note that this checks that the final element is a mutex of some kind, and
+// will fail appropriately.
+func (pc *passContext) resolveField(pos token.Pos, structType *types.Struct, parts []string) (fl fieldList, ok bool) {
+ for partNumber, fieldName := range parts {
+ flOne, fieldObj, ok := pc.resolveOneField(pos, structType, fieldName, partNumber >= len(parts)-1 /* checkMutex */)
+ if !ok {
+ // Error already reported.
+ return nil, false
+ }
+ fl = append(fl, flOne...)
+ if partNumber < len(parts)-1 {
+ // Traverse to the next type.
+ structType, ok = resolveStruct(fieldObj.Type())
+ if !ok {
+ pc.maybeFail(pos, "invalid intermediate field %s", fieldName)
+ return fl, false
+ }
+ }
+ }
+ return fl, true
+}
+
+var (
+ mutexRE = regexp.MustCompile("((.*/)|^)sync.(CrossGoroutineMutex|Mutex)")
+ rwMutexRE = regexp.MustCompile("((.*/)|^)sync.(CrossGoroutineRWMutex|RWMutex)")
+)
+
+// exportLockFieldFacts finds all struct fields that are mutexes, and ensures
+// that they are annotated approperly.
+//
+// This information is consumed subsequently by exportLockGuardFacts, and this
+// function must be called first on all structures.
+func (pc *passContext) exportLockFieldFacts(ts *ast.TypeSpec, ss *ast.StructType) {
+ structType := pc.pass.TypesInfo.TypeOf(ts.Name).Underlying().(*types.Struct)
+ for i := range ss.Fields.List {
+ lff := &lockFieldFacts{
+ FieldNumber: i,
+ }
+ // We use HasSuffix below because fieldType can be fully
+ // qualified with the package name eg for the gvisor sync
+ // package mutex fields have the type:
+ // "<package path>/sync/sync.Mutex"
+ fieldObj := structType.Field(i)
+ s := fieldObj.Type().String()
+ switch {
+ case mutexRE.MatchString(s):
+ lff.IsMutex = true
+ case rwMutexRE.MatchString(s):
+ lff.IsRWMutex = true
+ }
+ // Save whether this is a pointer.
+ _, lff.IsPointer = fieldObj.Type().Underlying().(*types.Pointer)
+ // We must always export the lockFieldFacts, since traversal
+ // can take place along any object in the struct.
+ pc.pass.ExportObjectFact(fieldObj, lff)
+ }
+}
+
+// exportLockGuardFacts finds all relevant guard information for structures.
+//
+// This function requires exportLockFieldFacts be called first on all
+// structures.
+func (pc *passContext) exportLockGuardFacts(ts *ast.TypeSpec, ss *ast.StructType) {
+ structType := pc.pass.TypesInfo.TypeOf(ts.Name).Underlying().(*types.Struct)
+ for i, field := range ss.Fields.List {
+ if field.Doc == nil {
+ continue
+ }
+ var (
+ lff lockFieldFacts
+ lgf lockGuardFacts
+ )
+ pc.pass.ImportObjectFact(structType.Field(i), &lff)
+ fieldObj := structType.Field(i)
+ for _, l := range field.Doc.List {
+ pc.extractAnnotations(l.Text, map[string]func(string){
+ checkAtomicAnnotation: func(string) {
+ switch lgf.AtomicDisposition {
+ case atomicRequired:
+ pc.maybeFail(fieldObj.Pos(), "annotation is redundant, already atomic required")
+ case atomicIgnore:
+ pc.maybeFail(fieldObj.Pos(), "annotation is contradictory, already atomic ignored")
+ }
+ lgf.AtomicDisposition = atomicRequired
+ },
+ checkLocksIgnore: func(string) {
+ switch lgf.AtomicDisposition {
+ case atomicIgnore:
+ pc.maybeFail(fieldObj.Pos(), "annotation is redundant, already atomic ignored")
+ case atomicRequired:
+ pc.maybeFail(fieldObj.Pos(), "annotation is contradictory, already atomic required")
+ }
+ lgf.AtomicDisposition = atomicIgnore
+ },
+ checkLocksAnnotation: func(guardName string) {
+ // Check for a duplicate annotation.
+ if _, ok := lgf.GuardedBy[guardName]; ok {
+ pc.maybeFail(fieldObj.Pos(), "annotation %s specified more than once", guardName)
+ return
+ }
+ fl, ok := pc.resolveField(fieldObj.Pos(), structType, strings.Split(guardName, "."))
+ if ok {
+ // If we successfully resolved
+ // the field, then save it.
+ if lgf.GuardedBy == nil {
+ lgf.GuardedBy = make(map[string]fieldList)
+ }
+ lgf.GuardedBy[guardName] = fl
+ }
+ },
+ })
+ }
+ // Save only if there is something meaningful.
+ if len(lgf.GuardedBy) > 0 || lgf.AtomicDisposition != atomicDisallow {
+ pc.pass.ExportObjectFact(structType.Field(i), &lgf)
+ }
+ }
+}
+
+// countFields gives an accurate field count, according for unnamed arguments
+// and return values and the compact identifier format.
+func countFields(fl []*ast.Field) (count int) {
+ for _, field := range fl {
+ if len(field.Names) == 0 {
+ count++
+ continue
+ }
+ count += len(field.Names)
+ }
+ return
+}
+
+// matchFieldList attempts to match the given field.
+func (pc *passContext) matchFieldList(pos token.Pos, fl []*ast.Field, guardName string) (functionGuard, bool) {
+ parts := strings.Split(guardName, ".")
+ parameterName := parts[0]
+ parameterNumber := 0
+ for _, field := range fl {
+ // See countFields, above.
+ if len(field.Names) == 0 {
+ parameterNumber++
+ continue
+ }
+ for _, name := range field.Names {
+ if name.Name != parameterName {
+ parameterNumber++
+ continue
+ }
+ ptrType, ok := pc.pass.TypesInfo.TypeOf(field.Type).Underlying().(*types.Pointer)
+ if !ok {
+ // Since mutexes cannot be copied we only care
+ // about parameters that are pointer types when
+ // checking for guards.
+ pc.maybeFail(pos, "parameter name %s does not refer to a pointer type", parameterName)
+ return functionGuard{}, false
+ }
+ structType, ok := ptrType.Elem().Underlying().(*types.Struct)
+ if !ok {
+ // Fields can only be in named structures.
+ pc.maybeFail(pos, "parameter name %s does not refer to a pointer to a struct", parameterName)
+ return functionGuard{}, false
+ }
+ fg := functionGuard{
+ ParameterNumber: parameterNumber,
+ }
+ fl, ok := pc.resolveField(pos, structType, parts[1:])
+ fg.FieldList = fl
+ return fg, ok // If ok is false, already failed.
+ }
+ }
+ return functionGuard{}, false
+}
+
+// findFunctionGuard identifies the parameter number and field number for a
+// particular string of the 'a.b'.
+//
+// This function will report any errors directly.
+func (pc *passContext) findFunctionGuard(d *ast.FuncDecl, guardName string, allowReturn bool) (functionGuard, bool) {
+ var (
+ parameterList []*ast.Field
+ returnList []*ast.Field
+ )
+ if d.Recv != nil {
+ parameterList = append(parameterList, d.Recv.List...)
+ }
+ if d.Type.Params != nil {
+ parameterList = append(parameterList, d.Type.Params.List...)
+ }
+ if fg, ok := pc.matchFieldList(d.Pos(), parameterList, guardName); ok {
+ return fg, ok
+ }
+ if allowReturn {
+ if d.Type.Results != nil {
+ returnList = append(returnList, d.Type.Results.List...)
+ }
+ if fg, ok := pc.matchFieldList(d.Pos(), returnList, guardName); ok {
+ // Fix this up to apply to the return value, as noted
+ // in fg.ParameterNumber. For the ssa analysis, we must
+ // record whether this has multiple results, since
+ // *ssa.Call indicates: "The Call instruction yields
+ // the function result if there is exactly one.
+ // Otherwise it returns a tuple, the components of
+ // which are accessed via Extract."
+ fg.ParameterNumber += countFields(parameterList)
+ fg.NeedsExtract = countFields(returnList) > 1
+ return fg, ok
+ }
+ }
+ // We never saw a matching parameter.
+ pc.maybeFail(d.Pos(), "annotation %s does not have a matching parameter", guardName)
+ return functionGuard{}, false
+}
+
+// exportFunctionFacts exports relevant function findings.
+func (pc *passContext) exportFunctionFacts(d *ast.FuncDecl) {
+ if d.Doc == nil || d.Doc.List == nil {
+ return
+ }
+ var lff lockFunctionFacts
+ for _, l := range d.Doc.List {
+ pc.extractAnnotations(l.Text, map[string]func(string){
+ checkLocksIgnore: func(string) {
+ // Note that this applies to all atomic
+ // analysis as well. There is no provided way
+ // to selectively ignore only lock analysis or
+ // atomic analysis, as we expect this use to be
+ // extremely rare.
+ lff.Ignore = true
+ },
+ checkLocksAnnotation: func(guardName string) { lff.addGuardedBy(pc, d, guardName) },
+ checkLocksAcquires: func(guardName string) { lff.addAcquires(pc, d, guardName) },
+ checkLocksReleases: func(guardName string) { lff.addReleases(pc, d, guardName) },
+ })
+ }
+
+ // Export the function facts if there is anything to save.
+ if lff.Ignore || len(lff.HeldOnEntry) > 0 || len(lff.HeldOnExit) > 0 {
+ funcObj := pc.pass.TypesInfo.Defs[d.Name].(*types.Func)
+ pc.pass.ExportObjectFact(funcObj, &lff)
+ }
+}