diff options
Diffstat (limited to 'pkg/tcpip/transport/tcp/connect.go')
-rw-r--r-- | pkg/tcpip/transport/tcp/connect.go | 458 |
1 files changed, 404 insertions, 54 deletions
diff --git a/pkg/tcpip/transport/tcp/connect.go b/pkg/tcpip/transport/tcp/connect.go index 21038a65a..a114c06c1 100644 --- a/pkg/tcpip/transport/tcp/connect.go +++ b/pkg/tcpip/transport/tcp/connect.go @@ -15,6 +15,7 @@ package tcp import ( + "encoding/binary" "sync" "time" @@ -22,6 +23,7 @@ import ( "gvisor.dev/gvisor/pkg/sleep" "gvisor.dev/gvisor/pkg/tcpip" "gvisor.dev/gvisor/pkg/tcpip/buffer" + "gvisor.dev/gvisor/pkg/tcpip/hash/jenkins" "gvisor.dev/gvisor/pkg/tcpip/header" "gvisor.dev/gvisor/pkg/tcpip/seqnum" "gvisor.dev/gvisor/pkg/tcpip/stack" @@ -78,9 +80,6 @@ type handshake struct { // mss is the maximum segment size received from the peer. mss uint16 - // amss is the maximum segment size advertised by us to the peer. - amss uint16 - // sndWndScale is the send window scale, as defined in RFC 1323. A // negative value means no scaling is supported by the peer. sndWndScale int @@ -142,7 +141,32 @@ func (h *handshake) resetState() { h.flags = header.TCPFlagSyn h.ackNum = 0 h.mss = 0 - h.iss = seqnum.Value(uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24) + h.iss = generateSecureISN(h.ep.ID, h.ep.stack.Seed()) +} + +// generateSecureISN generates a secure Initial Sequence number based on the +// recommendation here https://tools.ietf.org/html/rfc6528#page-3. +func generateSecureISN(id stack.TransportEndpointID, seed uint32) seqnum.Value { + isnHasher := jenkins.Sum32(seed) + isnHasher.Write([]byte(id.LocalAddress)) + isnHasher.Write([]byte(id.RemoteAddress)) + portBuf := make([]byte, 2) + binary.LittleEndian.PutUint16(portBuf, id.LocalPort) + isnHasher.Write(portBuf) + binary.LittleEndian.PutUint16(portBuf, id.RemotePort) + isnHasher.Write(portBuf) + // The time period here is 64ns. This is similar to what linux uses + // generate a sequence number that overlaps less than one + // time per MSL (2 minutes). + // + // A 64ns clock ticks 10^9/64 = 15625000) times in a second. + // To wrap the whole 32 bit space would require + // 2^32/1562500 ~ 274 seconds. + // + // Which sort of guarantees that we won't reuse the ISN for a new + // connection for the same tuple for at least 274s. + isn := isnHasher.Sum32() + uint32(time.Now().UnixNano()>>6) + return seqnum.Value(isn) } // effectiveRcvWndScale returns the effective receive window scale to be used. @@ -238,6 +262,7 @@ func (h *handshake) synSentState(s *segment) *tcpip.Error { h.state = handshakeSynRcvd h.ep.mu.Lock() h.ep.state = StateSynRecv + ttl := h.ep.ttl h.ep.mu.Unlock() synOpts := header.TCPSynOptions{ WS: int(h.effectiveRcvWndScale()), @@ -251,8 +276,10 @@ func (h *handshake) synSentState(s *segment) *tcpip.Error { SACKPermitted: rcvSynOpts.SACKPermitted, MSS: h.ep.amss, } - sendSynTCP(&s.route, h.ep.id, h.flags, h.iss, h.ackNum, h.rcvWnd, synOpts) - + if ttl == 0 { + ttl = s.route.DefaultTTL() + } + h.ep.sendSynTCP(&s.route, h.ep.ID, ttl, h.ep.sendTOS, h.flags, h.iss, h.ackNum, h.rcvWnd, synOpts) return nil } @@ -296,7 +323,7 @@ func (h *handshake) synRcvdState(s *segment) *tcpip.Error { SACKPermitted: h.ep.sackPermitted, MSS: h.ep.amss, } - sendSynTCP(&s.route, h.ep.id, h.flags, h.iss, h.ackNum, h.rcvWnd, synOpts) + h.ep.sendSynTCP(&s.route, h.ep.ID, h.ep.ttl, h.ep.sendTOS, h.flags, h.iss, h.ackNum, h.rcvWnd, synOpts) return nil } @@ -383,6 +410,11 @@ func (h *handshake) resolveRoute() *tcpip.Error { switch index { case wakerForResolution: if _, err := h.ep.route.Resolve(resolutionWaker); err != tcpip.ErrWouldBlock { + if err == tcpip.ErrNoLinkAddress { + h.ep.stats.SendErrors.NoLinkAddr.Increment() + } else if err != nil { + h.ep.stats.SendErrors.NoRoute.Increment() + } // Either success (err == nil) or failure. return err } @@ -437,7 +469,7 @@ func (h *handshake) execute() *tcpip.Error { // Send the initial SYN segment and loop until the handshake is // completed. - h.ep.amss = mssForRoute(&h.ep.route) + h.ep.amss = calculateAdvertisedMSS(h.ep.userMSS, h.ep.route) synOpts := header.TCPSynOptions{ WS: h.rcvWndScale, @@ -460,7 +492,8 @@ func (h *handshake) execute() *tcpip.Error { synOpts.WS = -1 } } - sendSynTCP(&h.ep.route, h.ep.id, h.flags, h.iss, h.ackNum, h.rcvWnd, synOpts) + h.ep.sendSynTCP(&h.ep.route, h.ep.ID, h.ep.ttl, h.ep.sendTOS, h.flags, h.iss, h.ackNum, h.rcvWnd, synOpts) + for h.state != handshakeCompleted { switch index, _ := s.Fetch(true); index { case wakerForResend: @@ -469,7 +502,7 @@ func (h *handshake) execute() *tcpip.Error { return tcpip.ErrTimeout } rt.Reset(timeOut) - sendSynTCP(&h.ep.route, h.ep.id, h.flags, h.iss, h.ackNum, h.rcvWnd, synOpts) + h.ep.sendSynTCP(&h.ep.route, h.ep.ID, h.ep.ttl, h.ep.sendTOS, h.flags, h.iss, h.ackNum, h.rcvWnd, synOpts) case wakerForNotification: n := h.ep.fetchNotifications() @@ -579,24 +612,30 @@ func makeSynOptions(opts header.TCPSynOptions) []byte { return options[:offset] } -func sendSynTCP(r *stack.Route, id stack.TransportEndpointID, flags byte, seq, ack seqnum.Value, rcvWnd seqnum.Size, opts header.TCPSynOptions) *tcpip.Error { +func (e *endpoint) sendSynTCP(r *stack.Route, id stack.TransportEndpointID, ttl, tos uint8, flags byte, seq, ack seqnum.Value, rcvWnd seqnum.Size, opts header.TCPSynOptions) *tcpip.Error { options := makeSynOptions(opts) - err := sendTCP(r, id, buffer.VectorisedView{}, r.DefaultTTL(), flags, seq, ack, rcvWnd, options, nil) + // We ignore SYN send errors and let the callers re-attempt send. + if err := e.sendTCP(r, id, buffer.VectorisedView{}, ttl, tos, flags, seq, ack, rcvWnd, options, nil); err != nil { + e.stats.SendErrors.SynSendToNetworkFailed.Increment() + } putOptions(options) - return err + return nil } -// sendTCP sends a TCP segment with the provided options via the provided -// network endpoint and under the provided identity. -func sendTCP(r *stack.Route, id stack.TransportEndpointID, data buffer.VectorisedView, ttl uint8, flags byte, seq, ack seqnum.Value, rcvWnd seqnum.Size, opts []byte, gso *stack.GSO) *tcpip.Error { - optLen := len(opts) - // Allocate a buffer for the TCP header. - hdr := buffer.NewPrependable(header.TCPMinimumSize + int(r.MaxHeaderLength()) + optLen) - - if rcvWnd > 0xffff { - rcvWnd = 0xffff +func (e *endpoint) sendTCP(r *stack.Route, id stack.TransportEndpointID, data buffer.VectorisedView, ttl, tos uint8, flags byte, seq, ack seqnum.Value, rcvWnd seqnum.Size, opts []byte, gso *stack.GSO) *tcpip.Error { + if err := sendTCP(r, id, data, ttl, tos, flags, seq, ack, rcvWnd, opts, gso); err != nil { + e.stats.SendErrors.SegmentSendToNetworkFailed.Increment() + return err } + e.stats.SegmentsSent.Increment() + return nil +} +func buildTCPHdr(r *stack.Route, id stack.TransportEndpointID, d *stack.PacketDescriptor, data buffer.VectorisedView, flags byte, seq, ack seqnum.Value, rcvWnd seqnum.Size, opts []byte, gso *stack.GSO) { + optLen := len(opts) + hdr := &d.Hdr + packetSize := d.Size + off := d.Off // Initialize the header. tcp := header.TCP(hdr.Prepend(header.TCPMinimumSize + optLen)) tcp.Encode(&header.TCPFields{ @@ -610,7 +649,7 @@ func sendTCP(r *stack.Route, id stack.TransportEndpointID, data buffer.Vectorise }) copy(tcp[header.TCPMinimumSize:], opts) - length := uint16(hdr.UsedLength() + data.Size()) + length := uint16(hdr.UsedLength() + packetSize) xsum := r.PseudoHeaderChecksum(ProtocolNumber, length) // Only calculate the checksum if offloading isn't supported. if gso != nil && gso.NeedsCsum { @@ -620,16 +659,79 @@ func sendTCP(r *stack.Route, id stack.TransportEndpointID, data buffer.Vectorise // header and data and get the right sum of the TCP packet. tcp.SetChecksum(xsum) } else if r.Capabilities()&stack.CapabilityTXChecksumOffload == 0 { - xsum = header.ChecksumVV(data, xsum) + xsum = header.ChecksumVVWithOffset(data, xsum, off, packetSize) tcp.SetChecksum(^tcp.CalculateChecksum(xsum)) } +} + +func sendTCPBatch(r *stack.Route, id stack.TransportEndpointID, data buffer.VectorisedView, ttl, tos uint8, flags byte, seq, ack seqnum.Value, rcvWnd seqnum.Size, opts []byte, gso *stack.GSO) *tcpip.Error { + optLen := len(opts) + if rcvWnd > 0xffff { + rcvWnd = 0xffff + } + + mss := int(gso.MSS) + n := (data.Size() + mss - 1) / mss + + hdrs := stack.NewPacketDescriptors(n, header.TCPMinimumSize+int(r.MaxHeaderLength())+optLen) + + size := data.Size() + off := 0 + for i := 0; i < n; i++ { + packetSize := mss + if packetSize > size { + packetSize = size + } + size -= packetSize + hdrs[i].Off = off + hdrs[i].Size = packetSize + buildTCPHdr(r, id, &hdrs[i], data, flags, seq, ack, rcvWnd, opts, gso) + off += packetSize + seq = seq.Add(seqnum.Size(packetSize)) + } + if ttl == 0 { + ttl = r.DefaultTTL() + } + sent, err := r.WritePackets(gso, hdrs, data, stack.NetworkHeaderParams{Protocol: ProtocolNumber, TTL: ttl, TOS: tos}) + if err != nil { + r.Stats().TCP.SegmentSendErrors.IncrementBy(uint64(n - sent)) + } + r.Stats().TCP.SegmentsSent.IncrementBy(uint64(sent)) + return err +} + +// sendTCP sends a TCP segment with the provided options via the provided +// network endpoint and under the provided identity. +func sendTCP(r *stack.Route, id stack.TransportEndpointID, data buffer.VectorisedView, ttl, tos uint8, flags byte, seq, ack seqnum.Value, rcvWnd seqnum.Size, opts []byte, gso *stack.GSO) *tcpip.Error { + optLen := len(opts) + if rcvWnd > 0xffff { + rcvWnd = 0xffff + } + + if r.Loop&stack.PacketLoop == 0 && gso != nil && gso.Type == stack.GSOSW && int(gso.MSS) < data.Size() { + return sendTCPBatch(r, id, data, ttl, tos, flags, seq, ack, rcvWnd, opts, gso) + } + + d := &stack.PacketDescriptor{ + Hdr: buffer.NewPrependable(header.TCPMinimumSize + int(r.MaxHeaderLength()) + optLen), + Off: 0, + Size: data.Size(), + } + buildTCPHdr(r, id, d, data, flags, seq, ack, rcvWnd, opts, gso) + + if ttl == 0 { + ttl = r.DefaultTTL() + } + if err := r.WritePacket(gso, d.Hdr, data, stack.NetworkHeaderParams{Protocol: ProtocolNumber, TTL: ttl, TOS: tos}); err != nil { + r.Stats().TCP.SegmentSendErrors.Increment() + return err + } r.Stats().TCP.SegmentsSent.Increment() if (flags & header.TCPFlagRst) != 0 { r.Stats().TCP.ResetsSent.Increment() } - - return r.WritePacket(gso, hdr, data, ProtocolNumber, ttl) + return nil } // makeOptions makes an options slice. @@ -678,7 +780,7 @@ func (e *endpoint) sendRaw(data buffer.VectorisedView, flags byte, seq, ack seqn sackBlocks = e.sack.Blocks[:e.sack.NumBlocks] } options := e.makeOptions(sackBlocks) - err := sendTCP(&e.route, e.id, data, e.route.DefaultTTL(), flags, seq, ack, rcvWnd, options, e.gso) + err := e.sendTCP(&e.route, e.ID, data, e.ttl, e.sendTOS, flags, seq, ack, rcvWnd, options, e.gso) putOptions(options) return err } @@ -727,10 +829,26 @@ func (e *endpoint) handleClose() *tcpip.Error { func (e *endpoint) resetConnectionLocked(err *tcpip.Error) { // Only send a reset if the connection is being aborted for a reason // other than receiving a reset. + if e.state == StateEstablished || e.state == StateCloseWait { + e.stack.Stats().TCP.EstablishedResets.Increment() + e.stack.Stats().TCP.CurrentEstablished.Decrement() + } e.state = StateError - e.hardError = err + e.HardError = err if err != tcpip.ErrConnectionReset { - e.sendRaw(buffer.VectorisedView{}, header.TCPFlagAck|header.TCPFlagRst, e.snd.sndUna, e.rcv.rcvNxt, 0) + // The exact sequence number to be used for the RST is the same as the + // one used by Linux. We need to handle the case of window being shrunk + // which can cause sndNxt to be outside the acceptable window on the + // receiver. + // + // See: https://www.snellman.net/blog/archive/2016-02-01-tcp-rst/ for more + // information. + sndWndEnd := e.snd.sndUna.Add(e.snd.sndWnd) + resetSeqNum := sndWndEnd + if !sndWndEnd.LessThan(e.snd.sndNxt) || e.snd.sndNxt.Size(sndWndEnd) < (1<<e.snd.sndWndScale) { + resetSeqNum = e.snd.sndNxt + } + e.sendRaw(buffer.VectorisedView{}, header.TCPFlagAck|header.TCPFlagRst, resetSeqNum, e.rcv.rcvNxt, 0) } } @@ -744,6 +862,51 @@ func (e *endpoint) completeWorkerLocked() { } } +func (e *endpoint) handleReset(s *segment) (ok bool, err *tcpip.Error) { + if e.rcv.acceptable(s.sequenceNumber, 0) { + // RFC 793, page 37 states that "in all states + // except SYN-SENT, all reset (RST) segments are + // validated by checking their SEQ-fields." So + // we only process it if it's acceptable. + s.decRef() + e.mu.Lock() + switch e.state { + // In case of a RST in CLOSE-WAIT linux moves + // the socket to closed state with an error set + // to indicate EPIPE. + // + // Technically this seems to be at odds w/ RFC. + // As per https://tools.ietf.org/html/rfc793#section-2.7 + // page 69 the behavior for a segment arriving + // w/ RST bit set in CLOSE-WAIT is inlined below. + // + // ESTABLISHED + // FIN-WAIT-1 + // FIN-WAIT-2 + // CLOSE-WAIT + + // If the RST bit is set then, any outstanding RECEIVEs and + // SEND should receive "reset" responses. All segment queues + // should be flushed. Users should also receive an unsolicited + // general "connection reset" signal. Enter the CLOSED state, + // delete the TCB, and return. + case StateCloseWait: + e.state = StateClose + e.HardError = tcpip.ErrAborted + // We need to set this explicitly here because otherwise + // the port registrations will not be released till the + // endpoint is actively closed by the application. + e.workerCleanup = true + e.mu.Unlock() + return false, nil + default: + e.mu.Unlock() + return false, tcpip.ErrConnectionReset + } + } + return true, nil +} + // handleSegments pulls segments from the queue and processes them. It returns // no error if the protocol loop should continue, an error otherwise. func (e *endpoint) handleSegments() *tcpip.Error { @@ -761,14 +924,34 @@ func (e *endpoint) handleSegments() *tcpip.Error { } if s.flagIsSet(header.TCPFlagRst) { - if e.rcv.acceptable(s.sequenceNumber, 0) { - // RFC 793, page 37 states that "in all states - // except SYN-SENT, all reset (RST) segments are - // validated by checking their SEQ-fields." So - // we only process it if it's acceptable. - s.decRef() - return tcpip.ErrConnectionReset + if ok, err := e.handleReset(s); !ok { + return err } + } else if s.flagIsSet(header.TCPFlagSyn) { + // See: https://tools.ietf.org/html/rfc5961#section-4.1 + // 1) If the SYN bit is set, irrespective of the sequence number, TCP + // MUST send an ACK (also referred to as challenge ACK) to the remote + // peer: + // + // <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK> + // + // After sending the acknowledgment, TCP MUST drop the unacceptable + // segment and stop processing further. + // + // By sending an ACK, the remote peer is challenged to confirm the loss + // of the previous connection and the request to start a new connection. + // A legitimate peer, after restart, would not have a TCB in the + // synchronized state. Thus, when the ACK arrives, the peer should send + // a RST segment back with the sequence number derived from the ACK + // field that caused the RST. + + // This RST will confirm that the remote peer has indeed closed the + // previous connection. Upon receipt of a valid RST, the local TCP + // endpoint MUST terminate its connection. The local TCP endpoint + // should then rely on SYN retransmission from the remote end to + // re-establish the connection. + + e.snd.sendAck() } else if s.flagIsSet(header.TCPFlagAck) { // Patch the window size in the segment according to the // send window scale. @@ -777,7 +960,15 @@ func (e *endpoint) handleSegments() *tcpip.Error { // RFC 793, page 41 states that "once in the ESTABLISHED // state all segments must carry current acknowledgment // information." - e.rcv.handleRcvdSegment(s) + drop, err := e.rcv.handleRcvdSegment(s) + if err != nil { + s.decRef() + return err + } + if drop { + s.decRef() + continue + } e.snd.handleRcvdSegment(s) } s.decRef() @@ -876,7 +1067,6 @@ func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error { } e.mu.Unlock() - // When the protocol loop exits we should wake up our waiters. e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.EventIn | waiter.EventOut) } @@ -897,8 +1087,10 @@ func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error { e.lastErrorMu.Unlock() e.mu.Lock() + e.stack.Stats().TCP.EstablishedResets.Increment() + e.stack.Stats().TCP.CurrentEstablished.Decrement() e.state = StateError - e.hardError = err + e.HardError = err // Lock released below. epilogue() @@ -920,6 +1112,10 @@ func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error { // RTT itself. e.rcvAutoParams.prevCopied = initialRcvWnd e.rcvListMu.Unlock() + e.stack.Stats().TCP.CurrentEstablished.Increment() + e.mu.Lock() + e.state = StateEstablished + e.mu.Unlock() } e.keepalive.timer.init(&e.keepalive.waker) @@ -927,7 +1123,6 @@ func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error { // Tell waiters that the endpoint is connected and writable. e.mu.Lock() - e.state = StateEstablished drained := e.drainDone != nil e.mu.Unlock() if drained { @@ -958,7 +1153,13 @@ func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error { { w: &closeWaker, f: func() *tcpip.Error { - return tcpip.ErrConnectionAborted + // This means the socket is being closed due + // to the TCP_FIN_WAIT2 timeout was hit. Just + // mark the socket as closed. + e.mu.Lock() + e.state = StateClose + e.mu.Unlock() + return nil }, }, { @@ -1001,17 +1202,18 @@ func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error { e.resetConnectionLocked(tcpip.ErrConnectionAborted) e.mu.Unlock() } + if n¬ifyClose != 0 && closeTimer == nil { - // Reset the connection 3 seconds after - // the endpoint has been closed. - // - // The timer could fire in background - // when the endpoint is drained. That's - // OK as the loop here will not honor - // the firing until the undrain arrives. - closeTimer = time.AfterFunc(3*time.Second, func() { - closeWaker.Assert() - }) + e.mu.Lock() + if e.state == StateFinWait2 && e.closed { + // The socket has been closed and we are in FIN_WAIT2 + // so start the FIN_WAIT2 timer. + closeTimer = time.AfterFunc(e.tcpLingerTimeout, func() { + closeWaker.Assert() + }) + e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.EventIn | waiter.EventOut) + } + e.mu.Unlock() } if n¬ifyKeepaliveChanged != 0 { @@ -1033,6 +1235,12 @@ func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error { } } + if n¬ifyTickleWorker != 0 { + // Just a tickle notification. No need to do + // anything. + return nil + } + return nil }, }, @@ -1059,15 +1267,16 @@ func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error { } e.rcvListMu.Unlock() - e.mu.RLock() + e.mu.Lock() if e.workerCleanup { e.notifyProtocolGoroutine(notifyClose) } - e.mu.RUnlock() // Main loop. Handle segments until both send and receive ends of the // connection have completed. - for !e.rcv.closed || !e.snd.closed || e.snd.sndUna != e.snd.sndNxtList { + + for e.state != StateTimeWait && e.state != StateClose && e.state != StateError { + e.mu.Unlock() e.workMu.Unlock() v, _ := s.Fetch(true) e.workMu.Lock() @@ -1083,15 +1292,156 @@ func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error { return nil } + e.mu.Lock() + } + + state := e.state + e.mu.Unlock() + var reuseTW func() + if state == StateTimeWait { + // Disable close timer as we now entering real TIME_WAIT. + if closeTimer != nil { + closeTimer.Stop() + } + // Mark the current sleeper done so as to free all associated + // wakers. + s.Done() + // Wake up any waiters before we enter TIME_WAIT. + e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.EventIn | waiter.EventOut) + reuseTW = e.doTimeWait() } // Mark endpoint as closed. e.mu.Lock() if e.state != StateError { + e.stack.Stats().TCP.EstablishedResets.Increment() + e.stack.Stats().TCP.CurrentEstablished.Decrement() e.state = StateClose } + // Lock released below. epilogue() + // A new SYN was received during TIME_WAIT and we need to abort + // the timewait and redirect the segment to the listener queue + if reuseTW != nil { + reuseTW() + } + return nil } + +// handleTimeWaitSegments processes segments received during TIME_WAIT +// state. +func (e *endpoint) handleTimeWaitSegments() (extendTimeWait bool, reuseTW func()) { + checkRequeue := true + for i := 0; i < maxSegmentsPerWake; i++ { + s := e.segmentQueue.dequeue() + if s == nil { + checkRequeue = false + break + } + extTW, newSyn := e.rcv.handleTimeWaitSegment(s) + if newSyn { + info := e.EndpointInfo.TransportEndpointInfo + newID := info.ID + newID.RemoteAddress = "" + newID.RemotePort = 0 + netProtos := []tcpip.NetworkProtocolNumber{info.NetProto} + // If the local address is an IPv4 address then also + // look for IPv6 dual stack endpoints that might be + // listening on the local address. + if newID.LocalAddress.To4() != "" { + netProtos = []tcpip.NetworkProtocolNumber{header.IPv4ProtocolNumber, header.IPv6ProtocolNumber} + } + for _, netProto := range netProtos { + if listenEP := e.stack.FindTransportEndpoint(netProto, info.TransProto, newID, &s.route); listenEP != nil { + tcpEP := listenEP.(*endpoint) + if EndpointState(tcpEP.State()) == StateListen { + reuseTW = func() { + tcpEP.enqueueSegment(s) + } + // We explicitly do not decRef + // the segment as it's still + // valid and being reflected to + // a listening endpoint. + return false, reuseTW + } + } + } + } + if extTW { + extendTimeWait = true + } + s.decRef() + } + if checkRequeue && !e.segmentQueue.empty() { + e.newSegmentWaker.Assert() + } + return extendTimeWait, nil +} + +// doTimeWait is responsible for handling the TCP behaviour once a socket +// enters the TIME_WAIT state. Optionally it can return a closure that +// should be executed after releasing the endpoint registrations. This is +// done in cases where a new SYN is received during TIME_WAIT that carries +// a sequence number larger than one see on the connection. +func (e *endpoint) doTimeWait() (twReuse func()) { + // Trigger a 2 * MSL time wait state. During this period + // we will drop all incoming segments. + // NOTE: On Linux this is not configurable and is fixed at 60 seconds. + timeWaitDuration := DefaultTCPTimeWaitTimeout + + // Get the stack wide configuration. + var tcpTW tcpip.TCPTimeWaitTimeoutOption + if err := e.stack.TransportProtocolOption(ProtocolNumber, &tcpTW); err == nil { + timeWaitDuration = time.Duration(tcpTW) + } + + const newSegment = 1 + const notification = 2 + const timeWaitDone = 3 + + s := sleep.Sleeper{} + s.AddWaker(&e.newSegmentWaker, newSegment) + s.AddWaker(&e.notificationWaker, notification) + + var timeWaitWaker sleep.Waker + s.AddWaker(&timeWaitWaker, timeWaitDone) + timeWaitTimer := time.AfterFunc(timeWaitDuration, timeWaitWaker.Assert) + defer timeWaitTimer.Stop() + + for { + e.workMu.Unlock() + v, _ := s.Fetch(true) + e.workMu.Lock() + switch v { + case newSegment: + extendTimeWait, reuseTW := e.handleTimeWaitSegments() + if reuseTW != nil { + return reuseTW + } + if extendTimeWait { + timeWaitTimer.Reset(timeWaitDuration) + } + case notification: + n := e.fetchNotifications() + if n¬ifyClose != 0 { + return nil + } + if n¬ifyDrain != 0 { + for !e.segmentQueue.empty() { + // Ignore extending TIME_WAIT during a + // save. For sockets in TIME_WAIT we just + // terminate the TIME_WAIT early. + e.handleTimeWaitSegments() + } + close(e.drainDone) + <-e.undrain + return nil + } + case timeWaitDone: + return nil + } + } +} |