diff options
Diffstat (limited to 'pkg/tcpip/stack/ndp.go')
-rw-r--r-- | pkg/tcpip/stack/ndp.go | 279 |
1 files changed, 279 insertions, 0 deletions
diff --git a/pkg/tcpip/stack/ndp.go b/pkg/tcpip/stack/ndp.go new file mode 100644 index 000000000..bed60d7b1 --- /dev/null +++ b/pkg/tcpip/stack/ndp.go @@ -0,0 +1,279 @@ +// Copyright 2019 The gVisor Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +package stack + +import ( + "fmt" + "log" + "time" + + "gvisor.dev/gvisor/pkg/tcpip" + "gvisor.dev/gvisor/pkg/tcpip/buffer" + "gvisor.dev/gvisor/pkg/tcpip/header" +) + +const ( + // defaultDupAddrDetectTransmits is the default number of NDP Neighbor + // Solicitation messages to send when doing Duplicate Address Detection + // for a tentative address. + // + // Default = 1 (from RFC 4862 section 5.1) + defaultDupAddrDetectTransmits = 1 + + // defaultRetransmitTimer is the default amount of time to wait between + // sending NDP Neighbor solicitation messages. + // + // Default = 1s (from RFC 4861 section 10). + defaultRetransmitTimer = time.Second + + // minimumRetransmitTimer is the minimum amount of time to wait between + // sending NDP Neighbor solicitation messages. Note, RFC 4861 does + // not impose a minimum Retransmit Timer, but we do here to make sure + // the messages are not sent all at once. We also come to this value + // because in the RetransmitTimer field of a Router Advertisement, a + // value of 0 means unspecified, so the smallest valid value is 1. + // Note, the unit of the RetransmitTimer field in the Router + // Advertisement is milliseconds. + // + // Min = 1ms. + minimumRetransmitTimer = time.Millisecond +) + +// NDPConfigurations is the NDP configurations for the netstack. +type NDPConfigurations struct { + // The number of Neighbor Solicitation messages to send when doing + // Duplicate Address Detection for a tentative address. + // + // Note, a value of zero effectively disables DAD. + DupAddrDetectTransmits uint8 + + // The amount of time to wait between sending Neighbor solicitation + // messages. + // + // Must be greater than 0.5s. + RetransmitTimer time.Duration +} + +// DefaultNDPConfigurations returns an NDPConfigurations populated with +// default values. +func DefaultNDPConfigurations() NDPConfigurations { + return NDPConfigurations{ + DupAddrDetectTransmits: defaultDupAddrDetectTransmits, + RetransmitTimer: defaultRetransmitTimer, + } +} + +// validate modifies an NDPConfigurations with valid values. If invalid values +// are present in c, the corresponding default values will be used instead. +// +// If RetransmitTimer is less than minimumRetransmitTimer, then a value of +// defaultRetransmitTimer will be used. +func (c *NDPConfigurations) validate() { + if c.RetransmitTimer < minimumRetransmitTimer { + c.RetransmitTimer = defaultRetransmitTimer + } +} + +// ndpState is the per-interface NDP state. +type ndpState struct { + // The DAD state to send the next NS message, or resolve the address. + dad map[tcpip.Address]dadState +} + +// dadState holds the Duplicate Address Detection timer and channel to signal +// to the DAD goroutine that DAD should stop. +type dadState struct { + // The DAD timer to send the next NS message, or resolve the address. + timer *time.Timer + + // Used to let the DAD timer know that it has been stopped. + // + // Must only be read from or written to while protected by the lock of + // the NIC this dadState is associated with. + done *bool +} + +// startDuplicateAddressDetection performs Duplicate Address Detection. +// +// This function must only be called by IPv6 addresses that are currently +// tentative. +// +// The NIC that ndp belongs to (n) MUST be locked. +func (ndp *ndpState) startDuplicateAddressDetection(n *NIC, addr tcpip.Address, ref *referencedNetworkEndpoint) *tcpip.Error { + // addr must be a valid unicast IPv6 address. + if !header.IsV6UnicastAddress(addr) { + return tcpip.ErrAddressFamilyNotSupported + } + + // Should not attempt to perform DAD on an address that is currently in + // the DAD process. + if _, ok := ndp.dad[addr]; ok { + // Should never happen because we should only ever call this + // function for newly created addresses. If we attemped to + // "add" an address that already existed, we would returned an + // error since we attempted to add a duplicate address, or its + // reference count would have been increased without doing the + // work that would have been done for an address that was brand + // new. See NIC.addPermanentAddressLocked. + panic(fmt.Sprintf("ndpdad: already performing DAD for addr %s on NIC(%d)", addr, n.ID())) + } + + remaining := n.stack.ndpConfigs.DupAddrDetectTransmits + + { + done, err := ndp.doDuplicateAddressDetection(n, addr, remaining, ref) + if err != nil { + return err + } + if done { + return nil + } + } + + remaining-- + + var done bool + var timer *time.Timer + timer = time.AfterFunc(n.stack.ndpConfigs.RetransmitTimer, func() { + n.mu.Lock() + defer n.mu.Unlock() + + if done { + // If we reach this point, it means that the DAD timer + // fired after another goroutine already obtained the + // NIC lock and stopped DAD before it this function + // obtained the NIC lock. Simply return here and do + // nothing further. + return + } + + ref, ok := n.endpoints[NetworkEndpointID{addr}] + if !ok { + // This should never happen. + // We should have an endpoint for addr since we are + // still performing DAD on it. If the endpoint does not + // exist, but we are doing DAD on it, then we started + // DAD at some point, but forgot to stop it when the + // endpoint was deleted. + panic(fmt.Sprintf("ndpdad: unrecognized addr %s for NIC(%d)", addr, n.ID())) + } + + if done, err := ndp.doDuplicateAddressDetection(n, addr, remaining, ref); err != nil || done { + if err != nil { + log.Printf("ndpdad: Error occured during DAD iteration for addr (%s) on NIC(%d); err = %s", addr, n.ID(), err) + } + + ndp.stopDuplicateAddressDetection(addr) + return + } + + timer.Reset(n.stack.ndpConfigs.RetransmitTimer) + remaining-- + + }) + + ndp.dad[addr] = dadState{ + timer: timer, + done: &done, + } + + return nil +} + +// doDuplicateAddressDetection is called on every iteration of the timer, and +// when DAD starts. +// +// It handles resolving the address (if there are no more NS to send), or +// sending the next NS if there are more NS to send. +// +// This function must only be called by IPv6 addresses that are currently +// tentative. +// +// The NIC that ndp belongs to (n) MUST be locked. +// +// Returns true if DAD has resolved; false if DAD is still ongoing. +func (ndp *ndpState) doDuplicateAddressDetection(n *NIC, addr tcpip.Address, remaining uint8, ref *referencedNetworkEndpoint) (bool, *tcpip.Error) { + if ref.getKind() != permanentTentative { + // The endpoint should still be marked as tentative + // since we are still performing DAD on it. + panic(fmt.Sprintf("ndpdad: addr %s is not tentative on NIC(%d)", addr, n.ID())) + } + + if remaining == 0 { + // DAD has resolved. + ref.setKind(permanent) + return true, nil + } + + // Send a new NS. + snmc := header.SolicitedNodeAddr(addr) + snmcRef, ok := n.endpoints[NetworkEndpointID{snmc}] + if !ok { + // This should never happen as if we have the + // address, we should have the solicited-node + // address. + panic(fmt.Sprintf("ndpdad: NIC(%d) is not in the solicited-node multicast group (%s) but it has addr %s", n.ID(), snmc, addr)) + } + + // Use the unspecified address as the source address when performing + // DAD. + r := makeRoute(header.IPv6ProtocolNumber, header.IPv6Any, snmc, n.linkEP.LinkAddress(), snmcRef, false, false) + + hdr := buffer.NewPrependable(int(r.MaxHeaderLength()) + header.ICMPv6NeighborSolicitMinimumSize) + pkt := header.ICMPv6(hdr.Prepend(header.ICMPv6NeighborSolicitMinimumSize)) + pkt.SetType(header.ICMPv6NeighborSolicit) + ns := header.NDPNeighborSolicit(pkt.NDPPayload()) + ns.SetTargetAddress(addr) + pkt.SetChecksum(header.ICMPv6Checksum(pkt, r.LocalAddress, r.RemoteAddress, buffer.VectorisedView{})) + + sent := r.Stats().ICMP.V6PacketsSent + if err := r.WritePacket(nil, hdr, buffer.VectorisedView{}, NetworkHeaderParams{Protocol: header.ICMPv6ProtocolNumber, TTL: r.DefaultTTL(), TOS: DefaultTOS}); err != nil { + sent.Dropped.Increment() + return false, err + } + sent.NeighborSolicit.Increment() + + return false, nil +} + +// stopDuplicateAddressDetection ends a running Duplicate Address Detection +// process. Note, this may leave the DAD process for a tentative address in +// such a state forever, unless some other external event resolves the DAD +// process (receiving an NA from the true owner of addr, or an NS for addr +// (implying another node is attempting to use addr)). It is up to the caller +// of this function to handle such a scenario. Normally, addr will be removed +// from n right after this function returns or the address successfully +// resolved. +// +// The NIC that ndp belongs to MUST be locked. +func (ndp *ndpState) stopDuplicateAddressDetection(addr tcpip.Address) { + dad, ok := ndp.dad[addr] + if !ok { + // Not currently performing DAD on addr, just return. + return + } + + if dad.timer != nil { + dad.timer.Stop() + dad.timer = nil + + *dad.done = true + dad.done = nil + } + + delete(ndp.dad, addr) + + return +} |