diff options
Diffstat (limited to 'pkg/sentry/pgalloc')
-rw-r--r-- | pkg/sentry/pgalloc/BUILD | 87 | ||||
-rwxr-xr-x | pkg/sentry/pgalloc/evictable_range.go | 62 | ||||
-rwxr-xr-x | pkg/sentry/pgalloc/evictable_range_set.go | 1270 | ||||
-rwxr-xr-x | pkg/sentry/pgalloc/pgalloc_state_autogen.go | 146 | ||||
-rw-r--r-- | pkg/sentry/pgalloc/pgalloc_test.go | 168 | ||||
-rwxr-xr-x | pkg/sentry/pgalloc/usage_set.go | 1274 |
6 files changed, 2752 insertions, 255 deletions
diff --git a/pkg/sentry/pgalloc/BUILD b/pkg/sentry/pgalloc/BUILD deleted file mode 100644 index 3fd904c67..000000000 --- a/pkg/sentry/pgalloc/BUILD +++ /dev/null @@ -1,87 +0,0 @@ -load("@io_bazel_rules_go//go:def.bzl", "go_test") - -package(licenses = ["notice"]) - -load("//tools/go_generics:defs.bzl", "go_template_instance") -load("//tools/go_stateify:defs.bzl", "go_library") - -go_template_instance( - name = "evictable_range", - out = "evictable_range.go", - package = "pgalloc", - prefix = "Evictable", - template = "//pkg/segment:generic_range", - types = { - "T": "uint64", - }, -) - -go_template_instance( - name = "evictable_range_set", - out = "evictable_range_set.go", - package = "pgalloc", - prefix = "evictableRange", - template = "//pkg/segment:generic_set", - types = { - "Key": "uint64", - "Range": "EvictableRange", - "Value": "evictableRangeSetValue", - "Functions": "evictableRangeSetFunctions", - }, -) - -go_template_instance( - name = "usage_set", - out = "usage_set.go", - consts = { - "minDegree": "10", - }, - imports = { - "platform": "gvisor.dev/gvisor/pkg/sentry/platform", - }, - package = "pgalloc", - prefix = "usage", - template = "//pkg/segment:generic_set", - types = { - "Key": "uint64", - "Range": "platform.FileRange", - "Value": "usageInfo", - "Functions": "usageSetFunctions", - }, -) - -go_library( - name = "pgalloc", - srcs = [ - "context.go", - "evictable_range.go", - "evictable_range_set.go", - "pgalloc.go", - "pgalloc_unsafe.go", - "save_restore.go", - "usage_set.go", - ], - importpath = "gvisor.dev/gvisor/pkg/sentry/pgalloc", - visibility = ["//pkg/sentry:internal"], - deps = [ - "//pkg/log", - "//pkg/memutil", - "//pkg/sentry/arch", - "//pkg/sentry/context", - "//pkg/sentry/hostmm", - "//pkg/sentry/platform", - "//pkg/sentry/safemem", - "//pkg/sentry/usage", - "//pkg/sentry/usermem", - "//pkg/state", - "//pkg/syserror", - ], -) - -go_test( - name = "pgalloc_test", - size = "small", - srcs = ["pgalloc_test.go"], - embed = [":pgalloc"], - deps = ["//pkg/sentry/usermem"], -) diff --git a/pkg/sentry/pgalloc/evictable_range.go b/pkg/sentry/pgalloc/evictable_range.go new file mode 100755 index 000000000..10ce2ff44 --- /dev/null +++ b/pkg/sentry/pgalloc/evictable_range.go @@ -0,0 +1,62 @@ +package pgalloc + +// A Range represents a contiguous range of T. +// +// +stateify savable +type EvictableRange struct { + // Start is the inclusive start of the range. + Start uint64 + + // End is the exclusive end of the range. + End uint64 +} + +// WellFormed returns true if r.Start <= r.End. All other methods on a Range +// require that the Range is well-formed. +func (r EvictableRange) WellFormed() bool { + return r.Start <= r.End +} + +// Length returns the length of the range. +func (r EvictableRange) Length() uint64 { + return r.End - r.Start +} + +// Contains returns true if r contains x. +func (r EvictableRange) Contains(x uint64) bool { + return r.Start <= x && x < r.End +} + +// Overlaps returns true if r and r2 overlap. +func (r EvictableRange) Overlaps(r2 EvictableRange) bool { + return r.Start < r2.End && r2.Start < r.End +} + +// IsSupersetOf returns true if r is a superset of r2; that is, the range r2 is +// contained within r. +func (r EvictableRange) IsSupersetOf(r2 EvictableRange) bool { + return r.Start <= r2.Start && r.End >= r2.End +} + +// Intersect returns a range consisting of the intersection between r and r2. +// If r and r2 do not overlap, Intersect returns a range with unspecified +// bounds, but for which Length() == 0. +func (r EvictableRange) Intersect(r2 EvictableRange) EvictableRange { + if r.Start < r2.Start { + r.Start = r2.Start + } + if r.End > r2.End { + r.End = r2.End + } + if r.End < r.Start { + r.End = r.Start + } + return r +} + +// CanSplitAt returns true if it is legal to split a segment spanning the range +// r at x; that is, splitting at x would produce two ranges, both of which have +// non-zero length. +func (r EvictableRange) CanSplitAt(x uint64) bool { + return r.Contains(x) && r.Start < x +} diff --git a/pkg/sentry/pgalloc/evictable_range_set.go b/pkg/sentry/pgalloc/evictable_range_set.go new file mode 100755 index 000000000..6fbd02434 --- /dev/null +++ b/pkg/sentry/pgalloc/evictable_range_set.go @@ -0,0 +1,1270 @@ +package pgalloc + +import ( + "bytes" + "fmt" +) + +const ( + // minDegree is the minimum degree of an internal node in a Set B-tree. + // + // - Any non-root node has at least minDegree-1 segments. + // + // - Any non-root internal (non-leaf) node has at least minDegree children. + // + // - The root node may have fewer than minDegree-1 segments, but it may + // only have 0 segments if the tree is empty. + // + // Our implementation requires minDegree >= 3. Higher values of minDegree + // usually improve performance, but increase memory usage for small sets. + evictableRangeminDegree = 3 + + evictableRangemaxDegree = 2 * evictableRangeminDegree +) + +// A Set is a mapping of segments with non-overlapping Range keys. The zero +// value for a Set is an empty set. Set values are not safely movable nor +// copyable. Set is thread-compatible. +// +// +stateify savable +type evictableRangeSet struct { + root evictableRangenode `state:".(*evictableRangeSegmentDataSlices)"` +} + +// IsEmpty returns true if the set contains no segments. +func (s *evictableRangeSet) IsEmpty() bool { + return s.root.nrSegments == 0 +} + +// IsEmptyRange returns true iff no segments in the set overlap the given +// range. This is semantically equivalent to s.SpanRange(r) == 0, but may be +// more efficient. +func (s *evictableRangeSet) IsEmptyRange(r EvictableRange) bool { + switch { + case r.Length() < 0: + panic(fmt.Sprintf("invalid range %v", r)) + case r.Length() == 0: + return true + } + _, gap := s.Find(r.Start) + if !gap.Ok() { + return false + } + return r.End <= gap.End() +} + +// Span returns the total size of all segments in the set. +func (s *evictableRangeSet) Span() uint64 { + var sz uint64 + for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { + sz += seg.Range().Length() + } + return sz +} + +// SpanRange returns the total size of the intersection of segments in the set +// with the given range. +func (s *evictableRangeSet) SpanRange(r EvictableRange) uint64 { + switch { + case r.Length() < 0: + panic(fmt.Sprintf("invalid range %v", r)) + case r.Length() == 0: + return 0 + } + var sz uint64 + for seg := s.LowerBoundSegment(r.Start); seg.Ok() && seg.Start() < r.End; seg = seg.NextSegment() { + sz += seg.Range().Intersect(r).Length() + } + return sz +} + +// FirstSegment returns the first segment in the set. If the set is empty, +// FirstSegment returns a terminal iterator. +func (s *evictableRangeSet) FirstSegment() evictableRangeIterator { + if s.root.nrSegments == 0 { + return evictableRangeIterator{} + } + return s.root.firstSegment() +} + +// LastSegment returns the last segment in the set. If the set is empty, +// LastSegment returns a terminal iterator. +func (s *evictableRangeSet) LastSegment() evictableRangeIterator { + if s.root.nrSegments == 0 { + return evictableRangeIterator{} + } + return s.root.lastSegment() +} + +// FirstGap returns the first gap in the set. +func (s *evictableRangeSet) FirstGap() evictableRangeGapIterator { + n := &s.root + for n.hasChildren { + n = n.children[0] + } + return evictableRangeGapIterator{n, 0} +} + +// LastGap returns the last gap in the set. +func (s *evictableRangeSet) LastGap() evictableRangeGapIterator { + n := &s.root + for n.hasChildren { + n = n.children[n.nrSegments] + } + return evictableRangeGapIterator{n, n.nrSegments} +} + +// Find returns the segment or gap whose range contains the given key. If a +// segment is found, the returned Iterator is non-terminal and the +// returned GapIterator is terminal. Otherwise, the returned Iterator is +// terminal and the returned GapIterator is non-terminal. +func (s *evictableRangeSet) Find(key uint64) (evictableRangeIterator, evictableRangeGapIterator) { + n := &s.root + for { + + lower := 0 + upper := n.nrSegments + for lower < upper { + i := lower + (upper-lower)/2 + if r := n.keys[i]; key < r.End { + if key >= r.Start { + return evictableRangeIterator{n, i}, evictableRangeGapIterator{} + } + upper = i + } else { + lower = i + 1 + } + } + i := lower + if !n.hasChildren { + return evictableRangeIterator{}, evictableRangeGapIterator{n, i} + } + n = n.children[i] + } +} + +// FindSegment returns the segment whose range contains the given key. If no +// such segment exists, FindSegment returns a terminal iterator. +func (s *evictableRangeSet) FindSegment(key uint64) evictableRangeIterator { + seg, _ := s.Find(key) + return seg +} + +// LowerBoundSegment returns the segment with the lowest range that contains a +// key greater than or equal to min. If no such segment exists, +// LowerBoundSegment returns a terminal iterator. +func (s *evictableRangeSet) LowerBoundSegment(min uint64) evictableRangeIterator { + seg, gap := s.Find(min) + if seg.Ok() { + return seg + } + return gap.NextSegment() +} + +// UpperBoundSegment returns the segment with the highest range that contains a +// key less than or equal to max. If no such segment exists, UpperBoundSegment +// returns a terminal iterator. +func (s *evictableRangeSet) UpperBoundSegment(max uint64) evictableRangeIterator { + seg, gap := s.Find(max) + if seg.Ok() { + return seg + } + return gap.PrevSegment() +} + +// FindGap returns the gap containing the given key. If no such gap exists +// (i.e. the set contains a segment containing that key), FindGap returns a +// terminal iterator. +func (s *evictableRangeSet) FindGap(key uint64) evictableRangeGapIterator { + _, gap := s.Find(key) + return gap +} + +// LowerBoundGap returns the gap with the lowest range that is greater than or +// equal to min. +func (s *evictableRangeSet) LowerBoundGap(min uint64) evictableRangeGapIterator { + seg, gap := s.Find(min) + if gap.Ok() { + return gap + } + return seg.NextGap() +} + +// UpperBoundGap returns the gap with the highest range that is less than or +// equal to max. +func (s *evictableRangeSet) UpperBoundGap(max uint64) evictableRangeGapIterator { + seg, gap := s.Find(max) + if gap.Ok() { + return gap + } + return seg.PrevGap() +} + +// Add inserts the given segment into the set and returns true. If the new +// segment can be merged with adjacent segments, Add will do so. If the new +// segment would overlap an existing segment, Add returns false. If Add +// succeeds, all existing iterators are invalidated. +func (s *evictableRangeSet) Add(r EvictableRange, val evictableRangeSetValue) bool { + if r.Length() <= 0 { + panic(fmt.Sprintf("invalid segment range %v", r)) + } + gap := s.FindGap(r.Start) + if !gap.Ok() { + return false + } + if r.End > gap.End() { + return false + } + s.Insert(gap, r, val) + return true +} + +// AddWithoutMerging inserts the given segment into the set and returns true. +// If it would overlap an existing segment, AddWithoutMerging does nothing and +// returns false. If AddWithoutMerging succeeds, all existing iterators are +// invalidated. +func (s *evictableRangeSet) AddWithoutMerging(r EvictableRange, val evictableRangeSetValue) bool { + if r.Length() <= 0 { + panic(fmt.Sprintf("invalid segment range %v", r)) + } + gap := s.FindGap(r.Start) + if !gap.Ok() { + return false + } + if r.End > gap.End() { + return false + } + s.InsertWithoutMergingUnchecked(gap, r, val) + return true +} + +// Insert inserts the given segment into the given gap. If the new segment can +// be merged with adjacent segments, Insert will do so. Insert returns an +// iterator to the segment containing the inserted value (which may have been +// merged with other values). All existing iterators (including gap, but not +// including the returned iterator) are invalidated. +// +// If the gap cannot accommodate the segment, or if r is invalid, Insert panics. +// +// Insert is semantically equivalent to a InsertWithoutMerging followed by a +// Merge, but may be more efficient. Note that there is no unchecked variant of +// Insert since Insert must retrieve and inspect gap's predecessor and +// successor segments regardless. +func (s *evictableRangeSet) Insert(gap evictableRangeGapIterator, r EvictableRange, val evictableRangeSetValue) evictableRangeIterator { + if r.Length() <= 0 { + panic(fmt.Sprintf("invalid segment range %v", r)) + } + prev, next := gap.PrevSegment(), gap.NextSegment() + if prev.Ok() && prev.End() > r.Start { + panic(fmt.Sprintf("new segment %v overlaps predecessor %v", r, prev.Range())) + } + if next.Ok() && next.Start() < r.End { + panic(fmt.Sprintf("new segment %v overlaps successor %v", r, next.Range())) + } + if prev.Ok() && prev.End() == r.Start { + if mval, ok := (evictableRangeSetFunctions{}).Merge(prev.Range(), prev.Value(), r, val); ok { + prev.SetEndUnchecked(r.End) + prev.SetValue(mval) + if next.Ok() && next.Start() == r.End { + val = mval + if mval, ok := (evictableRangeSetFunctions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok { + prev.SetEndUnchecked(next.End()) + prev.SetValue(mval) + return s.Remove(next).PrevSegment() + } + } + return prev + } + } + if next.Ok() && next.Start() == r.End { + if mval, ok := (evictableRangeSetFunctions{}).Merge(r, val, next.Range(), next.Value()); ok { + next.SetStartUnchecked(r.Start) + next.SetValue(mval) + return next + } + } + return s.InsertWithoutMergingUnchecked(gap, r, val) +} + +// InsertWithoutMerging inserts the given segment into the given gap and +// returns an iterator to the inserted segment. All existing iterators +// (including gap, but not including the returned iterator) are invalidated. +// +// If the gap cannot accommodate the segment, or if r is invalid, +// InsertWithoutMerging panics. +func (s *evictableRangeSet) InsertWithoutMerging(gap evictableRangeGapIterator, r EvictableRange, val evictableRangeSetValue) evictableRangeIterator { + if r.Length() <= 0 { + panic(fmt.Sprintf("invalid segment range %v", r)) + } + if gr := gap.Range(); !gr.IsSupersetOf(r) { + panic(fmt.Sprintf("cannot insert segment range %v into gap range %v", r, gr)) + } + return s.InsertWithoutMergingUnchecked(gap, r, val) +} + +// InsertWithoutMergingUnchecked inserts the given segment into the given gap +// and returns an iterator to the inserted segment. All existing iterators +// (including gap, but not including the returned iterator) are invalidated. +// +// Preconditions: r.Start >= gap.Start(); r.End <= gap.End(). +func (s *evictableRangeSet) InsertWithoutMergingUnchecked(gap evictableRangeGapIterator, r EvictableRange, val evictableRangeSetValue) evictableRangeIterator { + gap = gap.node.rebalanceBeforeInsert(gap) + copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments]) + copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments]) + gap.node.keys[gap.index] = r + gap.node.values[gap.index] = val + gap.node.nrSegments++ + return evictableRangeIterator{gap.node, gap.index} +} + +// Remove removes the given segment and returns an iterator to the vacated gap. +// All existing iterators (including seg, but not including the returned +// iterator) are invalidated. +func (s *evictableRangeSet) Remove(seg evictableRangeIterator) evictableRangeGapIterator { + + if seg.node.hasChildren { + + victim := seg.PrevSegment() + + seg.SetRangeUnchecked(victim.Range()) + seg.SetValue(victim.Value()) + return s.Remove(victim).NextGap() + } + copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments]) + copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments]) + evictableRangeSetFunctions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1]) + seg.node.nrSegments-- + return seg.node.rebalanceAfterRemove(evictableRangeGapIterator{seg.node, seg.index}) +} + +// RemoveAll removes all segments from the set. All existing iterators are +// invalidated. +func (s *evictableRangeSet) RemoveAll() { + s.root = evictableRangenode{} +} + +// RemoveRange removes all segments in the given range. An iterator to the +// newly formed gap is returned, and all existing iterators are invalidated. +func (s *evictableRangeSet) RemoveRange(r EvictableRange) evictableRangeGapIterator { + seg, gap := s.Find(r.Start) + if seg.Ok() { + seg = s.Isolate(seg, r) + gap = s.Remove(seg) + } + for seg = gap.NextSegment(); seg.Ok() && seg.Start() < r.End; seg = gap.NextSegment() { + seg = s.Isolate(seg, r) + gap = s.Remove(seg) + } + return gap +} + +// Merge attempts to merge two neighboring segments. If successful, Merge +// returns an iterator to the merged segment, and all existing iterators are +// invalidated. Otherwise, Merge returns a terminal iterator. +// +// If first is not the predecessor of second, Merge panics. +func (s *evictableRangeSet) Merge(first, second evictableRangeIterator) evictableRangeIterator { + if first.NextSegment() != second { + panic(fmt.Sprintf("attempt to merge non-neighboring segments %v, %v", first.Range(), second.Range())) + } + return s.MergeUnchecked(first, second) +} + +// MergeUnchecked attempts to merge two neighboring segments. If successful, +// MergeUnchecked returns an iterator to the merged segment, and all existing +// iterators are invalidated. Otherwise, MergeUnchecked returns a terminal +// iterator. +// +// Precondition: first is the predecessor of second: first.NextSegment() == +// second, first == second.PrevSegment(). +func (s *evictableRangeSet) MergeUnchecked(first, second evictableRangeIterator) evictableRangeIterator { + if first.End() == second.Start() { + if mval, ok := (evictableRangeSetFunctions{}).Merge(first.Range(), first.Value(), second.Range(), second.Value()); ok { + + first.SetEndUnchecked(second.End()) + first.SetValue(mval) + return s.Remove(second).PrevSegment() + } + } + return evictableRangeIterator{} +} + +// MergeAll attempts to merge all adjacent segments in the set. All existing +// iterators are invalidated. +func (s *evictableRangeSet) MergeAll() { + seg := s.FirstSegment() + if !seg.Ok() { + return + } + next := seg.NextSegment() + for next.Ok() { + if mseg := s.MergeUnchecked(seg, next); mseg.Ok() { + seg, next = mseg, mseg.NextSegment() + } else { + seg, next = next, next.NextSegment() + } + } +} + +// MergeRange attempts to merge all adjacent segments that contain a key in the +// specific range. All existing iterators are invalidated. +func (s *evictableRangeSet) MergeRange(r EvictableRange) { + seg := s.LowerBoundSegment(r.Start) + if !seg.Ok() { + return + } + next := seg.NextSegment() + for next.Ok() && next.Range().Start < r.End { + if mseg := s.MergeUnchecked(seg, next); mseg.Ok() { + seg, next = mseg, mseg.NextSegment() + } else { + seg, next = next, next.NextSegment() + } + } +} + +// MergeAdjacent attempts to merge the segment containing r.Start with its +// predecessor, and the segment containing r.End-1 with its successor. +func (s *evictableRangeSet) MergeAdjacent(r EvictableRange) { + first := s.FindSegment(r.Start) + if first.Ok() { + if prev := first.PrevSegment(); prev.Ok() { + s.Merge(prev, first) + } + } + last := s.FindSegment(r.End - 1) + if last.Ok() { + if next := last.NextSegment(); next.Ok() { + s.Merge(last, next) + } + } +} + +// Split splits the given segment at the given key and returns iterators to the +// two resulting segments. All existing iterators (including seg, but not +// including the returned iterators) are invalidated. +// +// If the segment cannot be split at split (because split is at the start or +// end of the segment's range, so splitting would produce a segment with zero +// length, or because split falls outside the segment's range altogether), +// Split panics. +func (s *evictableRangeSet) Split(seg evictableRangeIterator, split uint64) (evictableRangeIterator, evictableRangeIterator) { + if !seg.Range().CanSplitAt(split) { + panic(fmt.Sprintf("can't split %v at %v", seg.Range(), split)) + } + return s.SplitUnchecked(seg, split) +} + +// SplitUnchecked splits the given segment at the given key and returns +// iterators to the two resulting segments. All existing iterators (including +// seg, but not including the returned iterators) are invalidated. +// +// Preconditions: seg.Start() < key < seg.End(). +func (s *evictableRangeSet) SplitUnchecked(seg evictableRangeIterator, split uint64) (evictableRangeIterator, evictableRangeIterator) { + val1, val2 := (evictableRangeSetFunctions{}).Split(seg.Range(), seg.Value(), split) + end2 := seg.End() + seg.SetEndUnchecked(split) + seg.SetValue(val1) + seg2 := s.InsertWithoutMergingUnchecked(seg.NextGap(), EvictableRange{split, end2}, val2) + + return seg2.PrevSegment(), seg2 +} + +// SplitAt splits the segment straddling split, if one exists. SplitAt returns +// true if a segment was split and false otherwise. If SplitAt splits a +// segment, all existing iterators are invalidated. +func (s *evictableRangeSet) SplitAt(split uint64) bool { + if seg := s.FindSegment(split); seg.Ok() && seg.Range().CanSplitAt(split) { + s.SplitUnchecked(seg, split) + return true + } + return false +} + +// Isolate ensures that the given segment's range does not escape r by +// splitting at r.Start and r.End if necessary, and returns an updated iterator +// to the bounded segment. All existing iterators (including seg, but not +// including the returned iterators) are invalidated. +func (s *evictableRangeSet) Isolate(seg evictableRangeIterator, r EvictableRange) evictableRangeIterator { + if seg.Range().CanSplitAt(r.Start) { + _, seg = s.SplitUnchecked(seg, r.Start) + } + if seg.Range().CanSplitAt(r.End) { + seg, _ = s.SplitUnchecked(seg, r.End) + } + return seg +} + +// ApplyContiguous applies a function to a contiguous range of segments, +// splitting if necessary. The function is applied until the first gap is +// encountered, at which point the gap is returned. If the function is applied +// across the entire range, a terminal gap is returned. All existing iterators +// are invalidated. +// +// N.B. The Iterator must not be invalidated by the function. +func (s *evictableRangeSet) ApplyContiguous(r EvictableRange, fn func(seg evictableRangeIterator)) evictableRangeGapIterator { + seg, gap := s.Find(r.Start) + if !seg.Ok() { + return gap + } + for { + seg = s.Isolate(seg, r) + fn(seg) + if seg.End() >= r.End { + return evictableRangeGapIterator{} + } + gap = seg.NextGap() + if !gap.IsEmpty() { + return gap + } + seg = gap.NextSegment() + if !seg.Ok() { + + return evictableRangeGapIterator{} + } + } +} + +// +stateify savable +type evictableRangenode struct { + // An internal binary tree node looks like: + // + // K + // / \ + // Cl Cr + // + // where all keys in the subtree rooted by Cl (the left subtree) are less + // than K (the key of the parent node), and all keys in the subtree rooted + // by Cr (the right subtree) are greater than K. + // + // An internal B-tree node's indexes work out to look like: + // + // K0 K1 K2 ... Kn-1 + // / \/ \/ \ ... / \ + // C0 C1 C2 C3 ... Cn-1 Cn + // + // where n is nrSegments. + nrSegments int + + // parent is a pointer to this node's parent. If this node is root, parent + // is nil. + parent *evictableRangenode + + // parentIndex is the index of this node in parent.children. + parentIndex int + + // Flag for internal nodes that is technically redundant with "children[0] + // != nil", but is stored in the first cache line. "hasChildren" rather + // than "isLeaf" because false must be the correct value for an empty root. + hasChildren bool + + // Nodes store keys and values in separate arrays to maximize locality in + // the common case (scanning keys for lookup). + keys [evictableRangemaxDegree - 1]EvictableRange + values [evictableRangemaxDegree - 1]evictableRangeSetValue + children [evictableRangemaxDegree]*evictableRangenode +} + +// firstSegment returns the first segment in the subtree rooted by n. +// +// Preconditions: n.nrSegments != 0. +func (n *evictableRangenode) firstSegment() evictableRangeIterator { + for n.hasChildren { + n = n.children[0] + } + return evictableRangeIterator{n, 0} +} + +// lastSegment returns the last segment in the subtree rooted by n. +// +// Preconditions: n.nrSegments != 0. +func (n *evictableRangenode) lastSegment() evictableRangeIterator { + for n.hasChildren { + n = n.children[n.nrSegments] + } + return evictableRangeIterator{n, n.nrSegments - 1} +} + +func (n *evictableRangenode) prevSibling() *evictableRangenode { + if n.parent == nil || n.parentIndex == 0 { + return nil + } + return n.parent.children[n.parentIndex-1] +} + +func (n *evictableRangenode) nextSibling() *evictableRangenode { + if n.parent == nil || n.parentIndex == n.parent.nrSegments { + return nil + } + return n.parent.children[n.parentIndex+1] +} + +// rebalanceBeforeInsert splits n and its ancestors if they are full, as +// required for insertion, and returns an updated iterator to the position +// represented by gap. +func (n *evictableRangenode) rebalanceBeforeInsert(gap evictableRangeGapIterator) evictableRangeGapIterator { + if n.parent != nil { + gap = n.parent.rebalanceBeforeInsert(gap) + } + if n.nrSegments < evictableRangemaxDegree-1 { + return gap + } + if n.parent == nil { + + left := &evictableRangenode{ + nrSegments: evictableRangeminDegree - 1, + parent: n, + parentIndex: 0, + hasChildren: n.hasChildren, + } + right := &evictableRangenode{ + nrSegments: evictableRangeminDegree - 1, + parent: n, + parentIndex: 1, + hasChildren: n.hasChildren, + } + copy(left.keys[:evictableRangeminDegree-1], n.keys[:evictableRangeminDegree-1]) + copy(left.values[:evictableRangeminDegree-1], n.values[:evictableRangeminDegree-1]) + copy(right.keys[:evictableRangeminDegree-1], n.keys[evictableRangeminDegree:]) + copy(right.values[:evictableRangeminDegree-1], n.values[evictableRangeminDegree:]) + n.keys[0], n.values[0] = n.keys[evictableRangeminDegree-1], n.values[evictableRangeminDegree-1] + evictableRangezeroValueSlice(n.values[1:]) + if n.hasChildren { + copy(left.children[:evictableRangeminDegree], n.children[:evictableRangeminDegree]) + copy(right.children[:evictableRangeminDegree], n.children[evictableRangeminDegree:]) + evictableRangezeroNodeSlice(n.children[2:]) + for i := 0; i < evictableRangeminDegree; i++ { + left.children[i].parent = left + left.children[i].parentIndex = i + right.children[i].parent = right + right.children[i].parentIndex = i + } + } + n.nrSegments = 1 + n.hasChildren = true + n.children[0] = left + n.children[1] = right + if gap.node != n { + return gap + } + if gap.index < evictableRangeminDegree { + return evictableRangeGapIterator{left, gap.index} + } + return evictableRangeGapIterator{right, gap.index - evictableRangeminDegree} + } + + copy(n.parent.keys[n.parentIndex+1:], n.parent.keys[n.parentIndex:n.parent.nrSegments]) + copy(n.parent.values[n.parentIndex+1:], n.parent.values[n.parentIndex:n.parent.nrSegments]) + n.parent.keys[n.parentIndex], n.parent.values[n.parentIndex] = n.keys[evictableRangeminDegree-1], n.values[evictableRangeminDegree-1] + copy(n.parent.children[n.parentIndex+2:], n.parent.children[n.parentIndex+1:n.parent.nrSegments+1]) + for i := n.parentIndex + 2; i < n.parent.nrSegments+2; i++ { + n.parent.children[i].parentIndex = i + } + sibling := &evictableRangenode{ + nrSegments: evictableRangeminDegree - 1, + parent: n.parent, + parentIndex: n.parentIndex + 1, + hasChildren: n.hasChildren, + } + n.parent.children[n.parentIndex+1] = sibling + n.parent.nrSegments++ + copy(sibling.keys[:evictableRangeminDegree-1], n.keys[evictableRangeminDegree:]) + copy(sibling.values[:evictableRangeminDegree-1], n.values[evictableRangeminDegree:]) + evictableRangezeroValueSlice(n.values[evictableRangeminDegree-1:]) + if n.hasChildren { + copy(sibling.children[:evictableRangeminDegree], n.children[evictableRangeminDegree:]) + evictableRangezeroNodeSlice(n.children[evictableRangeminDegree:]) + for i := 0; i < evictableRangeminDegree; i++ { + sibling.children[i].parent = sibling + sibling.children[i].parentIndex = i + } + } + n.nrSegments = evictableRangeminDegree - 1 + + if gap.node != n { + return gap + } + if gap.index < evictableRangeminDegree { + return gap + } + return evictableRangeGapIterator{sibling, gap.index - evictableRangeminDegree} +} + +// rebalanceAfterRemove "unsplits" n and its ancestors if they are deficient +// (contain fewer segments than required by B-tree invariants), as required for +// removal, and returns an updated iterator to the position represented by gap. +// +// Precondition: n is the only node in the tree that may currently violate a +// B-tree invariant. +func (n *evictableRangenode) rebalanceAfterRemove(gap evictableRangeGapIterator) evictableRangeGapIterator { + for { + if n.nrSegments >= evictableRangeminDegree-1 { + return gap + } + if n.parent == nil { + + return gap + } + + if sibling := n.prevSibling(); sibling != nil && sibling.nrSegments >= evictableRangeminDegree { + copy(n.keys[1:], n.keys[:n.nrSegments]) + copy(n.values[1:], n.values[:n.nrSegments]) + n.keys[0] = n.parent.keys[n.parentIndex-1] + n.values[0] = n.parent.values[n.parentIndex-1] + n.parent.keys[n.parentIndex-1] = sibling.keys[sibling.nrSegments-1] + n.parent.values[n.parentIndex-1] = sibling.values[sibling.nrSegments-1] + evictableRangeSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1]) + if n.hasChildren { + copy(n.children[1:], n.children[:n.nrSegments+1]) + n.children[0] = sibling.children[sibling.nrSegments] + sibling.children[sibling.nrSegments] = nil + n.children[0].parent = n + n.children[0].parentIndex = 0 + for i := 1; i < n.nrSegments+2; i++ { + n.children[i].parentIndex = i + } + } + n.nrSegments++ + sibling.nrSegments-- + if gap.node == sibling && gap.index == sibling.nrSegments { + return evictableRangeGapIterator{n, 0} + } + if gap.node == n { + return evictableRangeGapIterator{n, gap.index + 1} + } + return gap + } + if sibling := n.nextSibling(); sibling != nil && sibling.nrSegments >= evictableRangeminDegree { + n.keys[n.nrSegments] = n.parent.keys[n.parentIndex] + n.values[n.nrSegments] = n.parent.values[n.parentIndex] + n.parent.keys[n.parentIndex] = sibling.keys[0] + n.parent.values[n.parentIndex] = sibling.values[0] + copy(sibling.keys[:sibling.nrSegments-1], sibling.keys[1:]) + copy(sibling.values[:sibling.nrSegments-1], sibling.values[1:]) + evictableRangeSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1]) + if n.hasChildren { + n.children[n.nrSegments+1] = sibling.children[0] + copy(sibling.children[:sibling.nrSegments], sibling.children[1:]) + sibling.children[sibling.nrSegments] = nil + n.children[n.nrSegments+1].parent = n + n.children[n.nrSegments+1].parentIndex = n.nrSegments + 1 + for i := 0; i < sibling.nrSegments; i++ { + sibling.children[i].parentIndex = i + } + } + n.nrSegments++ + sibling.nrSegments-- + if gap.node == sibling { + if gap.index == 0 { + return evictableRangeGapIterator{n, n.nrSegments} + } + return evictableRangeGapIterator{sibling, gap.index - 1} + } + return gap + } + + p := n.parent + if p.nrSegments == 1 { + + left, right := p.children[0], p.children[1] + p.nrSegments = left.nrSegments + right.nrSegments + 1 + p.hasChildren = left.hasChildren + p.keys[left.nrSegments] = p.keys[0] + p.values[left.nrSegments] = p.values[0] + copy(p.keys[:left.nrSegments], left.keys[:left.nrSegments]) + copy(p.values[:left.nrSegments], left.values[:left.nrSegments]) + copy(p.keys[left.nrSegments+1:], right.keys[:right.nrSegments]) + copy(p.values[left.nrSegments+1:], right.values[:right.nrSegments]) + if left.hasChildren { + copy(p.children[:left.nrSegments+1], left.children[:left.nrSegments+1]) + copy(p.children[left.nrSegments+1:], right.children[:right.nrSegments+1]) + for i := 0; i < p.nrSegments+1; i++ { + p.children[i].parent = p + p.children[i].parentIndex = i + } + } else { + p.children[0] = nil + p.children[1] = nil + } + if gap.node == left { + return evictableRangeGapIterator{p, gap.index} + } + if gap.node == right { + return evictableRangeGapIterator{p, gap.index + left.nrSegments + 1} + } + return gap + } + // Merge n and either sibling, along with the segment separating the + // two, into whichever of the two nodes comes first. This is the + // reverse of the non-root splitting case in + // node.rebalanceBeforeInsert. + var left, right *evictableRangenode + if n.parentIndex > 0 { + left = n.prevSibling() + right = n + } else { + left = n + right = n.nextSibling() + } + + if gap.node == right { + gap = evictableRangeGapIterator{left, gap.index + left.nrSegments + 1} + } + left.keys[left.nrSegments] = p.keys[left.parentIndex] + left.values[left.nrSegments] = p.values[left.parentIndex] + copy(left.keys[left.nrSegments+1:], right.keys[:right.nrSegments]) + copy(left.values[left.nrSegments+1:], right.values[:right.nrSegments]) + if left.hasChildren { + copy(left.children[left.nrSegments+1:], right.children[:right.nrSegments+1]) + for i := left.nrSegments + 1; i < left.nrSegments+right.nrSegments+2; i++ { + left.children[i].parent = left + left.children[i].parentIndex = i + } + } + left.nrSegments += right.nrSegments + 1 + copy(p.keys[left.parentIndex:], p.keys[left.parentIndex+1:p.nrSegments]) + copy(p.values[left.parentIndex:], p.values[left.parentIndex+1:p.nrSegments]) + evictableRangeSetFunctions{}.ClearValue(&p.values[p.nrSegments-1]) + copy(p.children[left.parentIndex+1:], p.children[left.parentIndex+2:p.nrSegments+1]) + for i := 0; i < p.nrSegments; i++ { + p.children[i].parentIndex = i + } + p.children[p.nrSegments] = nil + p.nrSegments-- + + n = p + } +} + +// A Iterator is conceptually one of: +// +// - A pointer to a segment in a set; or +// +// - A terminal iterator, which is a sentinel indicating that the end of +// iteration has been reached. +// +// Iterators are copyable values and are meaningfully equality-comparable. The +// zero value of Iterator is a terminal iterator. +// +// Unless otherwise specified, any mutation of a set invalidates all existing +// iterators into the set. +type evictableRangeIterator struct { + // node is the node containing the iterated segment. If the iterator is + // terminal, node is nil. + node *evictableRangenode + + // index is the index of the segment in node.keys/values. + index int +} + +// Ok returns true if the iterator is not terminal. All other methods are only +// valid for non-terminal iterators. +func (seg evictableRangeIterator) Ok() bool { + return seg.node != nil +} + +// Range returns the iterated segment's range key. +func (seg evictableRangeIterator) Range() EvictableRange { + return seg.node.keys[seg.index] +} + +// Start is equivalent to Range().Start, but should be preferred if only the +// start of the range is needed. +func (seg evictableRangeIterator) Start() uint64 { + return seg.node.keys[seg.index].Start +} + +// End is equivalent to Range().End, but should be preferred if only the end of +// the range is needed. +func (seg evictableRangeIterator) End() uint64 { + return seg.node.keys[seg.index].End +} + +// SetRangeUnchecked mutates the iterated segment's range key. This operation +// does not invalidate any iterators. +// +// Preconditions: +// +// - r.Length() > 0. +// +// - The new range must not overlap an existing one: If seg.NextSegment().Ok(), +// then r.end <= seg.NextSegment().Start(); if seg.PrevSegment().Ok(), then +// r.start >= seg.PrevSegment().End(). +func (seg evictableRangeIterator) SetRangeUnchecked(r EvictableRange) { + seg.node.keys[seg.index] = r +} + +// SetRange mutates the iterated segment's range key. If the new range would +// cause the iterated segment to overlap another segment, or if the new range +// is invalid, SetRange panics. This operation does not invalidate any +// iterators. +func (seg evictableRangeIterator) SetRange(r EvictableRange) { + if r.Length() <= 0 { + panic(fmt.Sprintf("invalid segment range %v", r)) + } + if prev := seg.PrevSegment(); prev.Ok() && r.Start < prev.End() { + panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, prev.Range())) + } + if next := seg.NextSegment(); next.Ok() && r.End > next.Start() { + panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, next.Range())) + } + seg.SetRangeUnchecked(r) +} + +// SetStartUnchecked mutates the iterated segment's start. This operation does +// not invalidate any iterators. +// +// Preconditions: The new start must be valid: start < seg.End(); if +// seg.PrevSegment().Ok(), then start >= seg.PrevSegment().End(). +func (seg evictableRangeIterator) SetStartUnchecked(start uint64) { + seg.node.keys[seg.index].Start = start +} + +// SetStart mutates the iterated segment's start. If the new start value would +// cause the iterated segment to overlap another segment, or would result in an +// invalid range, SetStart panics. This operation does not invalidate any +// iterators. +func (seg evictableRangeIterator) SetStart(start uint64) { + if start >= seg.End() { + panic(fmt.Sprintf("new start %v would invalidate segment range %v", start, seg.Range())) + } + if prev := seg.PrevSegment(); prev.Ok() && start < prev.End() { + panic(fmt.Sprintf("new start %v would cause segment range %v to overlap segment range %v", start, seg.Range(), prev.Range())) + } + seg.SetStartUnchecked(start) +} + +// SetEndUnchecked mutates the iterated segment's end. This operation does not +// invalidate any iterators. +// +// Preconditions: The new end must be valid: end > seg.Start(); if +// seg.NextSegment().Ok(), then end <= seg.NextSegment().Start(). +func (seg evictableRangeIterator) SetEndUnchecked(end uint64) { + seg.node.keys[seg.index].End = end +} + +// SetEnd mutates the iterated segment's end. If the new end value would cause +// the iterated segment to overlap another segment, or would result in an +// invalid range, SetEnd panics. This operation does not invalidate any +// iterators. +func (seg evictableRangeIterator) SetEnd(end uint64) { + if end <= seg.Start() { + panic(fmt.Sprintf("new end %v would invalidate segment range %v", end, seg.Range())) + } + if next := seg.NextSegment(); next.Ok() && end > next.Start() { + panic(fmt.Sprintf("new end %v would cause segment range %v to overlap segment range %v", end, seg.Range(), next.Range())) + } + seg.SetEndUnchecked(end) +} + +// Value returns a copy of the iterated segment's value. +func (seg evictableRangeIterator) Value() evictableRangeSetValue { + return seg.node.values[seg.index] +} + +// ValuePtr returns a pointer to the iterated segment's value. The pointer is +// invalidated if the iterator is invalidated. This operation does not +// invalidate any iterators. +func (seg evictableRangeIterator) ValuePtr() *evictableRangeSetValue { + return &seg.node.values[seg.index] +} + +// SetValue mutates the iterated segment's value. This operation does not +// invalidate any iterators. +func (seg evictableRangeIterator) SetValue(val evictableRangeSetValue) { + seg.node.values[seg.index] = val +} + +// PrevSegment returns the iterated segment's predecessor. If there is no +// preceding segment, PrevSegment returns a terminal iterator. +func (seg evictableRangeIterator) PrevSegment() evictableRangeIterator { + if seg.node.hasChildren { + return seg.node.children[seg.index].lastSegment() + } + if seg.index > 0 { + return evictableRangeIterator{seg.node, seg.index - 1} + } + if seg.node.parent == nil { + return evictableRangeIterator{} + } + return evictableRangesegmentBeforePosition(seg.node.parent, seg.node.parentIndex) +} + +// NextSegment returns the iterated segment's successor. If there is no +// succeeding segment, NextSegment returns a terminal iterator. +func (seg evictableRangeIterator) NextSegment() evictableRangeIterator { + if seg.node.hasChildren { + return seg.node.children[seg.index+1].firstSegment() + } + if seg.index < seg.node.nrSegments-1 { + return evictableRangeIterator{seg.node, seg.index + 1} + } + if seg.node.parent == nil { + return evictableRangeIterator{} + } + return evictableRangesegmentAfterPosition(seg.node.parent, seg.node.parentIndex) +} + +// PrevGap returns the gap immediately before the iterated segment. +func (seg evictableRangeIterator) PrevGap() evictableRangeGapIterator { + if seg.node.hasChildren { + + return seg.node.children[seg.index].lastSegment().NextGap() + } + return evictableRangeGapIterator{seg.node, seg.index} +} + +// NextGap returns the gap immediately after the iterated segment. +func (seg evictableRangeIterator) NextGap() evictableRangeGapIterator { + if seg.node.hasChildren { + return seg.node.children[seg.index+1].firstSegment().PrevGap() + } + return evictableRangeGapIterator{seg.node, seg.index + 1} +} + +// PrevNonEmpty returns the iterated segment's predecessor if it is adjacent, +// or the gap before the iterated segment otherwise. If seg.Start() == +// Functions.MinKey(), PrevNonEmpty will return two terminal iterators. +// Otherwise, exactly one of the iterators returned by PrevNonEmpty will be +// non-terminal. +func (seg evictableRangeIterator) PrevNonEmpty() (evictableRangeIterator, evictableRangeGapIterator) { + gap := seg.PrevGap() + if gap.Range().Length() != 0 { + return evictableRangeIterator{}, gap + } + return gap.PrevSegment(), evictableRangeGapIterator{} +} + +// NextNonEmpty returns the iterated segment's successor if it is adjacent, or +// the gap after the iterated segment otherwise. If seg.End() == +// Functions.MaxKey(), NextNonEmpty will return two terminal iterators. +// Otherwise, exactly one of the iterators returned by NextNonEmpty will be +// non-terminal. +func (seg evictableRangeIterator) NextNonEmpty() (evictableRangeIterator, evictableRangeGapIterator) { + gap := seg.NextGap() + if gap.Range().Length() != 0 { + return evictableRangeIterator{}, gap + } + return gap.NextSegment(), evictableRangeGapIterator{} +} + +// A GapIterator is conceptually one of: +// +// - A pointer to a position between two segments, before the first segment, or +// after the last segment in a set, called a *gap*; or +// +// - A terminal iterator, which is a sentinel indicating that the end of +// iteration has been reached. +// +// Note that the gap between two adjacent segments exists (iterators to it are +// non-terminal), but has a length of zero. GapIterator.IsEmpty returns true +// for such gaps. An empty set contains a single gap, spanning the entire range +// of the set's keys. +// +// GapIterators are copyable values and are meaningfully equality-comparable. +// The zero value of GapIterator is a terminal iterator. +// +// Unless otherwise specified, any mutation of a set invalidates all existing +// iterators into the set. +type evictableRangeGapIterator struct { + // The representation of a GapIterator is identical to that of an Iterator, + // except that index corresponds to positions between segments in the same + // way as for node.children (see comment for node.nrSegments). + node *evictableRangenode + index int +} + +// Ok returns true if the iterator is not terminal. All other methods are only +// valid for non-terminal iterators. +func (gap evictableRangeGapIterator) Ok() bool { + return gap.node != nil +} + +// Range returns the range spanned by the iterated gap. +func (gap evictableRangeGapIterator) Range() EvictableRange { + return EvictableRange{gap.Start(), gap.End()} +} + +// Start is equivalent to Range().Start, but should be preferred if only the +// start of the range is needed. +func (gap evictableRangeGapIterator) Start() uint64 { + if ps := gap.PrevSegment(); ps.Ok() { + return ps.End() + } + return evictableRangeSetFunctions{}.MinKey() +} + +// End is equivalent to Range().End, but should be preferred if only the end of +// the range is needed. +func (gap evictableRangeGapIterator) End() uint64 { + if ns := gap.NextSegment(); ns.Ok() { + return ns.Start() + } + return evictableRangeSetFunctions{}.MaxKey() +} + +// IsEmpty returns true if the iterated gap is empty (that is, the "gap" is +// between two adjacent segments.) +func (gap evictableRangeGapIterator) IsEmpty() bool { + return gap.Range().Length() == 0 +} + +// PrevSegment returns the segment immediately before the iterated gap. If no +// such segment exists, PrevSegment returns a terminal iterator. +func (gap evictableRangeGapIterator) PrevSegment() evictableRangeIterator { + return evictableRangesegmentBeforePosition(gap.node, gap.index) +} + +// NextSegment returns the segment immediately after the iterated gap. If no +// such segment exists, NextSegment returns a terminal iterator. +func (gap evictableRangeGapIterator) NextSegment() evictableRangeIterator { + return evictableRangesegmentAfterPosition(gap.node, gap.index) +} + +// PrevGap returns the iterated gap's predecessor. If no such gap exists, +// PrevGap returns a terminal iterator. +func (gap evictableRangeGapIterator) PrevGap() evictableRangeGapIterator { + seg := gap.PrevSegment() + if !seg.Ok() { + return evictableRangeGapIterator{} + } + return seg.PrevGap() +} + +// NextGap returns the iterated gap's successor. If no such gap exists, NextGap +// returns a terminal iterator. +func (gap evictableRangeGapIterator) NextGap() evictableRangeGapIterator { + seg := gap.NextSegment() + if !seg.Ok() { + return evictableRangeGapIterator{} + } + return seg.NextGap() +} + +// segmentBeforePosition returns the predecessor segment of the position given +// by n.children[i], which may or may not contain a child. If no such segment +// exists, segmentBeforePosition returns a terminal iterator. +func evictableRangesegmentBeforePosition(n *evictableRangenode, i int) evictableRangeIterator { + for i == 0 { + if n.parent == nil { + return evictableRangeIterator{} + } + n, i = n.parent, n.parentIndex + } + return evictableRangeIterator{n, i - 1} +} + +// segmentAfterPosition returns the successor segment of the position given by +// n.children[i], which may or may not contain a child. If no such segment +// exists, segmentAfterPosition returns a terminal iterator. +func evictableRangesegmentAfterPosition(n *evictableRangenode, i int) evictableRangeIterator { + for i == n.nrSegments { + if n.parent == nil { + return evictableRangeIterator{} + } + n, i = n.parent, n.parentIndex + } + return evictableRangeIterator{n, i} +} + +func evictableRangezeroValueSlice(slice []evictableRangeSetValue) { + + for i := range slice { + evictableRangeSetFunctions{}.ClearValue(&slice[i]) + } +} + +func evictableRangezeroNodeSlice(slice []*evictableRangenode) { + for i := range slice { + slice[i] = nil + } +} + +// String stringifies a Set for debugging. +func (s *evictableRangeSet) String() string { + return s.root.String() +} + +// String stringifies a node (and all of its children) for debugging. +func (n *evictableRangenode) String() string { + var buf bytes.Buffer + n.writeDebugString(&buf, "") + return buf.String() +} + +func (n *evictableRangenode) writeDebugString(buf *bytes.Buffer, prefix string) { + if n.hasChildren != (n.nrSegments > 0 && n.children[0] != nil) { + buf.WriteString(prefix) + buf.WriteString(fmt.Sprintf("WARNING: inconsistent value of hasChildren: got %v, want %v\n", n.hasChildren, !n.hasChildren)) + } + for i := 0; i < n.nrSegments; i++ { + if child := n.children[i]; child != nil { + cprefix := fmt.Sprintf("%s- % 3d ", prefix, i) + if child.parent != n || child.parentIndex != i { + buf.WriteString(cprefix) + buf.WriteString(fmt.Sprintf("WARNING: inconsistent linkage to parent: got (%p, %d), want (%p, %d)\n", child.parent, child.parentIndex, n, i)) + } + child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i)) + } + buf.WriteString(prefix) + buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i])) + } + if child := n.children[n.nrSegments]; child != nil { + child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments)) + } +} + +// SegmentDataSlices represents segments from a set as slices of start, end, and +// values. SegmentDataSlices is primarily used as an intermediate representation +// for save/restore and the layout here is optimized for that. +// +// +stateify savable +type evictableRangeSegmentDataSlices struct { + Start []uint64 + End []uint64 + Values []evictableRangeSetValue +} + +// ExportSortedSlice returns a copy of all segments in the given set, in ascending +// key order. +func (s *evictableRangeSet) ExportSortedSlices() *evictableRangeSegmentDataSlices { + var sds evictableRangeSegmentDataSlices + for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { + sds.Start = append(sds.Start, seg.Start()) + sds.End = append(sds.End, seg.End()) + sds.Values = append(sds.Values, seg.Value()) + } + sds.Start = sds.Start[:len(sds.Start):len(sds.Start)] + sds.End = sds.End[:len(sds.End):len(sds.End)] + sds.Values = sds.Values[:len(sds.Values):len(sds.Values)] + return &sds +} + +// ImportSortedSlice initializes the given set from the given slice. +// +// Preconditions: s must be empty. sds must represent a valid set (the segments +// in sds must have valid lengths that do not overlap). The segments in sds +// must be sorted in ascending key order. +func (s *evictableRangeSet) ImportSortedSlices(sds *evictableRangeSegmentDataSlices) error { + if !s.IsEmpty() { + return fmt.Errorf("cannot import into non-empty set %v", s) + } + gap := s.FirstGap() + for i := range sds.Start { + r := EvictableRange{sds.Start[i], sds.End[i]} + if !gap.Range().IsSupersetOf(r) { + return fmt.Errorf("segment overlaps a preceding segment or is incorrectly sorted: [%d, %d) => %v", sds.Start[i], sds.End[i], sds.Values[i]) + } + gap = s.InsertWithoutMerging(gap, r, sds.Values[i]).NextGap() + } + return nil +} +func (s *evictableRangeSet) saveRoot() *evictableRangeSegmentDataSlices { + return s.ExportSortedSlices() +} + +func (s *evictableRangeSet) loadRoot(sds *evictableRangeSegmentDataSlices) { + if err := s.ImportSortedSlices(sds); err != nil { + panic(err) + } +} diff --git a/pkg/sentry/pgalloc/pgalloc_state_autogen.go b/pkg/sentry/pgalloc/pgalloc_state_autogen.go new file mode 100755 index 000000000..1cfacc241 --- /dev/null +++ b/pkg/sentry/pgalloc/pgalloc_state_autogen.go @@ -0,0 +1,146 @@ +// automatically generated by stateify. + +package pgalloc + +import ( + "gvisor.dev/gvisor/pkg/state" +) + +func (x *EvictableRange) beforeSave() {} +func (x *EvictableRange) save(m state.Map) { + x.beforeSave() + m.Save("Start", &x.Start) + m.Save("End", &x.End) +} + +func (x *EvictableRange) afterLoad() {} +func (x *EvictableRange) load(m state.Map) { + m.Load("Start", &x.Start) + m.Load("End", &x.End) +} + +func (x *evictableRangeSet) beforeSave() {} +func (x *evictableRangeSet) save(m state.Map) { + x.beforeSave() + var root *evictableRangeSegmentDataSlices = x.saveRoot() + m.SaveValue("root", root) +} + +func (x *evictableRangeSet) afterLoad() {} +func (x *evictableRangeSet) load(m state.Map) { + m.LoadValue("root", new(*evictableRangeSegmentDataSlices), func(y interface{}) { x.loadRoot(y.(*evictableRangeSegmentDataSlices)) }) +} + +func (x *evictableRangenode) beforeSave() {} +func (x *evictableRangenode) save(m state.Map) { + x.beforeSave() + m.Save("nrSegments", &x.nrSegments) + m.Save("parent", &x.parent) + m.Save("parentIndex", &x.parentIndex) + m.Save("hasChildren", &x.hasChildren) + m.Save("keys", &x.keys) + m.Save("values", &x.values) + m.Save("children", &x.children) +} + +func (x *evictableRangenode) afterLoad() {} +func (x *evictableRangenode) load(m state.Map) { + m.Load("nrSegments", &x.nrSegments) + m.Load("parent", &x.parent) + m.Load("parentIndex", &x.parentIndex) + m.Load("hasChildren", &x.hasChildren) + m.Load("keys", &x.keys) + m.Load("values", &x.values) + m.Load("children", &x.children) +} + +func (x *evictableRangeSegmentDataSlices) beforeSave() {} +func (x *evictableRangeSegmentDataSlices) save(m state.Map) { + x.beforeSave() + m.Save("Start", &x.Start) + m.Save("End", &x.End) + m.Save("Values", &x.Values) +} + +func (x *evictableRangeSegmentDataSlices) afterLoad() {} +func (x *evictableRangeSegmentDataSlices) load(m state.Map) { + m.Load("Start", &x.Start) + m.Load("End", &x.End) + m.Load("Values", &x.Values) +} + +func (x *usageInfo) beforeSave() {} +func (x *usageInfo) save(m state.Map) { + x.beforeSave() + m.Save("kind", &x.kind) + m.Save("knownCommitted", &x.knownCommitted) + m.Save("refs", &x.refs) +} + +func (x *usageInfo) afterLoad() {} +func (x *usageInfo) load(m state.Map) { + m.Load("kind", &x.kind) + m.Load("knownCommitted", &x.knownCommitted) + m.Load("refs", &x.refs) +} + +func (x *usageSet) beforeSave() {} +func (x *usageSet) save(m state.Map) { + x.beforeSave() + var root *usageSegmentDataSlices = x.saveRoot() + m.SaveValue("root", root) +} + +func (x *usageSet) afterLoad() {} +func (x *usageSet) load(m state.Map) { + m.LoadValue("root", new(*usageSegmentDataSlices), func(y interface{}) { x.loadRoot(y.(*usageSegmentDataSlices)) }) +} + +func (x *usagenode) beforeSave() {} +func (x *usagenode) save(m state.Map) { + x.beforeSave() + m.Save("nrSegments", &x.nrSegments) + m.Save("parent", &x.parent) + m.Save("parentIndex", &x.parentIndex) + m.Save("hasChildren", &x.hasChildren) + m.Save("keys", &x.keys) + m.Save("values", &x.values) + m.Save("children", &x.children) +} + +func (x *usagenode) afterLoad() {} +func (x *usagenode) load(m state.Map) { + m.Load("nrSegments", &x.nrSegments) + m.Load("parent", &x.parent) + m.Load("parentIndex", &x.parentIndex) + m.Load("hasChildren", &x.hasChildren) + m.Load("keys", &x.keys) + m.Load("values", &x.values) + m.Load("children", &x.children) +} + +func (x *usageSegmentDataSlices) beforeSave() {} +func (x *usageSegmentDataSlices) save(m state.Map) { + x.beforeSave() + m.Save("Start", &x.Start) + m.Save("End", &x.End) + m.Save("Values", &x.Values) +} + +func (x *usageSegmentDataSlices) afterLoad() {} +func (x *usageSegmentDataSlices) load(m state.Map) { + m.Load("Start", &x.Start) + m.Load("End", &x.End) + m.Load("Values", &x.Values) +} + +func init() { + state.Register("pgalloc.EvictableRange", (*EvictableRange)(nil), state.Fns{Save: (*EvictableRange).save, Load: (*EvictableRange).load}) + state.Register("pgalloc.evictableRangeSet", (*evictableRangeSet)(nil), state.Fns{Save: (*evictableRangeSet).save, Load: (*evictableRangeSet).load}) + state.Register("pgalloc.evictableRangenode", (*evictableRangenode)(nil), state.Fns{Save: (*evictableRangenode).save, Load: (*evictableRangenode).load}) + state.Register("pgalloc.evictableRangeSegmentDataSlices", (*evictableRangeSegmentDataSlices)(nil), state.Fns{Save: (*evictableRangeSegmentDataSlices).save, Load: (*evictableRangeSegmentDataSlices).load}) + state.Register("pgalloc.usageInfo", (*usageInfo)(nil), state.Fns{Save: (*usageInfo).save, Load: (*usageInfo).load}) + state.Register("pgalloc.usageSet", (*usageSet)(nil), state.Fns{Save: (*usageSet).save, Load: (*usageSet).load}) + state.Register("pgalloc.usagenode", (*usagenode)(nil), state.Fns{Save: (*usagenode).save, Load: (*usagenode).load}) + state.Register("pgalloc.usageSegmentDataSlices", (*usageSegmentDataSlices)(nil), state.Fns{Save: (*usageSegmentDataSlices).save, Load: (*usageSegmentDataSlices).load}) +} diff --git a/pkg/sentry/pgalloc/pgalloc_test.go b/pkg/sentry/pgalloc/pgalloc_test.go deleted file mode 100644 index 428e6a859..000000000 --- a/pkg/sentry/pgalloc/pgalloc_test.go +++ /dev/null @@ -1,168 +0,0 @@ -// Copyright 2018 The gVisor Authors. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package pgalloc - -import ( - "testing" - - "gvisor.dev/gvisor/pkg/sentry/usermem" -) - -const ( - page = usermem.PageSize - hugepage = usermem.HugePageSize -) - -func TestFindUnallocatedRange(t *testing.T) { - for _, test := range []struct { - desc string - usage *usageSegmentDataSlices - start uint64 - length uint64 - alignment uint64 - unallocated uint64 - minUnallocated uint64 - }{ - { - desc: "Initial allocation succeeds", - usage: &usageSegmentDataSlices{}, - start: 0, - length: page, - alignment: page, - unallocated: 0, - minUnallocated: 0, - }, - { - desc: "Allocation begins at start of file", - usage: &usageSegmentDataSlices{ - Start: []uint64{page}, - End: []uint64{2 * page}, - Values: []usageInfo{{refs: 1}}, - }, - start: 0, - length: page, - alignment: page, - unallocated: 0, - minUnallocated: 0, - }, - { - desc: "In-use frames are not allocatable", - usage: &usageSegmentDataSlices{ - Start: []uint64{0, page}, - End: []uint64{page, 2 * page}, - Values: []usageInfo{{refs: 1}, {refs: 2}}, - }, - start: 0, - length: page, - alignment: page, - unallocated: 2 * page, - minUnallocated: 2 * page, - }, - { - desc: "Reclaimable frames are not allocatable", - usage: &usageSegmentDataSlices{ - Start: []uint64{0, page, 2 * page}, - End: []uint64{page, 2 * page, 3 * page}, - Values: []usageInfo{{refs: 1}, {refs: 0}, {refs: 1}}, - }, - start: 0, - length: page, - alignment: page, - unallocated: 3 * page, - minUnallocated: 3 * page, - }, - { - desc: "Gaps between in-use frames are allocatable", - usage: &usageSegmentDataSlices{ - Start: []uint64{0, 2 * page}, - End: []uint64{page, 3 * page}, - Values: []usageInfo{{refs: 1}, {refs: 1}}, - }, - start: 0, - length: page, - alignment: page, - unallocated: page, - minUnallocated: page, - }, - { - desc: "Inadequately-sized gaps are rejected", - usage: &usageSegmentDataSlices{ - Start: []uint64{0, 2 * page}, - End: []uint64{page, 3 * page}, - Values: []usageInfo{{refs: 1}, {refs: 1}}, - }, - start: 0, - length: 2 * page, - alignment: page, - unallocated: 3 * page, - minUnallocated: page, - }, - { - desc: "Hugepage alignment is honored", - usage: &usageSegmentDataSlices{ - Start: []uint64{0, hugepage + page}, - // Hugepage-sized gap here that shouldn't be allocated from - // since it's incorrectly aligned. - End: []uint64{page, hugepage + 2*page}, - Values: []usageInfo{{refs: 1}, {refs: 1}}, - }, - start: 0, - length: hugepage, - alignment: hugepage, - unallocated: 2 * hugepage, - minUnallocated: page, - }, - { - desc: "Pages before start ignored", - usage: &usageSegmentDataSlices{ - Start: []uint64{page, 3 * page}, - End: []uint64{2 * page, 4 * page}, - Values: []usageInfo{{refs: 1}, {refs: 2}}, - }, - start: page, - length: page, - alignment: page, - unallocated: 2 * page, - minUnallocated: 2 * page, - }, - { - desc: "start may be in the middle of segment", - usage: &usageSegmentDataSlices{ - Start: []uint64{0, 3 * page}, - End: []uint64{2 * page, 4 * page}, - Values: []usageInfo{{refs: 1}, {refs: 2}}, - }, - start: page, - length: page, - alignment: page, - unallocated: 2 * page, - minUnallocated: 2 * page, - }, - } { - t.Run(test.desc, func(t *testing.T) { - var usage usageSet - if err := usage.ImportSortedSlices(test.usage); err != nil { - t.Fatalf("Failed to initialize usage from %v: %v", test.usage, err) - } - unallocated, minUnallocated := findUnallocatedRange(&usage, test.start, test.length, test.alignment) - if unallocated != test.unallocated { - t.Errorf("findUnallocatedRange(%v, %x, %x, %x): got unallocated %x, wanted %x", test.usage, test.start, test.length, test.alignment, unallocated, test.unallocated) - } - if minUnallocated != test.minUnallocated { - t.Errorf("findUnallocatedRange(%v, %x, %x, %x): got minUnallocated %x, wanted %x", test.usage, test.start, test.length, test.alignment, minUnallocated, test.minUnallocated) - } - }) - } -} diff --git a/pkg/sentry/pgalloc/usage_set.go b/pkg/sentry/pgalloc/usage_set.go new file mode 100755 index 000000000..37b9235ca --- /dev/null +++ b/pkg/sentry/pgalloc/usage_set.go @@ -0,0 +1,1274 @@ +package pgalloc + +import ( + __generics_imported0 "gvisor.dev/gvisor/pkg/sentry/platform" +) + +import ( + "bytes" + "fmt" +) + +const ( + // minDegree is the minimum degree of an internal node in a Set B-tree. + // + // - Any non-root node has at least minDegree-1 segments. + // + // - Any non-root internal (non-leaf) node has at least minDegree children. + // + // - The root node may have fewer than minDegree-1 segments, but it may + // only have 0 segments if the tree is empty. + // + // Our implementation requires minDegree >= 3. Higher values of minDegree + // usually improve performance, but increase memory usage for small sets. + usageminDegree = 10 + + usagemaxDegree = 2 * usageminDegree +) + +// A Set is a mapping of segments with non-overlapping Range keys. The zero +// value for a Set is an empty set. Set values are not safely movable nor +// copyable. Set is thread-compatible. +// +// +stateify savable +type usageSet struct { + root usagenode `state:".(*usageSegmentDataSlices)"` +} + +// IsEmpty returns true if the set contains no segments. +func (s *usageSet) IsEmpty() bool { + return s.root.nrSegments == 0 +} + +// IsEmptyRange returns true iff no segments in the set overlap the given +// range. This is semantically equivalent to s.SpanRange(r) == 0, but may be +// more efficient. +func (s *usageSet) IsEmptyRange(r __generics_imported0.FileRange) bool { + switch { + case r.Length() < 0: + panic(fmt.Sprintf("invalid range %v", r)) + case r.Length() == 0: + return true + } + _, gap := s.Find(r.Start) + if !gap.Ok() { + return false + } + return r.End <= gap.End() +} + +// Span returns the total size of all segments in the set. +func (s *usageSet) Span() uint64 { + var sz uint64 + for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { + sz += seg.Range().Length() + } + return sz +} + +// SpanRange returns the total size of the intersection of segments in the set +// with the given range. +func (s *usageSet) SpanRange(r __generics_imported0.FileRange) uint64 { + switch { + case r.Length() < 0: + panic(fmt.Sprintf("invalid range %v", r)) + case r.Length() == 0: + return 0 + } + var sz uint64 + for seg := s.LowerBoundSegment(r.Start); seg.Ok() && seg.Start() < r.End; seg = seg.NextSegment() { + sz += seg.Range().Intersect(r).Length() + } + return sz +} + +// FirstSegment returns the first segment in the set. If the set is empty, +// FirstSegment returns a terminal iterator. +func (s *usageSet) FirstSegment() usageIterator { + if s.root.nrSegments == 0 { + return usageIterator{} + } + return s.root.firstSegment() +} + +// LastSegment returns the last segment in the set. If the set is empty, +// LastSegment returns a terminal iterator. +func (s *usageSet) LastSegment() usageIterator { + if s.root.nrSegments == 0 { + return usageIterator{} + } + return s.root.lastSegment() +} + +// FirstGap returns the first gap in the set. +func (s *usageSet) FirstGap() usageGapIterator { + n := &s.root + for n.hasChildren { + n = n.children[0] + } + return usageGapIterator{n, 0} +} + +// LastGap returns the last gap in the set. +func (s *usageSet) LastGap() usageGapIterator { + n := &s.root + for n.hasChildren { + n = n.children[n.nrSegments] + } + return usageGapIterator{n, n.nrSegments} +} + +// Find returns the segment or gap whose range contains the given key. If a +// segment is found, the returned Iterator is non-terminal and the +// returned GapIterator is terminal. Otherwise, the returned Iterator is +// terminal and the returned GapIterator is non-terminal. +func (s *usageSet) Find(key uint64) (usageIterator, usageGapIterator) { + n := &s.root + for { + + lower := 0 + upper := n.nrSegments + for lower < upper { + i := lower + (upper-lower)/2 + if r := n.keys[i]; key < r.End { + if key >= r.Start { + return usageIterator{n, i}, usageGapIterator{} + } + upper = i + } else { + lower = i + 1 + } + } + i := lower + if !n.hasChildren { + return usageIterator{}, usageGapIterator{n, i} + } + n = n.children[i] + } +} + +// FindSegment returns the segment whose range contains the given key. If no +// such segment exists, FindSegment returns a terminal iterator. +func (s *usageSet) FindSegment(key uint64) usageIterator { + seg, _ := s.Find(key) + return seg +} + +// LowerBoundSegment returns the segment with the lowest range that contains a +// key greater than or equal to min. If no such segment exists, +// LowerBoundSegment returns a terminal iterator. +func (s *usageSet) LowerBoundSegment(min uint64) usageIterator { + seg, gap := s.Find(min) + if seg.Ok() { + return seg + } + return gap.NextSegment() +} + +// UpperBoundSegment returns the segment with the highest range that contains a +// key less than or equal to max. If no such segment exists, UpperBoundSegment +// returns a terminal iterator. +func (s *usageSet) UpperBoundSegment(max uint64) usageIterator { + seg, gap := s.Find(max) + if seg.Ok() { + return seg + } + return gap.PrevSegment() +} + +// FindGap returns the gap containing the given key. If no such gap exists +// (i.e. the set contains a segment containing that key), FindGap returns a +// terminal iterator. +func (s *usageSet) FindGap(key uint64) usageGapIterator { + _, gap := s.Find(key) + return gap +} + +// LowerBoundGap returns the gap with the lowest range that is greater than or +// equal to min. +func (s *usageSet) LowerBoundGap(min uint64) usageGapIterator { + seg, gap := s.Find(min) + if gap.Ok() { + return gap + } + return seg.NextGap() +} + +// UpperBoundGap returns the gap with the highest range that is less than or +// equal to max. +func (s *usageSet) UpperBoundGap(max uint64) usageGapIterator { + seg, gap := s.Find(max) + if gap.Ok() { + return gap + } + return seg.PrevGap() +} + +// Add inserts the given segment into the set and returns true. If the new +// segment can be merged with adjacent segments, Add will do so. If the new +// segment would overlap an existing segment, Add returns false. If Add +// succeeds, all existing iterators are invalidated. +func (s *usageSet) Add(r __generics_imported0.FileRange, val usageInfo) bool { + if r.Length() <= 0 { + panic(fmt.Sprintf("invalid segment range %v", r)) + } + gap := s.FindGap(r.Start) + if !gap.Ok() { + return false + } + if r.End > gap.End() { + return false + } + s.Insert(gap, r, val) + return true +} + +// AddWithoutMerging inserts the given segment into the set and returns true. +// If it would overlap an existing segment, AddWithoutMerging does nothing and +// returns false. If AddWithoutMerging succeeds, all existing iterators are +// invalidated. +func (s *usageSet) AddWithoutMerging(r __generics_imported0.FileRange, val usageInfo) bool { + if r.Length() <= 0 { + panic(fmt.Sprintf("invalid segment range %v", r)) + } + gap := s.FindGap(r.Start) + if !gap.Ok() { + return false + } + if r.End > gap.End() { + return false + } + s.InsertWithoutMergingUnchecked(gap, r, val) + return true +} + +// Insert inserts the given segment into the given gap. If the new segment can +// be merged with adjacent segments, Insert will do so. Insert returns an +// iterator to the segment containing the inserted value (which may have been +// merged with other values). All existing iterators (including gap, but not +// including the returned iterator) are invalidated. +// +// If the gap cannot accommodate the segment, or if r is invalid, Insert panics. +// +// Insert is semantically equivalent to a InsertWithoutMerging followed by a +// Merge, but may be more efficient. Note that there is no unchecked variant of +// Insert since Insert must retrieve and inspect gap's predecessor and +// successor segments regardless. +func (s *usageSet) Insert(gap usageGapIterator, r __generics_imported0.FileRange, val usageInfo) usageIterator { + if r.Length() <= 0 { + panic(fmt.Sprintf("invalid segment range %v", r)) + } + prev, next := gap.PrevSegment(), gap.NextSegment() + if prev.Ok() && prev.End() > r.Start { + panic(fmt.Sprintf("new segment %v overlaps predecessor %v", r, prev.Range())) + } + if next.Ok() && next.Start() < r.End { + panic(fmt.Sprintf("new segment %v overlaps successor %v", r, next.Range())) + } + if prev.Ok() && prev.End() == r.Start { + if mval, ok := (usageSetFunctions{}).Merge(prev.Range(), prev.Value(), r, val); ok { + prev.SetEndUnchecked(r.End) + prev.SetValue(mval) + if next.Ok() && next.Start() == r.End { + val = mval + if mval, ok := (usageSetFunctions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok { + prev.SetEndUnchecked(next.End()) + prev.SetValue(mval) + return s.Remove(next).PrevSegment() + } + } + return prev + } + } + if next.Ok() && next.Start() == r.End { + if mval, ok := (usageSetFunctions{}).Merge(r, val, next.Range(), next.Value()); ok { + next.SetStartUnchecked(r.Start) + next.SetValue(mval) + return next + } + } + return s.InsertWithoutMergingUnchecked(gap, r, val) +} + +// InsertWithoutMerging inserts the given segment into the given gap and +// returns an iterator to the inserted segment. All existing iterators +// (including gap, but not including the returned iterator) are invalidated. +// +// If the gap cannot accommodate the segment, or if r is invalid, +// InsertWithoutMerging panics. +func (s *usageSet) InsertWithoutMerging(gap usageGapIterator, r __generics_imported0.FileRange, val usageInfo) usageIterator { + if r.Length() <= 0 { + panic(fmt.Sprintf("invalid segment range %v", r)) + } + if gr := gap.Range(); !gr.IsSupersetOf(r) { + panic(fmt.Sprintf("cannot insert segment range %v into gap range %v", r, gr)) + } + return s.InsertWithoutMergingUnchecked(gap, r, val) +} + +// InsertWithoutMergingUnchecked inserts the given segment into the given gap +// and returns an iterator to the inserted segment. All existing iterators +// (including gap, but not including the returned iterator) are invalidated. +// +// Preconditions: r.Start >= gap.Start(); r.End <= gap.End(). +func (s *usageSet) InsertWithoutMergingUnchecked(gap usageGapIterator, r __generics_imported0.FileRange, val usageInfo) usageIterator { + gap = gap.node.rebalanceBeforeInsert(gap) + copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments]) + copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments]) + gap.node.keys[gap.index] = r + gap.node.values[gap.index] = val + gap.node.nrSegments++ + return usageIterator{gap.node, gap.index} +} + +// Remove removes the given segment and returns an iterator to the vacated gap. +// All existing iterators (including seg, but not including the returned +// iterator) are invalidated. +func (s *usageSet) Remove(seg usageIterator) usageGapIterator { + + if seg.node.hasChildren { + + victim := seg.PrevSegment() + + seg.SetRangeUnchecked(victim.Range()) + seg.SetValue(victim.Value()) + return s.Remove(victim).NextGap() + } + copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments]) + copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments]) + usageSetFunctions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1]) + seg.node.nrSegments-- + return seg.node.rebalanceAfterRemove(usageGapIterator{seg.node, seg.index}) +} + +// RemoveAll removes all segments from the set. All existing iterators are +// invalidated. +func (s *usageSet) RemoveAll() { + s.root = usagenode{} +} + +// RemoveRange removes all segments in the given range. An iterator to the +// newly formed gap is returned, and all existing iterators are invalidated. +func (s *usageSet) RemoveRange(r __generics_imported0.FileRange) usageGapIterator { + seg, gap := s.Find(r.Start) + if seg.Ok() { + seg = s.Isolate(seg, r) + gap = s.Remove(seg) + } + for seg = gap.NextSegment(); seg.Ok() && seg.Start() < r.End; seg = gap.NextSegment() { + seg = s.Isolate(seg, r) + gap = s.Remove(seg) + } + return gap +} + +// Merge attempts to merge two neighboring segments. If successful, Merge +// returns an iterator to the merged segment, and all existing iterators are +// invalidated. Otherwise, Merge returns a terminal iterator. +// +// If first is not the predecessor of second, Merge panics. +func (s *usageSet) Merge(first, second usageIterator) usageIterator { + if first.NextSegment() != second { + panic(fmt.Sprintf("attempt to merge non-neighboring segments %v, %v", first.Range(), second.Range())) + } + return s.MergeUnchecked(first, second) +} + +// MergeUnchecked attempts to merge two neighboring segments. If successful, +// MergeUnchecked returns an iterator to the merged segment, and all existing +// iterators are invalidated. Otherwise, MergeUnchecked returns a terminal +// iterator. +// +// Precondition: first is the predecessor of second: first.NextSegment() == +// second, first == second.PrevSegment(). +func (s *usageSet) MergeUnchecked(first, second usageIterator) usageIterator { + if first.End() == second.Start() { + if mval, ok := (usageSetFunctions{}).Merge(first.Range(), first.Value(), second.Range(), second.Value()); ok { + + first.SetEndUnchecked(second.End()) + first.SetValue(mval) + return s.Remove(second).PrevSegment() + } + } + return usageIterator{} +} + +// MergeAll attempts to merge all adjacent segments in the set. All existing +// iterators are invalidated. +func (s *usageSet) MergeAll() { + seg := s.FirstSegment() + if !seg.Ok() { + return + } + next := seg.NextSegment() + for next.Ok() { + if mseg := s.MergeUnchecked(seg, next); mseg.Ok() { + seg, next = mseg, mseg.NextSegment() + } else { + seg, next = next, next.NextSegment() + } + } +} + +// MergeRange attempts to merge all adjacent segments that contain a key in the +// specific range. All existing iterators are invalidated. +func (s *usageSet) MergeRange(r __generics_imported0.FileRange) { + seg := s.LowerBoundSegment(r.Start) + if !seg.Ok() { + return + } + next := seg.NextSegment() + for next.Ok() && next.Range().Start < r.End { + if mseg := s.MergeUnchecked(seg, next); mseg.Ok() { + seg, next = mseg, mseg.NextSegment() + } else { + seg, next = next, next.NextSegment() + } + } +} + +// MergeAdjacent attempts to merge the segment containing r.Start with its +// predecessor, and the segment containing r.End-1 with its successor. +func (s *usageSet) MergeAdjacent(r __generics_imported0.FileRange) { + first := s.FindSegment(r.Start) + if first.Ok() { + if prev := first.PrevSegment(); prev.Ok() { + s.Merge(prev, first) + } + } + last := s.FindSegment(r.End - 1) + if last.Ok() { + if next := last.NextSegment(); next.Ok() { + s.Merge(last, next) + } + } +} + +// Split splits the given segment at the given key and returns iterators to the +// two resulting segments. All existing iterators (including seg, but not +// including the returned iterators) are invalidated. +// +// If the segment cannot be split at split (because split is at the start or +// end of the segment's range, so splitting would produce a segment with zero +// length, or because split falls outside the segment's range altogether), +// Split panics. +func (s *usageSet) Split(seg usageIterator, split uint64) (usageIterator, usageIterator) { + if !seg.Range().CanSplitAt(split) { + panic(fmt.Sprintf("can't split %v at %v", seg.Range(), split)) + } + return s.SplitUnchecked(seg, split) +} + +// SplitUnchecked splits the given segment at the given key and returns +// iterators to the two resulting segments. All existing iterators (including +// seg, but not including the returned iterators) are invalidated. +// +// Preconditions: seg.Start() < key < seg.End(). +func (s *usageSet) SplitUnchecked(seg usageIterator, split uint64) (usageIterator, usageIterator) { + val1, val2 := (usageSetFunctions{}).Split(seg.Range(), seg.Value(), split) + end2 := seg.End() + seg.SetEndUnchecked(split) + seg.SetValue(val1) + seg2 := s.InsertWithoutMergingUnchecked(seg.NextGap(), __generics_imported0.FileRange{split, end2}, val2) + + return seg2.PrevSegment(), seg2 +} + +// SplitAt splits the segment straddling split, if one exists. SplitAt returns +// true if a segment was split and false otherwise. If SplitAt splits a +// segment, all existing iterators are invalidated. +func (s *usageSet) SplitAt(split uint64) bool { + if seg := s.FindSegment(split); seg.Ok() && seg.Range().CanSplitAt(split) { + s.SplitUnchecked(seg, split) + return true + } + return false +} + +// Isolate ensures that the given segment's range does not escape r by +// splitting at r.Start and r.End if necessary, and returns an updated iterator +// to the bounded segment. All existing iterators (including seg, but not +// including the returned iterators) are invalidated. +func (s *usageSet) Isolate(seg usageIterator, r __generics_imported0.FileRange) usageIterator { + if seg.Range().CanSplitAt(r.Start) { + _, seg = s.SplitUnchecked(seg, r.Start) + } + if seg.Range().CanSplitAt(r.End) { + seg, _ = s.SplitUnchecked(seg, r.End) + } + return seg +} + +// ApplyContiguous applies a function to a contiguous range of segments, +// splitting if necessary. The function is applied until the first gap is +// encountered, at which point the gap is returned. If the function is applied +// across the entire range, a terminal gap is returned. All existing iterators +// are invalidated. +// +// N.B. The Iterator must not be invalidated by the function. +func (s *usageSet) ApplyContiguous(r __generics_imported0.FileRange, fn func(seg usageIterator)) usageGapIterator { + seg, gap := s.Find(r.Start) + if !seg.Ok() { + return gap + } + for { + seg = s.Isolate(seg, r) + fn(seg) + if seg.End() >= r.End { + return usageGapIterator{} + } + gap = seg.NextGap() + if !gap.IsEmpty() { + return gap + } + seg = gap.NextSegment() + if !seg.Ok() { + + return usageGapIterator{} + } + } +} + +// +stateify savable +type usagenode struct { + // An internal binary tree node looks like: + // + // K + // / \ + // Cl Cr + // + // where all keys in the subtree rooted by Cl (the left subtree) are less + // than K (the key of the parent node), and all keys in the subtree rooted + // by Cr (the right subtree) are greater than K. + // + // An internal B-tree node's indexes work out to look like: + // + // K0 K1 K2 ... Kn-1 + // / \/ \/ \ ... / \ + // C0 C1 C2 C3 ... Cn-1 Cn + // + // where n is nrSegments. + nrSegments int + + // parent is a pointer to this node's parent. If this node is root, parent + // is nil. + parent *usagenode + + // parentIndex is the index of this node in parent.children. + parentIndex int + + // Flag for internal nodes that is technically redundant with "children[0] + // != nil", but is stored in the first cache line. "hasChildren" rather + // than "isLeaf" because false must be the correct value for an empty root. + hasChildren bool + + // Nodes store keys and values in separate arrays to maximize locality in + // the common case (scanning keys for lookup). + keys [usagemaxDegree - 1]__generics_imported0.FileRange + values [usagemaxDegree - 1]usageInfo + children [usagemaxDegree]*usagenode +} + +// firstSegment returns the first segment in the subtree rooted by n. +// +// Preconditions: n.nrSegments != 0. +func (n *usagenode) firstSegment() usageIterator { + for n.hasChildren { + n = n.children[0] + } + return usageIterator{n, 0} +} + +// lastSegment returns the last segment in the subtree rooted by n. +// +// Preconditions: n.nrSegments != 0. +func (n *usagenode) lastSegment() usageIterator { + for n.hasChildren { + n = n.children[n.nrSegments] + } + return usageIterator{n, n.nrSegments - 1} +} + +func (n *usagenode) prevSibling() *usagenode { + if n.parent == nil || n.parentIndex == 0 { + return nil + } + return n.parent.children[n.parentIndex-1] +} + +func (n *usagenode) nextSibling() *usagenode { + if n.parent == nil || n.parentIndex == n.parent.nrSegments { + return nil + } + return n.parent.children[n.parentIndex+1] +} + +// rebalanceBeforeInsert splits n and its ancestors if they are full, as +// required for insertion, and returns an updated iterator to the position +// represented by gap. +func (n *usagenode) rebalanceBeforeInsert(gap usageGapIterator) usageGapIterator { + if n.parent != nil { + gap = n.parent.rebalanceBeforeInsert(gap) + } + if n.nrSegments < usagemaxDegree-1 { + return gap + } + if n.parent == nil { + + left := &usagenode{ + nrSegments: usageminDegree - 1, + parent: n, + parentIndex: 0, + hasChildren: n.hasChildren, + } + right := &usagenode{ + nrSegments: usageminDegree - 1, + parent: n, + parentIndex: 1, + hasChildren: n.hasChildren, + } + copy(left.keys[:usageminDegree-1], n.keys[:usageminDegree-1]) + copy(left.values[:usageminDegree-1], n.values[:usageminDegree-1]) + copy(right.keys[:usageminDegree-1], n.keys[usageminDegree:]) + copy(right.values[:usageminDegree-1], n.values[usageminDegree:]) + n.keys[0], n.values[0] = n.keys[usageminDegree-1], n.values[usageminDegree-1] + usagezeroValueSlice(n.values[1:]) + if n.hasChildren { + copy(left.children[:usageminDegree], n.children[:usageminDegree]) + copy(right.children[:usageminDegree], n.children[usageminDegree:]) + usagezeroNodeSlice(n.children[2:]) + for i := 0; i < usageminDegree; i++ { + left.children[i].parent = left + left.children[i].parentIndex = i + right.children[i].parent = right + right.children[i].parentIndex = i + } + } + n.nrSegments = 1 + n.hasChildren = true + n.children[0] = left + n.children[1] = right + if gap.node != n { + return gap + } + if gap.index < usageminDegree { + return usageGapIterator{left, gap.index} + } + return usageGapIterator{right, gap.index - usageminDegree} + } + + copy(n.parent.keys[n.parentIndex+1:], n.parent.keys[n.parentIndex:n.parent.nrSegments]) + copy(n.parent.values[n.parentIndex+1:], n.parent.values[n.parentIndex:n.parent.nrSegments]) + n.parent.keys[n.parentIndex], n.parent.values[n.parentIndex] = n.keys[usageminDegree-1], n.values[usageminDegree-1] + copy(n.parent.children[n.parentIndex+2:], n.parent.children[n.parentIndex+1:n.parent.nrSegments+1]) + for i := n.parentIndex + 2; i < n.parent.nrSegments+2; i++ { + n.parent.children[i].parentIndex = i + } + sibling := &usagenode{ + nrSegments: usageminDegree - 1, + parent: n.parent, + parentIndex: n.parentIndex + 1, + hasChildren: n.hasChildren, + } + n.parent.children[n.parentIndex+1] = sibling + n.parent.nrSegments++ + copy(sibling.keys[:usageminDegree-1], n.keys[usageminDegree:]) + copy(sibling.values[:usageminDegree-1], n.values[usageminDegree:]) + usagezeroValueSlice(n.values[usageminDegree-1:]) + if n.hasChildren { + copy(sibling.children[:usageminDegree], n.children[usageminDegree:]) + usagezeroNodeSlice(n.children[usageminDegree:]) + for i := 0; i < usageminDegree; i++ { + sibling.children[i].parent = sibling + sibling.children[i].parentIndex = i + } + } + n.nrSegments = usageminDegree - 1 + + if gap.node != n { + return gap + } + if gap.index < usageminDegree { + return gap + } + return usageGapIterator{sibling, gap.index - usageminDegree} +} + +// rebalanceAfterRemove "unsplits" n and its ancestors if they are deficient +// (contain fewer segments than required by B-tree invariants), as required for +// removal, and returns an updated iterator to the position represented by gap. +// +// Precondition: n is the only node in the tree that may currently violate a +// B-tree invariant. +func (n *usagenode) rebalanceAfterRemove(gap usageGapIterator) usageGapIterator { + for { + if n.nrSegments >= usageminDegree-1 { + return gap + } + if n.parent == nil { + + return gap + } + + if sibling := n.prevSibling(); sibling != nil && sibling.nrSegments >= usageminDegree { + copy(n.keys[1:], n.keys[:n.nrSegments]) + copy(n.values[1:], n.values[:n.nrSegments]) + n.keys[0] = n.parent.keys[n.parentIndex-1] + n.values[0] = n.parent.values[n.parentIndex-1] + n.parent.keys[n.parentIndex-1] = sibling.keys[sibling.nrSegments-1] + n.parent.values[n.parentIndex-1] = sibling.values[sibling.nrSegments-1] + usageSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1]) + if n.hasChildren { + copy(n.children[1:], n.children[:n.nrSegments+1]) + n.children[0] = sibling.children[sibling.nrSegments] + sibling.children[sibling.nrSegments] = nil + n.children[0].parent = n + n.children[0].parentIndex = 0 + for i := 1; i < n.nrSegments+2; i++ { + n.children[i].parentIndex = i + } + } + n.nrSegments++ + sibling.nrSegments-- + if gap.node == sibling && gap.index == sibling.nrSegments { + return usageGapIterator{n, 0} + } + if gap.node == n { + return usageGapIterator{n, gap.index + 1} + } + return gap + } + if sibling := n.nextSibling(); sibling != nil && sibling.nrSegments >= usageminDegree { + n.keys[n.nrSegments] = n.parent.keys[n.parentIndex] + n.values[n.nrSegments] = n.parent.values[n.parentIndex] + n.parent.keys[n.parentIndex] = sibling.keys[0] + n.parent.values[n.parentIndex] = sibling.values[0] + copy(sibling.keys[:sibling.nrSegments-1], sibling.keys[1:]) + copy(sibling.values[:sibling.nrSegments-1], sibling.values[1:]) + usageSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1]) + if n.hasChildren { + n.children[n.nrSegments+1] = sibling.children[0] + copy(sibling.children[:sibling.nrSegments], sibling.children[1:]) + sibling.children[sibling.nrSegments] = nil + n.children[n.nrSegments+1].parent = n + n.children[n.nrSegments+1].parentIndex = n.nrSegments + 1 + for i := 0; i < sibling.nrSegments; i++ { + sibling.children[i].parentIndex = i + } + } + n.nrSegments++ + sibling.nrSegments-- + if gap.node == sibling { + if gap.index == 0 { + return usageGapIterator{n, n.nrSegments} + } + return usageGapIterator{sibling, gap.index - 1} + } + return gap + } + + p := n.parent + if p.nrSegments == 1 { + + left, right := p.children[0], p.children[1] + p.nrSegments = left.nrSegments + right.nrSegments + 1 + p.hasChildren = left.hasChildren + p.keys[left.nrSegments] = p.keys[0] + p.values[left.nrSegments] = p.values[0] + copy(p.keys[:left.nrSegments], left.keys[:left.nrSegments]) + copy(p.values[:left.nrSegments], left.values[:left.nrSegments]) + copy(p.keys[left.nrSegments+1:], right.keys[:right.nrSegments]) + copy(p.values[left.nrSegments+1:], right.values[:right.nrSegments]) + if left.hasChildren { + copy(p.children[:left.nrSegments+1], left.children[:left.nrSegments+1]) + copy(p.children[left.nrSegments+1:], right.children[:right.nrSegments+1]) + for i := 0; i < p.nrSegments+1; i++ { + p.children[i].parent = p + p.children[i].parentIndex = i + } + } else { + p.children[0] = nil + p.children[1] = nil + } + if gap.node == left { + return usageGapIterator{p, gap.index} + } + if gap.node == right { + return usageGapIterator{p, gap.index + left.nrSegments + 1} + } + return gap + } + // Merge n and either sibling, along with the segment separating the + // two, into whichever of the two nodes comes first. This is the + // reverse of the non-root splitting case in + // node.rebalanceBeforeInsert. + var left, right *usagenode + if n.parentIndex > 0 { + left = n.prevSibling() + right = n + } else { + left = n + right = n.nextSibling() + } + + if gap.node == right { + gap = usageGapIterator{left, gap.index + left.nrSegments + 1} + } + left.keys[left.nrSegments] = p.keys[left.parentIndex] + left.values[left.nrSegments] = p.values[left.parentIndex] + copy(left.keys[left.nrSegments+1:], right.keys[:right.nrSegments]) + copy(left.values[left.nrSegments+1:], right.values[:right.nrSegments]) + if left.hasChildren { + copy(left.children[left.nrSegments+1:], right.children[:right.nrSegments+1]) + for i := left.nrSegments + 1; i < left.nrSegments+right.nrSegments+2; i++ { + left.children[i].parent = left + left.children[i].parentIndex = i + } + } + left.nrSegments += right.nrSegments + 1 + copy(p.keys[left.parentIndex:], p.keys[left.parentIndex+1:p.nrSegments]) + copy(p.values[left.parentIndex:], p.values[left.parentIndex+1:p.nrSegments]) + usageSetFunctions{}.ClearValue(&p.values[p.nrSegments-1]) + copy(p.children[left.parentIndex+1:], p.children[left.parentIndex+2:p.nrSegments+1]) + for i := 0; i < p.nrSegments; i++ { + p.children[i].parentIndex = i + } + p.children[p.nrSegments] = nil + p.nrSegments-- + + n = p + } +} + +// A Iterator is conceptually one of: +// +// - A pointer to a segment in a set; or +// +// - A terminal iterator, which is a sentinel indicating that the end of +// iteration has been reached. +// +// Iterators are copyable values and are meaningfully equality-comparable. The +// zero value of Iterator is a terminal iterator. +// +// Unless otherwise specified, any mutation of a set invalidates all existing +// iterators into the set. +type usageIterator struct { + // node is the node containing the iterated segment. If the iterator is + // terminal, node is nil. + node *usagenode + + // index is the index of the segment in node.keys/values. + index int +} + +// Ok returns true if the iterator is not terminal. All other methods are only +// valid for non-terminal iterators. +func (seg usageIterator) Ok() bool { + return seg.node != nil +} + +// Range returns the iterated segment's range key. +func (seg usageIterator) Range() __generics_imported0.FileRange { + return seg.node.keys[seg.index] +} + +// Start is equivalent to Range().Start, but should be preferred if only the +// start of the range is needed. +func (seg usageIterator) Start() uint64 { + return seg.node.keys[seg.index].Start +} + +// End is equivalent to Range().End, but should be preferred if only the end of +// the range is needed. +func (seg usageIterator) End() uint64 { + return seg.node.keys[seg.index].End +} + +// SetRangeUnchecked mutates the iterated segment's range key. This operation +// does not invalidate any iterators. +// +// Preconditions: +// +// - r.Length() > 0. +// +// - The new range must not overlap an existing one: If seg.NextSegment().Ok(), +// then r.end <= seg.NextSegment().Start(); if seg.PrevSegment().Ok(), then +// r.start >= seg.PrevSegment().End(). +func (seg usageIterator) SetRangeUnchecked(r __generics_imported0.FileRange) { + seg.node.keys[seg.index] = r +} + +// SetRange mutates the iterated segment's range key. If the new range would +// cause the iterated segment to overlap another segment, or if the new range +// is invalid, SetRange panics. This operation does not invalidate any +// iterators. +func (seg usageIterator) SetRange(r __generics_imported0.FileRange) { + if r.Length() <= 0 { + panic(fmt.Sprintf("invalid segment range %v", r)) + } + if prev := seg.PrevSegment(); prev.Ok() && r.Start < prev.End() { + panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, prev.Range())) + } + if next := seg.NextSegment(); next.Ok() && r.End > next.Start() { + panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, next.Range())) + } + seg.SetRangeUnchecked(r) +} + +// SetStartUnchecked mutates the iterated segment's start. This operation does +// not invalidate any iterators. +// +// Preconditions: The new start must be valid: start < seg.End(); if +// seg.PrevSegment().Ok(), then start >= seg.PrevSegment().End(). +func (seg usageIterator) SetStartUnchecked(start uint64) { + seg.node.keys[seg.index].Start = start +} + +// SetStart mutates the iterated segment's start. If the new start value would +// cause the iterated segment to overlap another segment, or would result in an +// invalid range, SetStart panics. This operation does not invalidate any +// iterators. +func (seg usageIterator) SetStart(start uint64) { + if start >= seg.End() { + panic(fmt.Sprintf("new start %v would invalidate segment range %v", start, seg.Range())) + } + if prev := seg.PrevSegment(); prev.Ok() && start < prev.End() { + panic(fmt.Sprintf("new start %v would cause segment range %v to overlap segment range %v", start, seg.Range(), prev.Range())) + } + seg.SetStartUnchecked(start) +} + +// SetEndUnchecked mutates the iterated segment's end. This operation does not +// invalidate any iterators. +// +// Preconditions: The new end must be valid: end > seg.Start(); if +// seg.NextSegment().Ok(), then end <= seg.NextSegment().Start(). +func (seg usageIterator) SetEndUnchecked(end uint64) { + seg.node.keys[seg.index].End = end +} + +// SetEnd mutates the iterated segment's end. If the new end value would cause +// the iterated segment to overlap another segment, or would result in an +// invalid range, SetEnd panics. This operation does not invalidate any +// iterators. +func (seg usageIterator) SetEnd(end uint64) { + if end <= seg.Start() { + panic(fmt.Sprintf("new end %v would invalidate segment range %v", end, seg.Range())) + } + if next := seg.NextSegment(); next.Ok() && end > next.Start() { + panic(fmt.Sprintf("new end %v would cause segment range %v to overlap segment range %v", end, seg.Range(), next.Range())) + } + seg.SetEndUnchecked(end) +} + +// Value returns a copy of the iterated segment's value. +func (seg usageIterator) Value() usageInfo { + return seg.node.values[seg.index] +} + +// ValuePtr returns a pointer to the iterated segment's value. The pointer is +// invalidated if the iterator is invalidated. This operation does not +// invalidate any iterators. +func (seg usageIterator) ValuePtr() *usageInfo { + return &seg.node.values[seg.index] +} + +// SetValue mutates the iterated segment's value. This operation does not +// invalidate any iterators. +func (seg usageIterator) SetValue(val usageInfo) { + seg.node.values[seg.index] = val +} + +// PrevSegment returns the iterated segment's predecessor. If there is no +// preceding segment, PrevSegment returns a terminal iterator. +func (seg usageIterator) PrevSegment() usageIterator { + if seg.node.hasChildren { + return seg.node.children[seg.index].lastSegment() + } + if seg.index > 0 { + return usageIterator{seg.node, seg.index - 1} + } + if seg.node.parent == nil { + return usageIterator{} + } + return usagesegmentBeforePosition(seg.node.parent, seg.node.parentIndex) +} + +// NextSegment returns the iterated segment's successor. If there is no +// succeeding segment, NextSegment returns a terminal iterator. +func (seg usageIterator) NextSegment() usageIterator { + if seg.node.hasChildren { + return seg.node.children[seg.index+1].firstSegment() + } + if seg.index < seg.node.nrSegments-1 { + return usageIterator{seg.node, seg.index + 1} + } + if seg.node.parent == nil { + return usageIterator{} + } + return usagesegmentAfterPosition(seg.node.parent, seg.node.parentIndex) +} + +// PrevGap returns the gap immediately before the iterated segment. +func (seg usageIterator) PrevGap() usageGapIterator { + if seg.node.hasChildren { + + return seg.node.children[seg.index].lastSegment().NextGap() + } + return usageGapIterator{seg.node, seg.index} +} + +// NextGap returns the gap immediately after the iterated segment. +func (seg usageIterator) NextGap() usageGapIterator { + if seg.node.hasChildren { + return seg.node.children[seg.index+1].firstSegment().PrevGap() + } + return usageGapIterator{seg.node, seg.index + 1} +} + +// PrevNonEmpty returns the iterated segment's predecessor if it is adjacent, +// or the gap before the iterated segment otherwise. If seg.Start() == +// Functions.MinKey(), PrevNonEmpty will return two terminal iterators. +// Otherwise, exactly one of the iterators returned by PrevNonEmpty will be +// non-terminal. +func (seg usageIterator) PrevNonEmpty() (usageIterator, usageGapIterator) { + gap := seg.PrevGap() + if gap.Range().Length() != 0 { + return usageIterator{}, gap + } + return gap.PrevSegment(), usageGapIterator{} +} + +// NextNonEmpty returns the iterated segment's successor if it is adjacent, or +// the gap after the iterated segment otherwise. If seg.End() == +// Functions.MaxKey(), NextNonEmpty will return two terminal iterators. +// Otherwise, exactly one of the iterators returned by NextNonEmpty will be +// non-terminal. +func (seg usageIterator) NextNonEmpty() (usageIterator, usageGapIterator) { + gap := seg.NextGap() + if gap.Range().Length() != 0 { + return usageIterator{}, gap + } + return gap.NextSegment(), usageGapIterator{} +} + +// A GapIterator is conceptually one of: +// +// - A pointer to a position between two segments, before the first segment, or +// after the last segment in a set, called a *gap*; or +// +// - A terminal iterator, which is a sentinel indicating that the end of +// iteration has been reached. +// +// Note that the gap between two adjacent segments exists (iterators to it are +// non-terminal), but has a length of zero. GapIterator.IsEmpty returns true +// for such gaps. An empty set contains a single gap, spanning the entire range +// of the set's keys. +// +// GapIterators are copyable values and are meaningfully equality-comparable. +// The zero value of GapIterator is a terminal iterator. +// +// Unless otherwise specified, any mutation of a set invalidates all existing +// iterators into the set. +type usageGapIterator struct { + // The representation of a GapIterator is identical to that of an Iterator, + // except that index corresponds to positions between segments in the same + // way as for node.children (see comment for node.nrSegments). + node *usagenode + index int +} + +// Ok returns true if the iterator is not terminal. All other methods are only +// valid for non-terminal iterators. +func (gap usageGapIterator) Ok() bool { + return gap.node != nil +} + +// Range returns the range spanned by the iterated gap. +func (gap usageGapIterator) Range() __generics_imported0.FileRange { + return __generics_imported0.FileRange{gap.Start(), gap.End()} +} + +// Start is equivalent to Range().Start, but should be preferred if only the +// start of the range is needed. +func (gap usageGapIterator) Start() uint64 { + if ps := gap.PrevSegment(); ps.Ok() { + return ps.End() + } + return usageSetFunctions{}.MinKey() +} + +// End is equivalent to Range().End, but should be preferred if only the end of +// the range is needed. +func (gap usageGapIterator) End() uint64 { + if ns := gap.NextSegment(); ns.Ok() { + return ns.Start() + } + return usageSetFunctions{}.MaxKey() +} + +// IsEmpty returns true if the iterated gap is empty (that is, the "gap" is +// between two adjacent segments.) +func (gap usageGapIterator) IsEmpty() bool { + return gap.Range().Length() == 0 +} + +// PrevSegment returns the segment immediately before the iterated gap. If no +// such segment exists, PrevSegment returns a terminal iterator. +func (gap usageGapIterator) PrevSegment() usageIterator { + return usagesegmentBeforePosition(gap.node, gap.index) +} + +// NextSegment returns the segment immediately after the iterated gap. If no +// such segment exists, NextSegment returns a terminal iterator. +func (gap usageGapIterator) NextSegment() usageIterator { + return usagesegmentAfterPosition(gap.node, gap.index) +} + +// PrevGap returns the iterated gap's predecessor. If no such gap exists, +// PrevGap returns a terminal iterator. +func (gap usageGapIterator) PrevGap() usageGapIterator { + seg := gap.PrevSegment() + if !seg.Ok() { + return usageGapIterator{} + } + return seg.PrevGap() +} + +// NextGap returns the iterated gap's successor. If no such gap exists, NextGap +// returns a terminal iterator. +func (gap usageGapIterator) NextGap() usageGapIterator { + seg := gap.NextSegment() + if !seg.Ok() { + return usageGapIterator{} + } + return seg.NextGap() +} + +// segmentBeforePosition returns the predecessor segment of the position given +// by n.children[i], which may or may not contain a child. If no such segment +// exists, segmentBeforePosition returns a terminal iterator. +func usagesegmentBeforePosition(n *usagenode, i int) usageIterator { + for i == 0 { + if n.parent == nil { + return usageIterator{} + } + n, i = n.parent, n.parentIndex + } + return usageIterator{n, i - 1} +} + +// segmentAfterPosition returns the successor segment of the position given by +// n.children[i], which may or may not contain a child. If no such segment +// exists, segmentAfterPosition returns a terminal iterator. +func usagesegmentAfterPosition(n *usagenode, i int) usageIterator { + for i == n.nrSegments { + if n.parent == nil { + return usageIterator{} + } + n, i = n.parent, n.parentIndex + } + return usageIterator{n, i} +} + +func usagezeroValueSlice(slice []usageInfo) { + + for i := range slice { + usageSetFunctions{}.ClearValue(&slice[i]) + } +} + +func usagezeroNodeSlice(slice []*usagenode) { + for i := range slice { + slice[i] = nil + } +} + +// String stringifies a Set for debugging. +func (s *usageSet) String() string { + return s.root.String() +} + +// String stringifies a node (and all of its children) for debugging. +func (n *usagenode) String() string { + var buf bytes.Buffer + n.writeDebugString(&buf, "") + return buf.String() +} + +func (n *usagenode) writeDebugString(buf *bytes.Buffer, prefix string) { + if n.hasChildren != (n.nrSegments > 0 && n.children[0] != nil) { + buf.WriteString(prefix) + buf.WriteString(fmt.Sprintf("WARNING: inconsistent value of hasChildren: got %v, want %v\n", n.hasChildren, !n.hasChildren)) + } + for i := 0; i < n.nrSegments; i++ { + if child := n.children[i]; child != nil { + cprefix := fmt.Sprintf("%s- % 3d ", prefix, i) + if child.parent != n || child.parentIndex != i { + buf.WriteString(cprefix) + buf.WriteString(fmt.Sprintf("WARNING: inconsistent linkage to parent: got (%p, %d), want (%p, %d)\n", child.parent, child.parentIndex, n, i)) + } + child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i)) + } + buf.WriteString(prefix) + buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i])) + } + if child := n.children[n.nrSegments]; child != nil { + child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments)) + } +} + +// SegmentDataSlices represents segments from a set as slices of start, end, and +// values. SegmentDataSlices is primarily used as an intermediate representation +// for save/restore and the layout here is optimized for that. +// +// +stateify savable +type usageSegmentDataSlices struct { + Start []uint64 + End []uint64 + Values []usageInfo +} + +// ExportSortedSlice returns a copy of all segments in the given set, in ascending +// key order. +func (s *usageSet) ExportSortedSlices() *usageSegmentDataSlices { + var sds usageSegmentDataSlices + for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { + sds.Start = append(sds.Start, seg.Start()) + sds.End = append(sds.End, seg.End()) + sds.Values = append(sds.Values, seg.Value()) + } + sds.Start = sds.Start[:len(sds.Start):len(sds.Start)] + sds.End = sds.End[:len(sds.End):len(sds.End)] + sds.Values = sds.Values[:len(sds.Values):len(sds.Values)] + return &sds +} + +// ImportSortedSlice initializes the given set from the given slice. +// +// Preconditions: s must be empty. sds must represent a valid set (the segments +// in sds must have valid lengths that do not overlap). The segments in sds +// must be sorted in ascending key order. +func (s *usageSet) ImportSortedSlices(sds *usageSegmentDataSlices) error { + if !s.IsEmpty() { + return fmt.Errorf("cannot import into non-empty set %v", s) + } + gap := s.FirstGap() + for i := range sds.Start { + r := __generics_imported0.FileRange{sds.Start[i], sds.End[i]} + if !gap.Range().IsSupersetOf(r) { + return fmt.Errorf("segment overlaps a preceding segment or is incorrectly sorted: [%d, %d) => %v", sds.Start[i], sds.End[i], sds.Values[i]) + } + gap = s.InsertWithoutMerging(gap, r, sds.Values[i]).NextGap() + } + return nil +} +func (s *usageSet) saveRoot() *usageSegmentDataSlices { + return s.ExportSortedSlices() +} + +func (s *usageSet) loadRoot(sds *usageSegmentDataSlices) { + if err := s.ImportSortedSlices(sds); err != nil { + panic(err) + } +} |