summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/pgalloc
diff options
context:
space:
mode:
Diffstat (limited to 'pkg/sentry/pgalloc')
-rw-r--r--pkg/sentry/pgalloc/context.go48
-rwxr-xr-xpkg/sentry/pgalloc/evictable_range.go62
-rwxr-xr-xpkg/sentry/pgalloc/evictable_range_set.go1270
-rw-r--r--pkg/sentry/pgalloc/pgalloc.go1187
-rwxr-xr-xpkg/sentry/pgalloc/pgalloc_state_autogen.go146
-rw-r--r--pkg/sentry/pgalloc/pgalloc_unsafe.go40
-rw-r--r--pkg/sentry/pgalloc/save_restore.go210
-rwxr-xr-xpkg/sentry/pgalloc/usage_set.go1274
8 files changed, 4237 insertions, 0 deletions
diff --git a/pkg/sentry/pgalloc/context.go b/pkg/sentry/pgalloc/context.go
new file mode 100644
index 000000000..cb9809b1f
--- /dev/null
+++ b/pkg/sentry/pgalloc/context.go
@@ -0,0 +1,48 @@
+// Copyright 2019 The gVisor Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package pgalloc
+
+import (
+ "gvisor.googlesource.com/gvisor/pkg/sentry/context"
+)
+
+// contextID is this package's type for context.Context.Value keys.
+type contextID int
+
+const (
+ // CtxMemoryFile is a Context.Value key for a MemoryFile.
+ CtxMemoryFile contextID = iota
+
+ // CtxMemoryFileProvider is a Context.Value key for a MemoryFileProvider.
+ CtxMemoryFileProvider
+)
+
+// MemoryFileFromContext returns the MemoryFile used by ctx, or nil if no such
+// MemoryFile exists.
+func MemoryFileFromContext(ctx context.Context) *MemoryFile {
+ if v := ctx.Value(CtxMemoryFile); v != nil {
+ return v.(*MemoryFile)
+ }
+ return nil
+}
+
+// MemoryFileProviderFromContext returns the MemoryFileProvider used by ctx, or nil if no such
+// MemoryFileProvider exists.
+func MemoryFileProviderFromContext(ctx context.Context) MemoryFileProvider {
+ if v := ctx.Value(CtxMemoryFileProvider); v != nil {
+ return v.(MemoryFileProvider)
+ }
+ return nil
+}
diff --git a/pkg/sentry/pgalloc/evictable_range.go b/pkg/sentry/pgalloc/evictable_range.go
new file mode 100755
index 000000000..10ce2ff44
--- /dev/null
+++ b/pkg/sentry/pgalloc/evictable_range.go
@@ -0,0 +1,62 @@
+package pgalloc
+
+// A Range represents a contiguous range of T.
+//
+// +stateify savable
+type EvictableRange struct {
+ // Start is the inclusive start of the range.
+ Start uint64
+
+ // End is the exclusive end of the range.
+ End uint64
+}
+
+// WellFormed returns true if r.Start <= r.End. All other methods on a Range
+// require that the Range is well-formed.
+func (r EvictableRange) WellFormed() bool {
+ return r.Start <= r.End
+}
+
+// Length returns the length of the range.
+func (r EvictableRange) Length() uint64 {
+ return r.End - r.Start
+}
+
+// Contains returns true if r contains x.
+func (r EvictableRange) Contains(x uint64) bool {
+ return r.Start <= x && x < r.End
+}
+
+// Overlaps returns true if r and r2 overlap.
+func (r EvictableRange) Overlaps(r2 EvictableRange) bool {
+ return r.Start < r2.End && r2.Start < r.End
+}
+
+// IsSupersetOf returns true if r is a superset of r2; that is, the range r2 is
+// contained within r.
+func (r EvictableRange) IsSupersetOf(r2 EvictableRange) bool {
+ return r.Start <= r2.Start && r.End >= r2.End
+}
+
+// Intersect returns a range consisting of the intersection between r and r2.
+// If r and r2 do not overlap, Intersect returns a range with unspecified
+// bounds, but for which Length() == 0.
+func (r EvictableRange) Intersect(r2 EvictableRange) EvictableRange {
+ if r.Start < r2.Start {
+ r.Start = r2.Start
+ }
+ if r.End > r2.End {
+ r.End = r2.End
+ }
+ if r.End < r.Start {
+ r.End = r.Start
+ }
+ return r
+}
+
+// CanSplitAt returns true if it is legal to split a segment spanning the range
+// r at x; that is, splitting at x would produce two ranges, both of which have
+// non-zero length.
+func (r EvictableRange) CanSplitAt(x uint64) bool {
+ return r.Contains(x) && r.Start < x
+}
diff --git a/pkg/sentry/pgalloc/evictable_range_set.go b/pkg/sentry/pgalloc/evictable_range_set.go
new file mode 100755
index 000000000..a4dcb1663
--- /dev/null
+++ b/pkg/sentry/pgalloc/evictable_range_set.go
@@ -0,0 +1,1270 @@
+package pgalloc
+
+import (
+ "bytes"
+ "fmt"
+)
+
+const (
+ // minDegree is the minimum degree of an internal node in a Set B-tree.
+ //
+ // - Any non-root node has at least minDegree-1 segments.
+ //
+ // - Any non-root internal (non-leaf) node has at least minDegree children.
+ //
+ // - The root node may have fewer than minDegree-1 segments, but it may
+ // only have 0 segments if the tree is empty.
+ //
+ // Our implementation requires minDegree >= 3. Higher values of minDegree
+ // usually improve performance, but increase memory usage for small sets.
+ evictableRangeminDegree = 3
+
+ evictableRangemaxDegree = 2 * evictableRangeminDegree
+)
+
+// A Set is a mapping of segments with non-overlapping Range keys. The zero
+// value for a Set is an empty set. Set values are not safely movable nor
+// copyable. Set is thread-compatible.
+//
+// +stateify savable
+type evictableRangeSet struct {
+ root evictableRangenode `state:".(*evictableRangeSegmentDataSlices)"`
+}
+
+// IsEmpty returns true if the set contains no segments.
+func (s *evictableRangeSet) IsEmpty() bool {
+ return s.root.nrSegments == 0
+}
+
+// IsEmptyRange returns true iff no segments in the set overlap the given
+// range. This is semantically equivalent to s.SpanRange(r) == 0, but may be
+// more efficient.
+func (s *evictableRangeSet) IsEmptyRange(r EvictableRange) bool {
+ switch {
+ case r.Length() < 0:
+ panic(fmt.Sprintf("invalid range %v", r))
+ case r.Length() == 0:
+ return true
+ }
+ _, gap := s.Find(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ return r.End <= gap.End()
+}
+
+// Span returns the total size of all segments in the set.
+func (s *evictableRangeSet) Span() uint64 {
+ var sz uint64
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ sz += seg.Range().Length()
+ }
+ return sz
+}
+
+// SpanRange returns the total size of the intersection of segments in the set
+// with the given range.
+func (s *evictableRangeSet) SpanRange(r EvictableRange) uint64 {
+ switch {
+ case r.Length() < 0:
+ panic(fmt.Sprintf("invalid range %v", r))
+ case r.Length() == 0:
+ return 0
+ }
+ var sz uint64
+ for seg := s.LowerBoundSegment(r.Start); seg.Ok() && seg.Start() < r.End; seg = seg.NextSegment() {
+ sz += seg.Range().Intersect(r).Length()
+ }
+ return sz
+}
+
+// FirstSegment returns the first segment in the set. If the set is empty,
+// FirstSegment returns a terminal iterator.
+func (s *evictableRangeSet) FirstSegment() evictableRangeIterator {
+ if s.root.nrSegments == 0 {
+ return evictableRangeIterator{}
+ }
+ return s.root.firstSegment()
+}
+
+// LastSegment returns the last segment in the set. If the set is empty,
+// LastSegment returns a terminal iterator.
+func (s *evictableRangeSet) LastSegment() evictableRangeIterator {
+ if s.root.nrSegments == 0 {
+ return evictableRangeIterator{}
+ }
+ return s.root.lastSegment()
+}
+
+// FirstGap returns the first gap in the set.
+func (s *evictableRangeSet) FirstGap() evictableRangeGapIterator {
+ n := &s.root
+ for n.hasChildren {
+ n = n.children[0]
+ }
+ return evictableRangeGapIterator{n, 0}
+}
+
+// LastGap returns the last gap in the set.
+func (s *evictableRangeSet) LastGap() evictableRangeGapIterator {
+ n := &s.root
+ for n.hasChildren {
+ n = n.children[n.nrSegments]
+ }
+ return evictableRangeGapIterator{n, n.nrSegments}
+}
+
+// Find returns the segment or gap whose range contains the given key. If a
+// segment is found, the returned Iterator is non-terminal and the
+// returned GapIterator is terminal. Otherwise, the returned Iterator is
+// terminal and the returned GapIterator is non-terminal.
+func (s *evictableRangeSet) Find(key uint64) (evictableRangeIterator, evictableRangeGapIterator) {
+ n := &s.root
+ for {
+
+ lower := 0
+ upper := n.nrSegments
+ for lower < upper {
+ i := lower + (upper-lower)/2
+ if r := n.keys[i]; key < r.End {
+ if key >= r.Start {
+ return evictableRangeIterator{n, i}, evictableRangeGapIterator{}
+ }
+ upper = i
+ } else {
+ lower = i + 1
+ }
+ }
+ i := lower
+ if !n.hasChildren {
+ return evictableRangeIterator{}, evictableRangeGapIterator{n, i}
+ }
+ n = n.children[i]
+ }
+}
+
+// FindSegment returns the segment whose range contains the given key. If no
+// such segment exists, FindSegment returns a terminal iterator.
+func (s *evictableRangeSet) FindSegment(key uint64) evictableRangeIterator {
+ seg, _ := s.Find(key)
+ return seg
+}
+
+// LowerBoundSegment returns the segment with the lowest range that contains a
+// key greater than or equal to min. If no such segment exists,
+// LowerBoundSegment returns a terminal iterator.
+func (s *evictableRangeSet) LowerBoundSegment(min uint64) evictableRangeIterator {
+ seg, gap := s.Find(min)
+ if seg.Ok() {
+ return seg
+ }
+ return gap.NextSegment()
+}
+
+// UpperBoundSegment returns the segment with the highest range that contains a
+// key less than or equal to max. If no such segment exists, UpperBoundSegment
+// returns a terminal iterator.
+func (s *evictableRangeSet) UpperBoundSegment(max uint64) evictableRangeIterator {
+ seg, gap := s.Find(max)
+ if seg.Ok() {
+ return seg
+ }
+ return gap.PrevSegment()
+}
+
+// FindGap returns the gap containing the given key. If no such gap exists
+// (i.e. the set contains a segment containing that key), FindGap returns a
+// terminal iterator.
+func (s *evictableRangeSet) FindGap(key uint64) evictableRangeGapIterator {
+ _, gap := s.Find(key)
+ return gap
+}
+
+// LowerBoundGap returns the gap with the lowest range that is greater than or
+// equal to min.
+func (s *evictableRangeSet) LowerBoundGap(min uint64) evictableRangeGapIterator {
+ seg, gap := s.Find(min)
+ if gap.Ok() {
+ return gap
+ }
+ return seg.NextGap()
+}
+
+// UpperBoundGap returns the gap with the highest range that is less than or
+// equal to max.
+func (s *evictableRangeSet) UpperBoundGap(max uint64) evictableRangeGapIterator {
+ seg, gap := s.Find(max)
+ if gap.Ok() {
+ return gap
+ }
+ return seg.PrevGap()
+}
+
+// Add inserts the given segment into the set and returns true. If the new
+// segment can be merged with adjacent segments, Add will do so. If the new
+// segment would overlap an existing segment, Add returns false. If Add
+// succeeds, all existing iterators are invalidated.
+func (s *evictableRangeSet) Add(r EvictableRange, val evictableRangeSetValue) bool {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ gap := s.FindGap(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ if r.End > gap.End() {
+ return false
+ }
+ s.Insert(gap, r, val)
+ return true
+}
+
+// AddWithoutMerging inserts the given segment into the set and returns true.
+// If it would overlap an existing segment, AddWithoutMerging does nothing and
+// returns false. If AddWithoutMerging succeeds, all existing iterators are
+// invalidated.
+func (s *evictableRangeSet) AddWithoutMerging(r EvictableRange, val evictableRangeSetValue) bool {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ gap := s.FindGap(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ if r.End > gap.End() {
+ return false
+ }
+ s.InsertWithoutMergingUnchecked(gap, r, val)
+ return true
+}
+
+// Insert inserts the given segment into the given gap. If the new segment can
+// be merged with adjacent segments, Insert will do so. Insert returns an
+// iterator to the segment containing the inserted value (which may have been
+// merged with other values). All existing iterators (including gap, but not
+// including the returned iterator) are invalidated.
+//
+// If the gap cannot accommodate the segment, or if r is invalid, Insert panics.
+//
+// Insert is semantically equivalent to a InsertWithoutMerging followed by a
+// Merge, but may be more efficient. Note that there is no unchecked variant of
+// Insert since Insert must retrieve and inspect gap's predecessor and
+// successor segments regardless.
+func (s *evictableRangeSet) Insert(gap evictableRangeGapIterator, r EvictableRange, val evictableRangeSetValue) evictableRangeIterator {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ prev, next := gap.PrevSegment(), gap.NextSegment()
+ if prev.Ok() && prev.End() > r.Start {
+ panic(fmt.Sprintf("new segment %v overlaps predecessor %v", r, prev.Range()))
+ }
+ if next.Ok() && next.Start() < r.End {
+ panic(fmt.Sprintf("new segment %v overlaps successor %v", r, next.Range()))
+ }
+ if prev.Ok() && prev.End() == r.Start {
+ if mval, ok := (evictableRangeSetFunctions{}).Merge(prev.Range(), prev.Value(), r, val); ok {
+ prev.SetEndUnchecked(r.End)
+ prev.SetValue(mval)
+ if next.Ok() && next.Start() == r.End {
+ val = mval
+ if mval, ok := (evictableRangeSetFunctions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok {
+ prev.SetEndUnchecked(next.End())
+ prev.SetValue(mval)
+ return s.Remove(next).PrevSegment()
+ }
+ }
+ return prev
+ }
+ }
+ if next.Ok() && next.Start() == r.End {
+ if mval, ok := (evictableRangeSetFunctions{}).Merge(r, val, next.Range(), next.Value()); ok {
+ next.SetStartUnchecked(r.Start)
+ next.SetValue(mval)
+ return next
+ }
+ }
+ return s.InsertWithoutMergingUnchecked(gap, r, val)
+}
+
+// InsertWithoutMerging inserts the given segment into the given gap and
+// returns an iterator to the inserted segment. All existing iterators
+// (including gap, but not including the returned iterator) are invalidated.
+//
+// If the gap cannot accommodate the segment, or if r is invalid,
+// InsertWithoutMerging panics.
+func (s *evictableRangeSet) InsertWithoutMerging(gap evictableRangeGapIterator, r EvictableRange, val evictableRangeSetValue) evictableRangeIterator {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ if gr := gap.Range(); !gr.IsSupersetOf(r) {
+ panic(fmt.Sprintf("cannot insert segment range %v into gap range %v", r, gr))
+ }
+ return s.InsertWithoutMergingUnchecked(gap, r, val)
+}
+
+// InsertWithoutMergingUnchecked inserts the given segment into the given gap
+// and returns an iterator to the inserted segment. All existing iterators
+// (including gap, but not including the returned iterator) are invalidated.
+//
+// Preconditions: r.Start >= gap.Start(); r.End <= gap.End().
+func (s *evictableRangeSet) InsertWithoutMergingUnchecked(gap evictableRangeGapIterator, r EvictableRange, val evictableRangeSetValue) evictableRangeIterator {
+ gap = gap.node.rebalanceBeforeInsert(gap)
+ copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments])
+ copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments])
+ gap.node.keys[gap.index] = r
+ gap.node.values[gap.index] = val
+ gap.node.nrSegments++
+ return evictableRangeIterator{gap.node, gap.index}
+}
+
+// Remove removes the given segment and returns an iterator to the vacated gap.
+// All existing iterators (including seg, but not including the returned
+// iterator) are invalidated.
+func (s *evictableRangeSet) Remove(seg evictableRangeIterator) evictableRangeGapIterator {
+
+ if seg.node.hasChildren {
+
+ victim := seg.PrevSegment()
+
+ seg.SetRangeUnchecked(victim.Range())
+ seg.SetValue(victim.Value())
+ return s.Remove(victim).NextGap()
+ }
+ copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments])
+ copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments])
+ evictableRangeSetFunctions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1])
+ seg.node.nrSegments--
+ return seg.node.rebalanceAfterRemove(evictableRangeGapIterator{seg.node, seg.index})
+}
+
+// RemoveAll removes all segments from the set. All existing iterators are
+// invalidated.
+func (s *evictableRangeSet) RemoveAll() {
+ s.root = evictableRangenode{}
+}
+
+// RemoveRange removes all segments in the given range. An iterator to the
+// newly formed gap is returned, and all existing iterators are invalidated.
+func (s *evictableRangeSet) RemoveRange(r EvictableRange) evictableRangeGapIterator {
+ seg, gap := s.Find(r.Start)
+ if seg.Ok() {
+ seg = s.Isolate(seg, r)
+ gap = s.Remove(seg)
+ }
+ for seg = gap.NextSegment(); seg.Ok() && seg.Start() < r.End; seg = gap.NextSegment() {
+ seg = s.Isolate(seg, r)
+ gap = s.Remove(seg)
+ }
+ return gap
+}
+
+// Merge attempts to merge two neighboring segments. If successful, Merge
+// returns an iterator to the merged segment, and all existing iterators are
+// invalidated. Otherwise, Merge returns a terminal iterator.
+//
+// If first is not the predecessor of second, Merge panics.
+func (s *evictableRangeSet) Merge(first, second evictableRangeIterator) evictableRangeIterator {
+ if first.NextSegment() != second {
+ panic(fmt.Sprintf("attempt to merge non-neighboring segments %v, %v", first.Range(), second.Range()))
+ }
+ return s.MergeUnchecked(first, second)
+}
+
+// MergeUnchecked attempts to merge two neighboring segments. If successful,
+// MergeUnchecked returns an iterator to the merged segment, and all existing
+// iterators are invalidated. Otherwise, MergeUnchecked returns a terminal
+// iterator.
+//
+// Precondition: first is the predecessor of second: first.NextSegment() ==
+// second, first == second.PrevSegment().
+func (s *evictableRangeSet) MergeUnchecked(first, second evictableRangeIterator) evictableRangeIterator {
+ if first.End() == second.Start() {
+ if mval, ok := (evictableRangeSetFunctions{}).Merge(first.Range(), first.Value(), second.Range(), second.Value()); ok {
+
+ first.SetEndUnchecked(second.End())
+ first.SetValue(mval)
+ return s.Remove(second).PrevSegment()
+ }
+ }
+ return evictableRangeIterator{}
+}
+
+// MergeAll attempts to merge all adjacent segments in the set. All existing
+// iterators are invalidated.
+func (s *evictableRangeSet) MergeAll() {
+ seg := s.FirstSegment()
+ if !seg.Ok() {
+ return
+ }
+ next := seg.NextSegment()
+ for next.Ok() {
+ if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
+ seg, next = mseg, mseg.NextSegment()
+ } else {
+ seg, next = next, next.NextSegment()
+ }
+ }
+}
+
+// MergeRange attempts to merge all adjacent segments that contain a key in the
+// specific range. All existing iterators are invalidated.
+func (s *evictableRangeSet) MergeRange(r EvictableRange) {
+ seg := s.LowerBoundSegment(r.Start)
+ if !seg.Ok() {
+ return
+ }
+ next := seg.NextSegment()
+ for next.Ok() && next.Range().Start < r.End {
+ if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
+ seg, next = mseg, mseg.NextSegment()
+ } else {
+ seg, next = next, next.NextSegment()
+ }
+ }
+}
+
+// MergeAdjacent attempts to merge the segment containing r.Start with its
+// predecessor, and the segment containing r.End-1 with its successor.
+func (s *evictableRangeSet) MergeAdjacent(r EvictableRange) {
+ first := s.FindSegment(r.Start)
+ if first.Ok() {
+ if prev := first.PrevSegment(); prev.Ok() {
+ s.Merge(prev, first)
+ }
+ }
+ last := s.FindSegment(r.End - 1)
+ if last.Ok() {
+ if next := last.NextSegment(); next.Ok() {
+ s.Merge(last, next)
+ }
+ }
+}
+
+// Split splits the given segment at the given key and returns iterators to the
+// two resulting segments. All existing iterators (including seg, but not
+// including the returned iterators) are invalidated.
+//
+// If the segment cannot be split at split (because split is at the start or
+// end of the segment's range, so splitting would produce a segment with zero
+// length, or because split falls outside the segment's range altogether),
+// Split panics.
+func (s *evictableRangeSet) Split(seg evictableRangeIterator, split uint64) (evictableRangeIterator, evictableRangeIterator) {
+ if !seg.Range().CanSplitAt(split) {
+ panic(fmt.Sprintf("can't split %v at %v", seg.Range(), split))
+ }
+ return s.SplitUnchecked(seg, split)
+}
+
+// SplitUnchecked splits the given segment at the given key and returns
+// iterators to the two resulting segments. All existing iterators (including
+// seg, but not including the returned iterators) are invalidated.
+//
+// Preconditions: seg.Start() < key < seg.End().
+func (s *evictableRangeSet) SplitUnchecked(seg evictableRangeIterator, split uint64) (evictableRangeIterator, evictableRangeIterator) {
+ val1, val2 := (evictableRangeSetFunctions{}).Split(seg.Range(), seg.Value(), split)
+ end2 := seg.End()
+ seg.SetEndUnchecked(split)
+ seg.SetValue(val1)
+ seg2 := s.InsertWithoutMergingUnchecked(seg.NextGap(), EvictableRange{split, end2}, val2)
+
+ return seg2.PrevSegment(), seg2
+}
+
+// SplitAt splits the segment straddling split, if one exists. SplitAt returns
+// true if a segment was split and false otherwise. If SplitAt splits a
+// segment, all existing iterators are invalidated.
+func (s *evictableRangeSet) SplitAt(split uint64) bool {
+ if seg := s.FindSegment(split); seg.Ok() && seg.Range().CanSplitAt(split) {
+ s.SplitUnchecked(seg, split)
+ return true
+ }
+ return false
+}
+
+// Isolate ensures that the given segment's range does not escape r by
+// splitting at r.Start and r.End if necessary, and returns an updated iterator
+// to the bounded segment. All existing iterators (including seg, but not
+// including the returned iterators) are invalidated.
+func (s *evictableRangeSet) Isolate(seg evictableRangeIterator, r EvictableRange) evictableRangeIterator {
+ if seg.Range().CanSplitAt(r.Start) {
+ _, seg = s.SplitUnchecked(seg, r.Start)
+ }
+ if seg.Range().CanSplitAt(r.End) {
+ seg, _ = s.SplitUnchecked(seg, r.End)
+ }
+ return seg
+}
+
+// ApplyContiguous applies a function to a contiguous range of segments,
+// splitting if necessary. The function is applied until the first gap is
+// encountered, at which point the gap is returned. If the function is applied
+// across the entire range, a terminal gap is returned. All existing iterators
+// are invalidated.
+//
+// N.B. The Iterator must not be invalidated by the function.
+func (s *evictableRangeSet) ApplyContiguous(r EvictableRange, fn func(seg evictableRangeIterator)) evictableRangeGapIterator {
+ seg, gap := s.Find(r.Start)
+ if !seg.Ok() {
+ return gap
+ }
+ for {
+ seg = s.Isolate(seg, r)
+ fn(seg)
+ if seg.End() >= r.End {
+ return evictableRangeGapIterator{}
+ }
+ gap = seg.NextGap()
+ if !gap.IsEmpty() {
+ return gap
+ }
+ seg = gap.NextSegment()
+ if !seg.Ok() {
+
+ return evictableRangeGapIterator{}
+ }
+ }
+}
+
+// +stateify savable
+type evictableRangenode struct {
+ // An internal binary tree node looks like:
+ //
+ // K
+ // / \
+ // Cl Cr
+ //
+ // where all keys in the subtree rooted by Cl (the left subtree) are less
+ // than K (the key of the parent node), and all keys in the subtree rooted
+ // by Cr (the right subtree) are greater than K.
+ //
+ // An internal B-tree node's indexes work out to look like:
+ //
+ // K0 K1 K2 ... Kn-1
+ // / \/ \/ \ ... / \
+ // C0 C1 C2 C3 ... Cn-1 Cn
+ //
+ // where n is nrSegments.
+ nrSegments int
+
+ // parent is a pointer to this node's parent. If this node is root, parent
+ // is nil.
+ parent *evictableRangenode
+
+ // parentIndex is the index of this node in parent.children.
+ parentIndex int
+
+ // Flag for internal nodes that is technically redundant with "children[0]
+ // != nil", but is stored in the first cache line. "hasChildren" rather
+ // than "isLeaf" because false must be the correct value for an empty root.
+ hasChildren bool
+
+ // Nodes store keys and values in separate arrays to maximize locality in
+ // the common case (scanning keys for lookup).
+ keys [evictableRangemaxDegree - 1]EvictableRange
+ values [evictableRangemaxDegree - 1]evictableRangeSetValue
+ children [evictableRangemaxDegree]*evictableRangenode
+}
+
+// firstSegment returns the first segment in the subtree rooted by n.
+//
+// Preconditions: n.nrSegments != 0.
+func (n *evictableRangenode) firstSegment() evictableRangeIterator {
+ for n.hasChildren {
+ n = n.children[0]
+ }
+ return evictableRangeIterator{n, 0}
+}
+
+// lastSegment returns the last segment in the subtree rooted by n.
+//
+// Preconditions: n.nrSegments != 0.
+func (n *evictableRangenode) lastSegment() evictableRangeIterator {
+ for n.hasChildren {
+ n = n.children[n.nrSegments]
+ }
+ return evictableRangeIterator{n, n.nrSegments - 1}
+}
+
+func (n *evictableRangenode) prevSibling() *evictableRangenode {
+ if n.parent == nil || n.parentIndex == 0 {
+ return nil
+ }
+ return n.parent.children[n.parentIndex-1]
+}
+
+func (n *evictableRangenode) nextSibling() *evictableRangenode {
+ if n.parent == nil || n.parentIndex == n.parent.nrSegments {
+ return nil
+ }
+ return n.parent.children[n.parentIndex+1]
+}
+
+// rebalanceBeforeInsert splits n and its ancestors if they are full, as
+// required for insertion, and returns an updated iterator to the position
+// represented by gap.
+func (n *evictableRangenode) rebalanceBeforeInsert(gap evictableRangeGapIterator) evictableRangeGapIterator {
+ if n.parent != nil {
+ gap = n.parent.rebalanceBeforeInsert(gap)
+ }
+ if n.nrSegments < evictableRangemaxDegree-1 {
+ return gap
+ }
+ if n.parent == nil {
+
+ left := &evictableRangenode{
+ nrSegments: evictableRangeminDegree - 1,
+ parent: n,
+ parentIndex: 0,
+ hasChildren: n.hasChildren,
+ }
+ right := &evictableRangenode{
+ nrSegments: evictableRangeminDegree - 1,
+ parent: n,
+ parentIndex: 1,
+ hasChildren: n.hasChildren,
+ }
+ copy(left.keys[:evictableRangeminDegree-1], n.keys[:evictableRangeminDegree-1])
+ copy(left.values[:evictableRangeminDegree-1], n.values[:evictableRangeminDegree-1])
+ copy(right.keys[:evictableRangeminDegree-1], n.keys[evictableRangeminDegree:])
+ copy(right.values[:evictableRangeminDegree-1], n.values[evictableRangeminDegree:])
+ n.keys[0], n.values[0] = n.keys[evictableRangeminDegree-1], n.values[evictableRangeminDegree-1]
+ evictableRangezeroValueSlice(n.values[1:])
+ if n.hasChildren {
+ copy(left.children[:evictableRangeminDegree], n.children[:evictableRangeminDegree])
+ copy(right.children[:evictableRangeminDegree], n.children[evictableRangeminDegree:])
+ evictableRangezeroNodeSlice(n.children[2:])
+ for i := 0; i < evictableRangeminDegree; i++ {
+ left.children[i].parent = left
+ left.children[i].parentIndex = i
+ right.children[i].parent = right
+ right.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments = 1
+ n.hasChildren = true
+ n.children[0] = left
+ n.children[1] = right
+ if gap.node != n {
+ return gap
+ }
+ if gap.index < evictableRangeminDegree {
+ return evictableRangeGapIterator{left, gap.index}
+ }
+ return evictableRangeGapIterator{right, gap.index - evictableRangeminDegree}
+ }
+
+ copy(n.parent.keys[n.parentIndex+1:], n.parent.keys[n.parentIndex:n.parent.nrSegments])
+ copy(n.parent.values[n.parentIndex+1:], n.parent.values[n.parentIndex:n.parent.nrSegments])
+ n.parent.keys[n.parentIndex], n.parent.values[n.parentIndex] = n.keys[evictableRangeminDegree-1], n.values[evictableRangeminDegree-1]
+ copy(n.parent.children[n.parentIndex+2:], n.parent.children[n.parentIndex+1:n.parent.nrSegments+1])
+ for i := n.parentIndex + 2; i < n.parent.nrSegments+2; i++ {
+ n.parent.children[i].parentIndex = i
+ }
+ sibling := &evictableRangenode{
+ nrSegments: evictableRangeminDegree - 1,
+ parent: n.parent,
+ parentIndex: n.parentIndex + 1,
+ hasChildren: n.hasChildren,
+ }
+ n.parent.children[n.parentIndex+1] = sibling
+ n.parent.nrSegments++
+ copy(sibling.keys[:evictableRangeminDegree-1], n.keys[evictableRangeminDegree:])
+ copy(sibling.values[:evictableRangeminDegree-1], n.values[evictableRangeminDegree:])
+ evictableRangezeroValueSlice(n.values[evictableRangeminDegree-1:])
+ if n.hasChildren {
+ copy(sibling.children[:evictableRangeminDegree], n.children[evictableRangeminDegree:])
+ evictableRangezeroNodeSlice(n.children[evictableRangeminDegree:])
+ for i := 0; i < evictableRangeminDegree; i++ {
+ sibling.children[i].parent = sibling
+ sibling.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments = evictableRangeminDegree - 1
+
+ if gap.node != n {
+ return gap
+ }
+ if gap.index < evictableRangeminDegree {
+ return gap
+ }
+ return evictableRangeGapIterator{sibling, gap.index - evictableRangeminDegree}
+}
+
+// rebalanceAfterRemove "unsplits" n and its ancestors if they are deficient
+// (contain fewer segments than required by B-tree invariants), as required for
+// removal, and returns an updated iterator to the position represented by gap.
+//
+// Precondition: n is the only node in the tree that may currently violate a
+// B-tree invariant.
+func (n *evictableRangenode) rebalanceAfterRemove(gap evictableRangeGapIterator) evictableRangeGapIterator {
+ for {
+ if n.nrSegments >= evictableRangeminDegree-1 {
+ return gap
+ }
+ if n.parent == nil {
+
+ return gap
+ }
+
+ if sibling := n.prevSibling(); sibling != nil && sibling.nrSegments >= evictableRangeminDegree {
+ copy(n.keys[1:], n.keys[:n.nrSegments])
+ copy(n.values[1:], n.values[:n.nrSegments])
+ n.keys[0] = n.parent.keys[n.parentIndex-1]
+ n.values[0] = n.parent.values[n.parentIndex-1]
+ n.parent.keys[n.parentIndex-1] = sibling.keys[sibling.nrSegments-1]
+ n.parent.values[n.parentIndex-1] = sibling.values[sibling.nrSegments-1]
+ evictableRangeSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
+ if n.hasChildren {
+ copy(n.children[1:], n.children[:n.nrSegments+1])
+ n.children[0] = sibling.children[sibling.nrSegments]
+ sibling.children[sibling.nrSegments] = nil
+ n.children[0].parent = n
+ n.children[0].parentIndex = 0
+ for i := 1; i < n.nrSegments+2; i++ {
+ n.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments++
+ sibling.nrSegments--
+ if gap.node == sibling && gap.index == sibling.nrSegments {
+ return evictableRangeGapIterator{n, 0}
+ }
+ if gap.node == n {
+ return evictableRangeGapIterator{n, gap.index + 1}
+ }
+ return gap
+ }
+ if sibling := n.nextSibling(); sibling != nil && sibling.nrSegments >= evictableRangeminDegree {
+ n.keys[n.nrSegments] = n.parent.keys[n.parentIndex]
+ n.values[n.nrSegments] = n.parent.values[n.parentIndex]
+ n.parent.keys[n.parentIndex] = sibling.keys[0]
+ n.parent.values[n.parentIndex] = sibling.values[0]
+ copy(sibling.keys[:sibling.nrSegments-1], sibling.keys[1:])
+ copy(sibling.values[:sibling.nrSegments-1], sibling.values[1:])
+ evictableRangeSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
+ if n.hasChildren {
+ n.children[n.nrSegments+1] = sibling.children[0]
+ copy(sibling.children[:sibling.nrSegments], sibling.children[1:])
+ sibling.children[sibling.nrSegments] = nil
+ n.children[n.nrSegments+1].parent = n
+ n.children[n.nrSegments+1].parentIndex = n.nrSegments + 1
+ for i := 0; i < sibling.nrSegments; i++ {
+ sibling.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments++
+ sibling.nrSegments--
+ if gap.node == sibling {
+ if gap.index == 0 {
+ return evictableRangeGapIterator{n, n.nrSegments}
+ }
+ return evictableRangeGapIterator{sibling, gap.index - 1}
+ }
+ return gap
+ }
+
+ p := n.parent
+ if p.nrSegments == 1 {
+
+ left, right := p.children[0], p.children[1]
+ p.nrSegments = left.nrSegments + right.nrSegments + 1
+ p.hasChildren = left.hasChildren
+ p.keys[left.nrSegments] = p.keys[0]
+ p.values[left.nrSegments] = p.values[0]
+ copy(p.keys[:left.nrSegments], left.keys[:left.nrSegments])
+ copy(p.values[:left.nrSegments], left.values[:left.nrSegments])
+ copy(p.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
+ copy(p.values[left.nrSegments+1:], right.values[:right.nrSegments])
+ if left.hasChildren {
+ copy(p.children[:left.nrSegments+1], left.children[:left.nrSegments+1])
+ copy(p.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
+ for i := 0; i < p.nrSegments+1; i++ {
+ p.children[i].parent = p
+ p.children[i].parentIndex = i
+ }
+ } else {
+ p.children[0] = nil
+ p.children[1] = nil
+ }
+ if gap.node == left {
+ return evictableRangeGapIterator{p, gap.index}
+ }
+ if gap.node == right {
+ return evictableRangeGapIterator{p, gap.index + left.nrSegments + 1}
+ }
+ return gap
+ }
+ // Merge n and either sibling, along with the segment separating the
+ // two, into whichever of the two nodes comes first. This is the
+ // reverse of the non-root splitting case in
+ // node.rebalanceBeforeInsert.
+ var left, right *evictableRangenode
+ if n.parentIndex > 0 {
+ left = n.prevSibling()
+ right = n
+ } else {
+ left = n
+ right = n.nextSibling()
+ }
+
+ if gap.node == right {
+ gap = evictableRangeGapIterator{left, gap.index + left.nrSegments + 1}
+ }
+ left.keys[left.nrSegments] = p.keys[left.parentIndex]
+ left.values[left.nrSegments] = p.values[left.parentIndex]
+ copy(left.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
+ copy(left.values[left.nrSegments+1:], right.values[:right.nrSegments])
+ if left.hasChildren {
+ copy(left.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
+ for i := left.nrSegments + 1; i < left.nrSegments+right.nrSegments+2; i++ {
+ left.children[i].parent = left
+ left.children[i].parentIndex = i
+ }
+ }
+ left.nrSegments += right.nrSegments + 1
+ copy(p.keys[left.parentIndex:], p.keys[left.parentIndex+1:p.nrSegments])
+ copy(p.values[left.parentIndex:], p.values[left.parentIndex+1:p.nrSegments])
+ evictableRangeSetFunctions{}.ClearValue(&p.values[p.nrSegments-1])
+ copy(p.children[left.parentIndex+1:], p.children[left.parentIndex+2:p.nrSegments+1])
+ for i := 0; i < p.nrSegments; i++ {
+ p.children[i].parentIndex = i
+ }
+ p.children[p.nrSegments] = nil
+ p.nrSegments--
+
+ n = p
+ }
+}
+
+// A Iterator is conceptually one of:
+//
+// - A pointer to a segment in a set; or
+//
+// - A terminal iterator, which is a sentinel indicating that the end of
+// iteration has been reached.
+//
+// Iterators are copyable values and are meaningfully equality-comparable. The
+// zero value of Iterator is a terminal iterator.
+//
+// Unless otherwise specified, any mutation of a set invalidates all existing
+// iterators into the set.
+type evictableRangeIterator struct {
+ // node is the node containing the iterated segment. If the iterator is
+ // terminal, node is nil.
+ node *evictableRangenode
+
+ // index is the index of the segment in node.keys/values.
+ index int
+}
+
+// Ok returns true if the iterator is not terminal. All other methods are only
+// valid for non-terminal iterators.
+func (seg evictableRangeIterator) Ok() bool {
+ return seg.node != nil
+}
+
+// Range returns the iterated segment's range key.
+func (seg evictableRangeIterator) Range() EvictableRange {
+ return seg.node.keys[seg.index]
+}
+
+// Start is equivalent to Range().Start, but should be preferred if only the
+// start of the range is needed.
+func (seg evictableRangeIterator) Start() uint64 {
+ return seg.node.keys[seg.index].Start
+}
+
+// End is equivalent to Range().End, but should be preferred if only the end of
+// the range is needed.
+func (seg evictableRangeIterator) End() uint64 {
+ return seg.node.keys[seg.index].End
+}
+
+// SetRangeUnchecked mutates the iterated segment's range key. This operation
+// does not invalidate any iterators.
+//
+// Preconditions:
+//
+// - r.Length() > 0.
+//
+// - The new range must not overlap an existing one: If seg.NextSegment().Ok(),
+// then r.end <= seg.NextSegment().Start(); if seg.PrevSegment().Ok(), then
+// r.start >= seg.PrevSegment().End().
+func (seg evictableRangeIterator) SetRangeUnchecked(r EvictableRange) {
+ seg.node.keys[seg.index] = r
+}
+
+// SetRange mutates the iterated segment's range key. If the new range would
+// cause the iterated segment to overlap another segment, or if the new range
+// is invalid, SetRange panics. This operation does not invalidate any
+// iterators.
+func (seg evictableRangeIterator) SetRange(r EvictableRange) {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ if prev := seg.PrevSegment(); prev.Ok() && r.Start < prev.End() {
+ panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, prev.Range()))
+ }
+ if next := seg.NextSegment(); next.Ok() && r.End > next.Start() {
+ panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, next.Range()))
+ }
+ seg.SetRangeUnchecked(r)
+}
+
+// SetStartUnchecked mutates the iterated segment's start. This operation does
+// not invalidate any iterators.
+//
+// Preconditions: The new start must be valid: start < seg.End(); if
+// seg.PrevSegment().Ok(), then start >= seg.PrevSegment().End().
+func (seg evictableRangeIterator) SetStartUnchecked(start uint64) {
+ seg.node.keys[seg.index].Start = start
+}
+
+// SetStart mutates the iterated segment's start. If the new start value would
+// cause the iterated segment to overlap another segment, or would result in an
+// invalid range, SetStart panics. This operation does not invalidate any
+// iterators.
+func (seg evictableRangeIterator) SetStart(start uint64) {
+ if start >= seg.End() {
+ panic(fmt.Sprintf("new start %v would invalidate segment range %v", start, seg.Range()))
+ }
+ if prev := seg.PrevSegment(); prev.Ok() && start < prev.End() {
+ panic(fmt.Sprintf("new start %v would cause segment range %v to overlap segment range %v", start, seg.Range(), prev.Range()))
+ }
+ seg.SetStartUnchecked(start)
+}
+
+// SetEndUnchecked mutates the iterated segment's end. This operation does not
+// invalidate any iterators.
+//
+// Preconditions: The new end must be valid: end > seg.Start(); if
+// seg.NextSegment().Ok(), then end <= seg.NextSegment().Start().
+func (seg evictableRangeIterator) SetEndUnchecked(end uint64) {
+ seg.node.keys[seg.index].End = end
+}
+
+// SetEnd mutates the iterated segment's end. If the new end value would cause
+// the iterated segment to overlap another segment, or would result in an
+// invalid range, SetEnd panics. This operation does not invalidate any
+// iterators.
+func (seg evictableRangeIterator) SetEnd(end uint64) {
+ if end <= seg.Start() {
+ panic(fmt.Sprintf("new end %v would invalidate segment range %v", end, seg.Range()))
+ }
+ if next := seg.NextSegment(); next.Ok() && end > next.Start() {
+ panic(fmt.Sprintf("new end %v would cause segment range %v to overlap segment range %v", end, seg.Range(), next.Range()))
+ }
+ seg.SetEndUnchecked(end)
+}
+
+// Value returns a copy of the iterated segment's value.
+func (seg evictableRangeIterator) Value() evictableRangeSetValue {
+ return seg.node.values[seg.index]
+}
+
+// ValuePtr returns a pointer to the iterated segment's value. The pointer is
+// invalidated if the iterator is invalidated. This operation does not
+// invalidate any iterators.
+func (seg evictableRangeIterator) ValuePtr() *evictableRangeSetValue {
+ return &seg.node.values[seg.index]
+}
+
+// SetValue mutates the iterated segment's value. This operation does not
+// invalidate any iterators.
+func (seg evictableRangeIterator) SetValue(val evictableRangeSetValue) {
+ seg.node.values[seg.index] = val
+}
+
+// PrevSegment returns the iterated segment's predecessor. If there is no
+// preceding segment, PrevSegment returns a terminal iterator.
+func (seg evictableRangeIterator) PrevSegment() evictableRangeIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index].lastSegment()
+ }
+ if seg.index > 0 {
+ return evictableRangeIterator{seg.node, seg.index - 1}
+ }
+ if seg.node.parent == nil {
+ return evictableRangeIterator{}
+ }
+ return evictableRangesegmentBeforePosition(seg.node.parent, seg.node.parentIndex)
+}
+
+// NextSegment returns the iterated segment's successor. If there is no
+// succeeding segment, NextSegment returns a terminal iterator.
+func (seg evictableRangeIterator) NextSegment() evictableRangeIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index+1].firstSegment()
+ }
+ if seg.index < seg.node.nrSegments-1 {
+ return evictableRangeIterator{seg.node, seg.index + 1}
+ }
+ if seg.node.parent == nil {
+ return evictableRangeIterator{}
+ }
+ return evictableRangesegmentAfterPosition(seg.node.parent, seg.node.parentIndex)
+}
+
+// PrevGap returns the gap immediately before the iterated segment.
+func (seg evictableRangeIterator) PrevGap() evictableRangeGapIterator {
+ if seg.node.hasChildren {
+
+ return seg.node.children[seg.index].lastSegment().NextGap()
+ }
+ return evictableRangeGapIterator{seg.node, seg.index}
+}
+
+// NextGap returns the gap immediately after the iterated segment.
+func (seg evictableRangeIterator) NextGap() evictableRangeGapIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index+1].firstSegment().PrevGap()
+ }
+ return evictableRangeGapIterator{seg.node, seg.index + 1}
+}
+
+// PrevNonEmpty returns the iterated segment's predecessor if it is adjacent,
+// or the gap before the iterated segment otherwise. If seg.Start() ==
+// Functions.MinKey(), PrevNonEmpty will return two terminal iterators.
+// Otherwise, exactly one of the iterators returned by PrevNonEmpty will be
+// non-terminal.
+func (seg evictableRangeIterator) PrevNonEmpty() (evictableRangeIterator, evictableRangeGapIterator) {
+ gap := seg.PrevGap()
+ if gap.Range().Length() != 0 {
+ return evictableRangeIterator{}, gap
+ }
+ return gap.PrevSegment(), evictableRangeGapIterator{}
+}
+
+// NextNonEmpty returns the iterated segment's successor if it is adjacent, or
+// the gap after the iterated segment otherwise. If seg.End() ==
+// Functions.MaxKey(), NextNonEmpty will return two terminal iterators.
+// Otherwise, exactly one of the iterators returned by NextNonEmpty will be
+// non-terminal.
+func (seg evictableRangeIterator) NextNonEmpty() (evictableRangeIterator, evictableRangeGapIterator) {
+ gap := seg.NextGap()
+ if gap.Range().Length() != 0 {
+ return evictableRangeIterator{}, gap
+ }
+ return gap.NextSegment(), evictableRangeGapIterator{}
+}
+
+// A GapIterator is conceptually one of:
+//
+// - A pointer to a position between two segments, before the first segment, or
+// after the last segment in a set, called a *gap*; or
+//
+// - A terminal iterator, which is a sentinel indicating that the end of
+// iteration has been reached.
+//
+// Note that the gap between two adjacent segments exists (iterators to it are
+// non-terminal), but has a length of zero. GapIterator.IsEmpty returns true
+// for such gaps. An empty set contains a single gap, spanning the entire range
+// of the set's keys.
+//
+// GapIterators are copyable values and are meaningfully equality-comparable.
+// The zero value of GapIterator is a terminal iterator.
+//
+// Unless otherwise specified, any mutation of a set invalidates all existing
+// iterators into the set.
+type evictableRangeGapIterator struct {
+ // The representation of a GapIterator is identical to that of an Iterator,
+ // except that index corresponds to positions between segments in the same
+ // way as for node.children (see comment for node.nrSegments).
+ node *evictableRangenode
+ index int
+}
+
+// Ok returns true if the iterator is not terminal. All other methods are only
+// valid for non-terminal iterators.
+func (gap evictableRangeGapIterator) Ok() bool {
+ return gap.node != nil
+}
+
+// Range returns the range spanned by the iterated gap.
+func (gap evictableRangeGapIterator) Range() EvictableRange {
+ return EvictableRange{gap.Start(), gap.End()}
+}
+
+// Start is equivalent to Range().Start, but should be preferred if only the
+// start of the range is needed.
+func (gap evictableRangeGapIterator) Start() uint64 {
+ if ps := gap.PrevSegment(); ps.Ok() {
+ return ps.End()
+ }
+ return evictableRangeSetFunctions{}.MinKey()
+}
+
+// End is equivalent to Range().End, but should be preferred if only the end of
+// the range is needed.
+func (gap evictableRangeGapIterator) End() uint64 {
+ if ns := gap.NextSegment(); ns.Ok() {
+ return ns.Start()
+ }
+ return evictableRangeSetFunctions{}.MaxKey()
+}
+
+// IsEmpty returns true if the iterated gap is empty (that is, the "gap" is
+// between two adjacent segments.)
+func (gap evictableRangeGapIterator) IsEmpty() bool {
+ return gap.Range().Length() == 0
+}
+
+// PrevSegment returns the segment immediately before the iterated gap. If no
+// such segment exists, PrevSegment returns a terminal iterator.
+func (gap evictableRangeGapIterator) PrevSegment() evictableRangeIterator {
+ return evictableRangesegmentBeforePosition(gap.node, gap.index)
+}
+
+// NextSegment returns the segment immediately after the iterated gap. If no
+// such segment exists, NextSegment returns a terminal iterator.
+func (gap evictableRangeGapIterator) NextSegment() evictableRangeIterator {
+ return evictableRangesegmentAfterPosition(gap.node, gap.index)
+}
+
+// PrevGap returns the iterated gap's predecessor. If no such gap exists,
+// PrevGap returns a terminal iterator.
+func (gap evictableRangeGapIterator) PrevGap() evictableRangeGapIterator {
+ seg := gap.PrevSegment()
+ if !seg.Ok() {
+ return evictableRangeGapIterator{}
+ }
+ return seg.PrevGap()
+}
+
+// NextGap returns the iterated gap's successor. If no such gap exists, NextGap
+// returns a terminal iterator.
+func (gap evictableRangeGapIterator) NextGap() evictableRangeGapIterator {
+ seg := gap.NextSegment()
+ if !seg.Ok() {
+ return evictableRangeGapIterator{}
+ }
+ return seg.NextGap()
+}
+
+// segmentBeforePosition returns the predecessor segment of the position given
+// by n.children[i], which may or may not contain a child. If no such segment
+// exists, segmentBeforePosition returns a terminal iterator.
+func evictableRangesegmentBeforePosition(n *evictableRangenode, i int) evictableRangeIterator {
+ for i == 0 {
+ if n.parent == nil {
+ return evictableRangeIterator{}
+ }
+ n, i = n.parent, n.parentIndex
+ }
+ return evictableRangeIterator{n, i - 1}
+}
+
+// segmentAfterPosition returns the successor segment of the position given by
+// n.children[i], which may or may not contain a child. If no such segment
+// exists, segmentAfterPosition returns a terminal iterator.
+func evictableRangesegmentAfterPosition(n *evictableRangenode, i int) evictableRangeIterator {
+ for i == n.nrSegments {
+ if n.parent == nil {
+ return evictableRangeIterator{}
+ }
+ n, i = n.parent, n.parentIndex
+ }
+ return evictableRangeIterator{n, i}
+}
+
+func evictableRangezeroValueSlice(slice []evictableRangeSetValue) {
+
+ for i := range slice {
+ evictableRangeSetFunctions{}.ClearValue(&slice[i])
+ }
+}
+
+func evictableRangezeroNodeSlice(slice []*evictableRangenode) {
+ for i := range slice {
+ slice[i] = nil
+ }
+}
+
+// String stringifies a Set for debugging.
+func (s *evictableRangeSet) String() string {
+ return s.root.String()
+}
+
+// String stringifes a node (and all of its children) for debugging.
+func (n *evictableRangenode) String() string {
+ var buf bytes.Buffer
+ n.writeDebugString(&buf, "")
+ return buf.String()
+}
+
+func (n *evictableRangenode) writeDebugString(buf *bytes.Buffer, prefix string) {
+ if n.hasChildren != (n.nrSegments > 0 && n.children[0] != nil) {
+ buf.WriteString(prefix)
+ buf.WriteString(fmt.Sprintf("WARNING: inconsistent value of hasChildren: got %v, want %v\n", n.hasChildren, !n.hasChildren))
+ }
+ for i := 0; i < n.nrSegments; i++ {
+ if child := n.children[i]; child != nil {
+ cprefix := fmt.Sprintf("%s- % 3d ", prefix, i)
+ if child.parent != n || child.parentIndex != i {
+ buf.WriteString(cprefix)
+ buf.WriteString(fmt.Sprintf("WARNING: inconsistent linkage to parent: got (%p, %d), want (%p, %d)\n", child.parent, child.parentIndex, n, i))
+ }
+ child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i))
+ }
+ buf.WriteString(prefix)
+ buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i]))
+ }
+ if child := n.children[n.nrSegments]; child != nil {
+ child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments))
+ }
+}
+
+// SegmentDataSlices represents segments from a set as slices of start, end, and
+// values. SegmentDataSlices is primarily used as an intermediate representation
+// for save/restore and the layout here is optimized for that.
+//
+// +stateify savable
+type evictableRangeSegmentDataSlices struct {
+ Start []uint64
+ End []uint64
+ Values []evictableRangeSetValue
+}
+
+// ExportSortedSlice returns a copy of all segments in the given set, in ascending
+// key order.
+func (s *evictableRangeSet) ExportSortedSlices() *evictableRangeSegmentDataSlices {
+ var sds evictableRangeSegmentDataSlices
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ sds.Start = append(sds.Start, seg.Start())
+ sds.End = append(sds.End, seg.End())
+ sds.Values = append(sds.Values, seg.Value())
+ }
+ sds.Start = sds.Start[:len(sds.Start):len(sds.Start)]
+ sds.End = sds.End[:len(sds.End):len(sds.End)]
+ sds.Values = sds.Values[:len(sds.Values):len(sds.Values)]
+ return &sds
+}
+
+// ImportSortedSlice initializes the given set from the given slice.
+//
+// Preconditions: s must be empty. sds must represent a valid set (the segments
+// in sds must have valid lengths that do not overlap). The segments in sds
+// must be sorted in ascending key order.
+func (s *evictableRangeSet) ImportSortedSlices(sds *evictableRangeSegmentDataSlices) error {
+ if !s.IsEmpty() {
+ return fmt.Errorf("cannot import into non-empty set %v", s)
+ }
+ gap := s.FirstGap()
+ for i := range sds.Start {
+ r := EvictableRange{sds.Start[i], sds.End[i]}
+ if !gap.Range().IsSupersetOf(r) {
+ return fmt.Errorf("segment overlaps a preceding segment or is incorrectly sorted: [%d, %d) => %v", sds.Start[i], sds.End[i], sds.Values[i])
+ }
+ gap = s.InsertWithoutMerging(gap, r, sds.Values[i]).NextGap()
+ }
+ return nil
+}
+func (s *evictableRangeSet) saveRoot() *evictableRangeSegmentDataSlices {
+ return s.ExportSortedSlices()
+}
+
+func (s *evictableRangeSet) loadRoot(sds *evictableRangeSegmentDataSlices) {
+ if err := s.ImportSortedSlices(sds); err != nil {
+ panic(err)
+ }
+}
diff --git a/pkg/sentry/pgalloc/pgalloc.go b/pkg/sentry/pgalloc/pgalloc.go
new file mode 100644
index 000000000..2b9924ad7
--- /dev/null
+++ b/pkg/sentry/pgalloc/pgalloc.go
@@ -0,0 +1,1187 @@
+// Copyright 2018 The gVisor Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Package pgalloc contains the page allocator subsystem, which manages memory
+// that may be mapped into application address spaces.
+//
+// Lock order:
+//
+// pgalloc.MemoryFile.mu
+// pgalloc.MemoryFile.mappingsMu
+package pgalloc
+
+import (
+ "fmt"
+ "math"
+ "os"
+ "sync"
+ "sync/atomic"
+ "syscall"
+ "time"
+
+ "gvisor.googlesource.com/gvisor/pkg/log"
+ "gvisor.googlesource.com/gvisor/pkg/sentry/context"
+ "gvisor.googlesource.com/gvisor/pkg/sentry/platform"
+ "gvisor.googlesource.com/gvisor/pkg/sentry/safemem"
+ "gvisor.googlesource.com/gvisor/pkg/sentry/usage"
+ "gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
+ "gvisor.googlesource.com/gvisor/pkg/syserror"
+)
+
+// MemoryFile is a platform.File whose pages may be allocated to arbitrary
+// users.
+type MemoryFile struct {
+ // opts holds options passed to NewMemoryFile. opts is immutable.
+ opts MemoryFileOpts
+
+ // MemoryFile owns a single backing file, which is modeled as follows:
+ //
+ // Each page in the file can be committed or uncommitted. A page is
+ // committed if the host kernel is spending resources to store its contents
+ // and uncommitted otherwise. This definition includes pages that the host
+ // kernel has swapped; this is intentional, to ensure that accounting does
+ // not change even if host kernel swapping behavior changes, and that
+ // memory used by pseudo-swap mechanisms like zswap is still accounted.
+ //
+ // The initial contents of uncommitted pages are implicitly zero bytes. A
+ // read or write to the contents of an uncommitted page causes it to be
+ // committed. This is the only event that can cause a uncommitted page to
+ // be committed.
+ //
+ // fallocate(FALLOC_FL_PUNCH_HOLE) (MemoryFile.Decommit) causes committed
+ // pages to be uncommitted. This is the only event that can cause a
+ // committed page to be uncommitted.
+ //
+ // Memory accounting is based on identifying the set of committed pages.
+ // Since we do not have direct access to the MMU, tracking reads and writes
+ // to uncommitted pages to detect commitment would introduce additional
+ // page faults, which would be prohibitively expensive. Instead, we query
+ // the host kernel to determine which pages are committed.
+
+ // file is the backing file. The file pointer is immutable.
+ file *os.File
+
+ mu sync.Mutex
+
+ // usage maps each page in the file to metadata for that page. Pages for
+ // which no segment exists in usage are both unallocated (not in use) and
+ // uncommitted.
+ //
+ // Since usage stores usageInfo objects by value, clients should usually
+ // use usageIterator.ValuePtr() instead of usageIterator.Value() to get a
+ // pointer to the usageInfo rather than a copy.
+ //
+ // usage must be kept maximally merged (that is, there should never be two
+ // adjacent segments with the same values). At least markReclaimed depends
+ // on this property.
+ //
+ // usage is protected by mu.
+ usage usageSet
+
+ // The UpdateUsage function scans all segments with knownCommitted set
+ // to false, sees which pages are committed and creates corresponding
+ // segments with knownCommitted set to true.
+ //
+ // In order to avoid unnecessary scans, usageExpected tracks the total
+ // file blocks expected. This is used to elide the scan when this
+ // matches the underlying file blocks.
+ //
+ // To track swapped pages, usageSwapped tracks the discrepency between
+ // what is observed in core and what is reported by the file. When
+ // usageSwapped is non-zero, a sweep will be performed at least every
+ // second. The start of the last sweep is recorded in usageLast.
+ //
+ // All usage attributes are all protected by mu.
+ usageExpected uint64
+ usageSwapped uint64
+ usageLast time.Time
+
+ // minUnallocatedPage is the minimum page that may be unallocated.
+ // i.e., there are no unallocated pages below minUnallocatedPage.
+ //
+ // minUnallocatedPage is protected by mu.
+ minUnallocatedPage uint64
+
+ // fileSize is the size of the backing memory file in bytes. fileSize is
+ // always a power-of-two multiple of chunkSize.
+ //
+ // fileSize is protected by mu.
+ fileSize int64
+
+ // Pages from the backing file are mapped into the local address space on
+ // the granularity of large pieces called chunks. mappings is a []uintptr
+ // that stores, for each chunk, the start address of a mapping of that
+ // chunk in the current process' address space, or 0 if no such mapping
+ // exists. Once a chunk is mapped, it is never remapped or unmapped until
+ // the MemoryFile is destroyed.
+ //
+ // Mutating the mappings slice or its contents requires both holding
+ // mappingsMu and using atomic memory operations. (The slice is mutated
+ // whenever the file is expanded. Per the above, the only permitted
+ // mutation of the slice's contents is the assignment of a mapping to a
+ // chunk that was previously unmapped.) Reading the slice or its contents
+ // only requires *either* holding mappingsMu or using atomic memory
+ // operations. This allows MemoryFile.MapInternal to avoid locking in the
+ // common case where chunk mappings already exist.
+ mappingsMu sync.Mutex
+ mappings atomic.Value
+
+ // destroyed is set by Destroy to instruct the reclaimer goroutine to
+ // release resources and exit. destroyed is protected by mu.
+ destroyed bool
+
+ // reclaimable is true if usage may contain reclaimable pages. reclaimable
+ // is protected by mu.
+ reclaimable bool
+
+ // minReclaimablePage is the minimum page that may be reclaimable.
+ // i.e., all reclaimable pages are >= minReclaimablePage.
+ //
+ // minReclaimablePage is protected by mu.
+ minReclaimablePage uint64
+
+ // reclaimCond is signaled (with mu locked) when reclaimable or destroyed
+ // transitions from false to true.
+ reclaimCond sync.Cond
+
+ // evictable maps EvictableMemoryUsers to eviction state.
+ //
+ // evictable is protected by mu.
+ evictable map[EvictableMemoryUser]*evictableMemoryUserInfo
+
+ // evictionWG counts the number of goroutines currently performing evictions.
+ evictionWG sync.WaitGroup
+}
+
+// MemoryFileOpts provides options to NewMemoryFile.
+type MemoryFileOpts struct {
+ // DelayedEviction controls the extent to which the MemoryFile may delay
+ // eviction of evictable allocations.
+ DelayedEviction DelayedEvictionType
+}
+
+// DelayedEvictionType is the type of MemoryFileOpts.DelayedEviction.
+type DelayedEvictionType int
+
+const (
+ // DelayedEvictionDefault has unspecified behavior.
+ DelayedEvictionDefault DelayedEvictionType = iota
+
+ // DelayedEvictionDisabled requires that evictable allocations are evicted
+ // as soon as possible.
+ DelayedEvictionDisabled
+
+ // DelayedEvictionEnabled requests that the MemoryFile delay eviction of
+ // evictable allocations until doing so is considered necessary to avoid
+ // performance degradation due to host memory pressure, or OOM kills.
+ //
+ // As of this writing, DelayedEvictionEnabled delays evictions until the
+ // reclaimer goroutine is out of work (pages to reclaim), then evicts all
+ // pending evictable allocations immediately.
+ DelayedEvictionEnabled
+
+ // DelayedEvictionManual requires that evictable allocations are only
+ // evicted when MemoryFile.StartEvictions() is called. This is extremely
+ // dangerous outside of tests.
+ DelayedEvictionManual
+)
+
+// usageInfo tracks usage information.
+//
+// +stateify savable
+type usageInfo struct {
+ // kind is the usage kind.
+ kind usage.MemoryKind
+
+ // knownCommitted is true if the tracked region is definitely committed.
+ // (If it is false, the tracked region may or may not be committed.)
+ knownCommitted bool
+
+ refs uint64
+}
+
+// An EvictableMemoryUser represents a user of MemoryFile-allocated memory that
+// may be asked to deallocate that memory in the presence of memory pressure.
+type EvictableMemoryUser interface {
+ // Evict requests that the EvictableMemoryUser deallocate memory used by
+ // er, which was registered as evictable by a previous call to
+ // MemoryFile.MarkEvictable.
+ //
+ // Evict is not required to deallocate memory. In particular, since pgalloc
+ // must call Evict without holding locks to avoid circular lock ordering,
+ // it is possible that the passed range has already been marked as
+ // unevictable by a racing call to MemoryFile.MarkUnevictable.
+ // Implementations of EvictableMemoryUser must detect such races and handle
+ // them by making Evict have no effect on unevictable ranges.
+ //
+ // After a call to Evict, the MemoryFile will consider the evicted range
+ // unevictable (i.e. it will not call Evict on the same range again) until
+ // informed otherwise by a subsequent call to MarkEvictable.
+ Evict(ctx context.Context, er EvictableRange)
+}
+
+// An EvictableRange represents a range of uint64 offsets in an
+// EvictableMemoryUser.
+//
+// In practice, most EvictableMemoryUsers will probably be implementations of
+// memmap.Mappable, and EvictableRange therefore corresponds to
+// memmap.MappableRange. However, this package cannot depend on the memmap
+// package, since doing so would create a circular dependency.
+//
+// type EvictableRange <generated using go_generics>
+
+// evictableMemoryUserInfo is the value type of MemoryFile.evictable.
+type evictableMemoryUserInfo struct {
+ // ranges tracks all evictable ranges for the given user.
+ ranges evictableRangeSet
+
+ // If evicting is true, there is a goroutine currently evicting all
+ // evictable ranges for this user.
+ evicting bool
+}
+
+const (
+ chunkShift = 24
+ chunkSize = 1 << chunkShift // 16 MB
+ chunkMask = chunkSize - 1
+
+ initialSize = chunkSize
+
+ // maxPage is the highest 64-bit page.
+ maxPage = math.MaxUint64 &^ (usermem.PageSize - 1)
+)
+
+// NewMemoryFile creates a MemoryFile backed by the given file. If
+// NewMemoryFile succeeds, ownership of file is transferred to the returned
+// MemoryFile.
+func NewMemoryFile(file *os.File, opts MemoryFileOpts) (*MemoryFile, error) {
+ switch opts.DelayedEviction {
+ case DelayedEvictionDefault:
+ opts.DelayedEviction = DelayedEvictionEnabled
+ case DelayedEvictionDisabled, DelayedEvictionEnabled, DelayedEvictionManual:
+ default:
+ return nil, fmt.Errorf("invalid MemoryFileOpts.DelayedEviction: %v", opts.DelayedEviction)
+ }
+
+ // Truncate the file to 0 bytes first to ensure that it's empty.
+ if err := file.Truncate(0); err != nil {
+ return nil, err
+ }
+ if err := file.Truncate(initialSize); err != nil {
+ return nil, err
+ }
+ f := &MemoryFile{
+ opts: opts,
+ fileSize: initialSize,
+ file: file,
+ // No pages are reclaimable. DecRef will always be able to
+ // decrease minReclaimablePage from this point.
+ minReclaimablePage: maxPage,
+ evictable: make(map[EvictableMemoryUser]*evictableMemoryUserInfo),
+ }
+ f.mappings.Store(make([]uintptr, initialSize/chunkSize))
+ f.reclaimCond.L = &f.mu
+ go f.runReclaim() // S/R-SAFE: f.mu
+
+ // The Linux kernel contains an optional feature called "Integrity
+ // Measurement Architecture" (IMA). If IMA is enabled, it will checksum
+ // binaries the first time they are mapped PROT_EXEC. This is bad news for
+ // executable pages mapped from our backing file, which can grow to
+ // terabytes in (sparse) size. If IMA attempts to checksum a file that
+ // large, it will allocate all of the sparse pages and quickly exhaust all
+ // memory.
+ //
+ // Work around IMA by immediately creating a temporary PROT_EXEC mapping,
+ // while the backing file is still small. IMA will ignore any future
+ // mappings.
+ m, _, errno := syscall.Syscall6(
+ syscall.SYS_MMAP,
+ 0,
+ usermem.PageSize,
+ syscall.PROT_EXEC,
+ syscall.MAP_SHARED,
+ file.Fd(),
+ 0)
+ if errno != 0 {
+ // This isn't fatal (IMA may not even be in use). Log the error, but
+ // don't return it.
+ log.Warningf("Failed to pre-map MemoryFile PROT_EXEC: %v", errno)
+ } else {
+ if _, _, errno := syscall.Syscall(
+ syscall.SYS_MUNMAP,
+ m,
+ usermem.PageSize,
+ 0); errno != 0 {
+ panic(fmt.Sprintf("failed to unmap PROT_EXEC MemoryFile mapping: %v", errno))
+ }
+ }
+
+ return f, nil
+}
+
+// Destroy releases all resources used by f.
+//
+// Preconditions: All pages allocated by f have been freed.
+//
+// Postconditions: None of f's methods may be called after Destroy.
+func (f *MemoryFile) Destroy() {
+ f.mu.Lock()
+ defer f.mu.Unlock()
+ f.destroyed = true
+ f.reclaimCond.Signal()
+}
+
+// Allocate returns a range of initially-zeroed pages of the given length with
+// the given accounting kind and a single reference held by the caller. When
+// the last reference on an allocated page is released, ownership of the page
+// is returned to the MemoryFile, allowing it to be returned by a future call
+// to Allocate.
+//
+// Preconditions: length must be page-aligned and non-zero.
+func (f *MemoryFile) Allocate(length uint64, kind usage.MemoryKind) (platform.FileRange, error) {
+ if length == 0 || length%usermem.PageSize != 0 {
+ panic(fmt.Sprintf("invalid allocation length: %#x", length))
+ }
+
+ f.mu.Lock()
+ defer f.mu.Unlock()
+
+ // Align hugepage-and-larger allocations on hugepage boundaries to try
+ // to take advantage of hugetmpfs.
+ alignment := uint64(usermem.PageSize)
+ if length >= usermem.HugePageSize {
+ alignment = usermem.HugePageSize
+ }
+
+ start, minUnallocatedPage := findUnallocatedRange(&f.usage, f.minUnallocatedPage, length, alignment)
+ end := start + length
+ // File offsets are int64s. Since length must be strictly positive, end
+ // cannot legitimately be 0.
+ if end < start || int64(end) <= 0 {
+ return platform.FileRange{}, syserror.ENOMEM
+ }
+
+ // Expand the file if needed. Double the file size on each expansion;
+ // uncommitted pages have effectively no cost.
+ fileSize := f.fileSize
+ for int64(end) > fileSize {
+ if fileSize >= 2*fileSize {
+ // fileSize overflow.
+ return platform.FileRange{}, syserror.ENOMEM
+ }
+ fileSize *= 2
+ }
+ if fileSize > f.fileSize {
+ if err := f.file.Truncate(fileSize); err != nil {
+ return platform.FileRange{}, err
+ }
+ f.fileSize = fileSize
+ f.mappingsMu.Lock()
+ oldMappings := f.mappings.Load().([]uintptr)
+ newMappings := make([]uintptr, fileSize>>chunkShift)
+ copy(newMappings, oldMappings)
+ f.mappings.Store(newMappings)
+ f.mappingsMu.Unlock()
+ }
+
+ // Mark selected pages as in use.
+ fr := platform.FileRange{start, end}
+ if !f.usage.Add(fr, usageInfo{
+ kind: kind,
+ refs: 1,
+ }) {
+ panic(fmt.Sprintf("allocating %v: failed to insert into usage set:\n%v", fr, &f.usage))
+ }
+
+ if minUnallocatedPage < start {
+ f.minUnallocatedPage = minUnallocatedPage
+ } else {
+ // start was the first unallocated page. The next must be
+ // somewhere beyond end.
+ f.minUnallocatedPage = end
+ }
+
+ return fr, nil
+}
+
+// findUnallocatedRange returns the first unallocated page in usage of the
+// specified length and alignment beginning at page start and the first single
+// unallocated page.
+func findUnallocatedRange(usage *usageSet, start, length, alignment uint64) (uint64, uint64) {
+ // Only searched until the first page is found.
+ firstPage := start
+ foundFirstPage := false
+ alignMask := alignment - 1
+ for seg := usage.LowerBoundSegment(start); seg.Ok(); seg = seg.NextSegment() {
+ r := seg.Range()
+
+ if !foundFirstPage && r.Start > firstPage {
+ foundFirstPage = true
+ }
+
+ if start >= r.End {
+ // start was rounded up to an alignment boundary from the end
+ // of a previous segment and is now beyond r.End.
+ continue
+ }
+ // This segment represents allocated or reclaimable pages; only the
+ // range from start to the segment's beginning is allocatable, and the
+ // next allocatable range begins after the segment.
+ if r.Start > start && r.Start-start >= length {
+ break
+ }
+ start = (r.End + alignMask) &^ alignMask
+ if !foundFirstPage {
+ firstPage = r.End
+ }
+ }
+ return start, firstPage
+}
+
+// AllocateAndFill allocates memory of the given kind and fills it by calling
+// r.ReadToBlocks() repeatedly until either length bytes are read or a non-nil
+// error is returned. It returns the memory filled by r, truncated down to the
+// nearest page. If this is shorter than length bytes due to an error returned
+// by r.ReadToBlocks(), it returns that error.
+//
+// Preconditions: length > 0. length must be page-aligned.
+func (f *MemoryFile) AllocateAndFill(length uint64, kind usage.MemoryKind, r safemem.Reader) (platform.FileRange, error) {
+ fr, err := f.Allocate(length, kind)
+ if err != nil {
+ return platform.FileRange{}, err
+ }
+ dsts, err := f.MapInternal(fr, usermem.Write)
+ if err != nil {
+ f.DecRef(fr)
+ return platform.FileRange{}, err
+ }
+ n, err := safemem.ReadFullToBlocks(r, dsts)
+ un := uint64(usermem.Addr(n).RoundDown())
+ if un < length {
+ // Free unused memory and update fr to contain only the memory that is
+ // still allocated.
+ f.DecRef(platform.FileRange{fr.Start + un, fr.End})
+ fr.End = fr.Start + un
+ }
+ return fr, err
+}
+
+// fallocate(2) modes, defined in Linux's include/uapi/linux/falloc.h.
+const (
+ _FALLOC_FL_KEEP_SIZE = 1
+ _FALLOC_FL_PUNCH_HOLE = 2
+)
+
+// Decommit releases resources associated with maintaining the contents of the
+// given pages. If Decommit succeeds, future accesses of the decommitted pages
+// will read zeroes.
+//
+// Preconditions: fr.Length() > 0.
+func (f *MemoryFile) Decommit(fr platform.FileRange) error {
+ if !fr.WellFormed() || fr.Length() == 0 || fr.Start%usermem.PageSize != 0 || fr.End%usermem.PageSize != 0 {
+ panic(fmt.Sprintf("invalid range: %v", fr))
+ }
+
+ // "After a successful call, subsequent reads from this range will
+ // return zeroes. The FALLOC_FL_PUNCH_HOLE flag must be ORed with
+ // FALLOC_FL_KEEP_SIZE in mode ..." - fallocate(2)
+ err := syscall.Fallocate(
+ int(f.file.Fd()),
+ _FALLOC_FL_PUNCH_HOLE|_FALLOC_FL_KEEP_SIZE,
+ int64(fr.Start),
+ int64(fr.Length()))
+ if err != nil {
+ return err
+ }
+ f.markDecommitted(fr)
+ return nil
+}
+
+func (f *MemoryFile) markDecommitted(fr platform.FileRange) {
+ f.mu.Lock()
+ defer f.mu.Unlock()
+ // Since we're changing the knownCommitted attribute, we need to merge
+ // across the entire range to ensure that the usage tree is minimal.
+ gap := f.usage.ApplyContiguous(fr, func(seg usageIterator) {
+ val := seg.ValuePtr()
+ if val.knownCommitted {
+ // Drop the usageExpected appropriately.
+ amount := seg.Range().Length()
+ usage.MemoryAccounting.Dec(amount, val.kind)
+ f.usageExpected -= amount
+ val.knownCommitted = false
+ }
+ })
+ if gap.Ok() {
+ panic(fmt.Sprintf("Decommit(%v): attempted to decommit unallocated pages %v:\n%v", fr, gap.Range(), &f.usage))
+ }
+ f.usage.MergeRange(fr)
+}
+
+// IncRef implements platform.File.IncRef.
+func (f *MemoryFile) IncRef(fr platform.FileRange) {
+ if !fr.WellFormed() || fr.Length() == 0 || fr.Start%usermem.PageSize != 0 || fr.End%usermem.PageSize != 0 {
+ panic(fmt.Sprintf("invalid range: %v", fr))
+ }
+
+ f.mu.Lock()
+ defer f.mu.Unlock()
+
+ gap := f.usage.ApplyContiguous(fr, func(seg usageIterator) {
+ seg.ValuePtr().refs++
+ })
+ if gap.Ok() {
+ panic(fmt.Sprintf("IncRef(%v): attempted to IncRef on unallocated pages %v:\n%v", fr, gap.Range(), &f.usage))
+ }
+
+ f.usage.MergeAdjacent(fr)
+}
+
+// DecRef implements platform.File.DecRef.
+func (f *MemoryFile) DecRef(fr platform.FileRange) {
+ if !fr.WellFormed() || fr.Length() == 0 || fr.Start%usermem.PageSize != 0 || fr.End%usermem.PageSize != 0 {
+ panic(fmt.Sprintf("invalid range: %v", fr))
+ }
+
+ var freed bool
+
+ f.mu.Lock()
+ defer f.mu.Unlock()
+
+ for seg := f.usage.FindSegment(fr.Start); seg.Ok() && seg.Start() < fr.End; seg = seg.NextSegment() {
+ seg = f.usage.Isolate(seg, fr)
+ val := seg.ValuePtr()
+ if val.refs == 0 {
+ panic(fmt.Sprintf("DecRef(%v): 0 existing references on %v:\n%v", fr, seg.Range(), &f.usage))
+ }
+ val.refs--
+ if val.refs == 0 {
+ freed = true
+ // Reclassify memory as System, until it's freed by the reclaim
+ // goroutine.
+ if val.knownCommitted {
+ usage.MemoryAccounting.Move(seg.Range().Length(), usage.System, val.kind)
+ }
+ val.kind = usage.System
+ }
+ }
+ f.usage.MergeAdjacent(fr)
+
+ if freed {
+ if fr.Start < f.minReclaimablePage {
+ // We've freed at least one lower page.
+ f.minReclaimablePage = fr.Start
+ }
+ f.reclaimable = true
+ f.reclaimCond.Signal()
+ }
+}
+
+// MapInternal implements platform.File.MapInternal.
+func (f *MemoryFile) MapInternal(fr platform.FileRange, at usermem.AccessType) (safemem.BlockSeq, error) {
+ if !fr.WellFormed() || fr.Length() == 0 {
+ panic(fmt.Sprintf("invalid range: %v", fr))
+ }
+ if at.Execute {
+ return safemem.BlockSeq{}, syserror.EACCES
+ }
+
+ chunks := ((fr.End + chunkMask) >> chunkShift) - (fr.Start >> chunkShift)
+ if chunks == 1 {
+ // Avoid an unnecessary slice allocation.
+ var seq safemem.BlockSeq
+ err := f.forEachMappingSlice(fr, func(bs []byte) {
+ seq = safemem.BlockSeqOf(safemem.BlockFromSafeSlice(bs))
+ })
+ return seq, err
+ }
+ blocks := make([]safemem.Block, 0, chunks)
+ err := f.forEachMappingSlice(fr, func(bs []byte) {
+ blocks = append(blocks, safemem.BlockFromSafeSlice(bs))
+ })
+ return safemem.BlockSeqFromSlice(blocks), err
+}
+
+// forEachMappingSlice invokes fn on a sequence of byte slices that
+// collectively map all bytes in fr.
+func (f *MemoryFile) forEachMappingSlice(fr platform.FileRange, fn func([]byte)) error {
+ mappings := f.mappings.Load().([]uintptr)
+ for chunkStart := fr.Start &^ chunkMask; chunkStart < fr.End; chunkStart += chunkSize {
+ chunk := int(chunkStart >> chunkShift)
+ m := atomic.LoadUintptr(&mappings[chunk])
+ if m == 0 {
+ var err error
+ mappings, m, err = f.getChunkMapping(chunk)
+ if err != nil {
+ return err
+ }
+ }
+ startOff := uint64(0)
+ if chunkStart < fr.Start {
+ startOff = fr.Start - chunkStart
+ }
+ endOff := uint64(chunkSize)
+ if chunkStart+chunkSize > fr.End {
+ endOff = fr.End - chunkStart
+ }
+ fn(unsafeSlice(m, chunkSize)[startOff:endOff])
+ }
+ return nil
+}
+
+func (f *MemoryFile) getChunkMapping(chunk int) ([]uintptr, uintptr, error) {
+ f.mappingsMu.Lock()
+ defer f.mappingsMu.Unlock()
+ // Another thread may have replaced f.mappings altogether due to file
+ // expansion.
+ mappings := f.mappings.Load().([]uintptr)
+ // Another thread may have already mapped the chunk.
+ if m := mappings[chunk]; m != 0 {
+ return mappings, m, nil
+ }
+ m, _, errno := syscall.Syscall6(
+ syscall.SYS_MMAP,
+ 0,
+ chunkSize,
+ syscall.PROT_READ|syscall.PROT_WRITE,
+ syscall.MAP_SHARED,
+ f.file.Fd(),
+ uintptr(chunk<<chunkShift))
+ if errno != 0 {
+ return nil, 0, errno
+ }
+ atomic.StoreUintptr(&mappings[chunk], m)
+ return mappings, m, nil
+}
+
+// MarkEvictable allows f to request memory deallocation by calling
+// user.Evict(er) in the future.
+//
+// Redundantly marking an already-evictable range as evictable has no effect.
+func (f *MemoryFile) MarkEvictable(user EvictableMemoryUser, er EvictableRange) {
+ f.mu.Lock()
+ defer f.mu.Unlock()
+ info, ok := f.evictable[user]
+ if !ok {
+ info = &evictableMemoryUserInfo{}
+ f.evictable[user] = info
+ }
+ gap := info.ranges.LowerBoundGap(er.Start)
+ for gap.Ok() && gap.Start() < er.End {
+ gapER := gap.Range().Intersect(er)
+ if gapER.Length() == 0 {
+ gap = gap.NextGap()
+ continue
+ }
+ gap = info.ranges.Insert(gap, gapER, evictableRangeSetValue{}).NextGap()
+ }
+ if !info.evicting {
+ switch f.opts.DelayedEviction {
+ case DelayedEvictionDisabled:
+ // Kick off eviction immediately.
+ f.startEvictionGoroutineLocked(user, info)
+ case DelayedEvictionEnabled:
+ // Ensure that the reclaimer goroutine is running, so that it can
+ // start eviction when necessary.
+ f.reclaimCond.Signal()
+ }
+ }
+}
+
+// MarkUnevictable informs f that user no longer considers er to be evictable,
+// so the MemoryFile should no longer call user.Evict(er). Note that, per
+// EvictableMemoryUser.Evict's documentation, user.Evict(er) may still be
+// called even after MarkUnevictable returns due to race conditions, and
+// implementations of EvictableMemoryUser must handle this possibility.
+//
+// Redundantly marking an already-unevictable range as unevictable has no
+// effect.
+func (f *MemoryFile) MarkUnevictable(user EvictableMemoryUser, er EvictableRange) {
+ f.mu.Lock()
+ defer f.mu.Unlock()
+ info, ok := f.evictable[user]
+ if !ok {
+ return
+ }
+ seg := info.ranges.LowerBoundSegment(er.Start)
+ for seg.Ok() && seg.Start() < er.End {
+ seg = info.ranges.Isolate(seg, er)
+ seg = info.ranges.Remove(seg).NextSegment()
+ }
+ // We can only remove info if there's no eviction goroutine running on its
+ // behalf.
+ if !info.evicting && info.ranges.IsEmpty() {
+ delete(f.evictable, user)
+ }
+}
+
+// MarkAllUnevictable informs f that user no longer considers any offsets to be
+// evictable. It otherwise has the same semantics as MarkUnevictable.
+func (f *MemoryFile) MarkAllUnevictable(user EvictableMemoryUser) {
+ f.mu.Lock()
+ defer f.mu.Unlock()
+ info, ok := f.evictable[user]
+ if !ok {
+ return
+ }
+ info.ranges.RemoveAll()
+ // We can only remove info if there's no eviction goroutine running on its
+ // behalf.
+ if !info.evicting {
+ delete(f.evictable, user)
+ }
+}
+
+// UpdateUsage ensures that the memory usage statistics in
+// usage.MemoryAccounting are up to date.
+func (f *MemoryFile) UpdateUsage() error {
+ f.mu.Lock()
+ defer f.mu.Unlock()
+
+ // If the underlying usage matches where the usage tree already
+ // represents, then we can just avoid the entire scan (we know it's
+ // accurate).
+ currentUsage, err := f.TotalUsage()
+ if err != nil {
+ return err
+ }
+ if currentUsage == f.usageExpected && f.usageSwapped == 0 {
+ log.Debugf("UpdateUsage: skipped with usageSwapped=0.")
+ return nil
+ }
+ // If the current usage matches the expected but there's swap
+ // accounting, then ensure a scan takes place at least every second
+ // (when requested).
+ if currentUsage == f.usageExpected+f.usageSwapped && time.Now().Before(f.usageLast.Add(time.Second)) {
+ log.Debugf("UpdateUsage: skipped with usageSwapped!=0.")
+ return nil
+ }
+
+ f.usageLast = time.Now()
+ err = f.updateUsageLocked(currentUsage, mincore)
+ log.Debugf("UpdateUsage: currentUsage=%d, usageExpected=%d, usageSwapped=%d.",
+ currentUsage, f.usageExpected, f.usageSwapped)
+ log.Debugf("UpdateUsage: took %v.", time.Since(f.usageLast))
+ return err
+}
+
+// updateUsageLocked attempts to detect commitment of previous-uncommitted
+// pages by invoking checkCommitted, which is a function that, for each page i
+// in bs, sets committed[i] to 1 if the page is committed and 0 otherwise.
+//
+// Precondition: f.mu must be held.
+func (f *MemoryFile) updateUsageLocked(currentUsage uint64, checkCommitted func(bs []byte, committed []byte) error) error {
+ // Track if anything changed to elide the merge. In the common case, we
+ // expect all segments to be committed and no merge to occur.
+ changedAny := false
+ defer func() {
+ if changedAny {
+ f.usage.MergeAll()
+ }
+
+ // Adjust the swap usage to reflect reality.
+ if f.usageExpected < currentUsage {
+ // Since no pages may be marked decommitted while we hold mu, we
+ // know that usage may have only increased since we got the last
+ // current usage. Therefore, if usageExpected is still short of
+ // currentUsage, we must assume that the difference is in pages
+ // that have been swapped.
+ newUsageSwapped := currentUsage - f.usageExpected
+ if f.usageSwapped < newUsageSwapped {
+ usage.MemoryAccounting.Inc(newUsageSwapped-f.usageSwapped, usage.System)
+ } else {
+ usage.MemoryAccounting.Dec(f.usageSwapped-newUsageSwapped, usage.System)
+ }
+ f.usageSwapped = newUsageSwapped
+ } else if f.usageSwapped != 0 {
+ // We have more usage accounted for than the file itself.
+ // That's fine, we probably caught a race where pages were
+ // being committed while the above loop was running. Just
+ // report the higher number that we found and ignore swap.
+ usage.MemoryAccounting.Dec(f.usageSwapped, usage.System)
+ f.usageSwapped = 0
+ }
+ }()
+
+ // Reused mincore buffer, will generally be <= 4096 bytes.
+ var buf []byte
+
+ // Iterate over all usage data. There will only be usage segments
+ // present when there is an associated reference.
+ for seg := f.usage.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ val := seg.Value()
+
+ // Already known to be committed; ignore.
+ if val.knownCommitted {
+ continue
+ }
+
+ // Assume that reclaimable pages (that aren't already known to be
+ // committed) are not committed. This isn't necessarily true, even
+ // after the reclaimer does Decommit(), because the kernel may
+ // subsequently back the hugepage-sized region containing the
+ // decommitted page with a hugepage. However, it's consistent with our
+ // treatment of unallocated pages, which have the same property.
+ if val.refs == 0 {
+ continue
+ }
+
+ // Get the range for this segment. As we touch slices, the
+ // Start value will be walked along.
+ r := seg.Range()
+
+ var checkErr error
+ err := f.forEachMappingSlice(r, func(s []byte) {
+ if checkErr != nil {
+ return
+ }
+
+ // Ensure that we have sufficient buffer for the call
+ // (one byte per page). The length of each slice must
+ // be page-aligned.
+ bufLen := len(s) / usermem.PageSize
+ if len(buf) < bufLen {
+ buf = make([]byte, bufLen)
+ }
+
+ // Query for new pages in core.
+ if err := checkCommitted(s, buf); err != nil {
+ checkErr = err
+ return
+ }
+
+ // Scan each page and switch out segments.
+ populatedRun := false
+ populatedRunStart := 0
+ for i := 0; i <= bufLen; i++ {
+ // We run past the end of the slice here to
+ // simplify the logic and only set populated if
+ // we're still looking at elements.
+ populated := false
+ if i < bufLen {
+ populated = buf[i]&0x1 != 0
+ }
+
+ switch {
+ case populated == populatedRun:
+ // Keep the run going.
+ continue
+ case populated && !populatedRun:
+ // Begin the run.
+ populatedRun = true
+ populatedRunStart = i
+ // Keep going.
+ continue
+ case !populated && populatedRun:
+ // Finish the run by changing this segment.
+ runRange := platform.FileRange{
+ Start: r.Start + uint64(populatedRunStart*usermem.PageSize),
+ End: r.Start + uint64(i*usermem.PageSize),
+ }
+ seg = f.usage.Isolate(seg, runRange)
+ seg.ValuePtr().knownCommitted = true
+ // Advance the segment only if we still
+ // have work to do in the context of
+ // the original segment from the for
+ // loop. Otherwise, the for loop itself
+ // will advance the segment
+ // appropriately.
+ if runRange.End != r.End {
+ seg = seg.NextSegment()
+ }
+ amount := runRange.Length()
+ usage.MemoryAccounting.Inc(amount, val.kind)
+ f.usageExpected += amount
+ changedAny = true
+ populatedRun = false
+ }
+ }
+
+ // Advance r.Start.
+ r.Start += uint64(len(s))
+ })
+ if checkErr != nil {
+ return checkErr
+ }
+ if err != nil {
+ return err
+ }
+ }
+
+ return nil
+}
+
+// TotalUsage returns an aggregate usage for all memory statistics except
+// Mapped (which is external to MemoryFile). This is generally much cheaper
+// than UpdateUsage, but will not provide a fine-grained breakdown.
+func (f *MemoryFile) TotalUsage() (uint64, error) {
+ // Stat the underlying file to discover the underlying usage. stat(2)
+ // always reports the allocated block count in units of 512 bytes. This
+ // includes pages in the page cache and swapped pages.
+ var stat syscall.Stat_t
+ if err := syscall.Fstat(int(f.file.Fd()), &stat); err != nil {
+ return 0, err
+ }
+ return uint64(stat.Blocks * 512), nil
+}
+
+// TotalSize returns the current size of the backing file in bytes, which is an
+// upper bound on the amount of memory that can currently be allocated from the
+// MemoryFile. The value returned by TotalSize is permitted to change.
+func (f *MemoryFile) TotalSize() uint64 {
+ f.mu.Lock()
+ defer f.mu.Unlock()
+ return uint64(f.fileSize)
+}
+
+// File returns the backing file.
+func (f *MemoryFile) File() *os.File {
+ return f.file
+}
+
+// FD implements platform.File.FD.
+func (f *MemoryFile) FD() int {
+ return int(f.file.Fd())
+}
+
+// String implements fmt.Stringer.String.
+//
+// Note that because f.String locks f.mu, calling f.String internally
+// (including indirectly through the fmt package) risks recursive locking.
+// Within the pgalloc package, use f.usage directly instead.
+func (f *MemoryFile) String() string {
+ f.mu.Lock()
+ defer f.mu.Unlock()
+ return f.usage.String()
+}
+
+// runReclaim implements the reclaimer goroutine, which continuously decommits
+// reclaimable pages in order to reduce memory usage and make them available
+// for allocation.
+func (f *MemoryFile) runReclaim() {
+ for {
+ fr, ok := f.findReclaimable()
+ if !ok {
+ break
+ }
+
+ if err := f.Decommit(fr); err != nil {
+ log.Warningf("Reclaim failed to decommit %v: %v", fr, err)
+ // Zero the pages manually. This won't reduce memory usage, but at
+ // least ensures that the pages will be zero when reallocated.
+ f.forEachMappingSlice(fr, func(bs []byte) {
+ for i := range bs {
+ bs[i] = 0
+ }
+ })
+ // Pretend the pages were decommitted even though they weren't,
+ // since the memory accounting implementation has no idea how to
+ // deal with this.
+ f.markDecommitted(fr)
+ }
+ f.markReclaimed(fr)
+ }
+ // We only get here if findReclaimable finds f.destroyed set and returns
+ // false.
+ f.mu.Lock()
+ defer f.mu.Unlock()
+ if !f.destroyed {
+ panic("findReclaimable broke out of reclaim loop, but destroyed is no longer set")
+ }
+ f.file.Close()
+ // Ensure that any attempts to use f.file.Fd() fail instead of getting a fd
+ // that has possibly been reassigned.
+ f.file = nil
+ f.mappingsMu.Lock()
+ defer f.mappingsMu.Unlock()
+ mappings := f.mappings.Load().([]uintptr)
+ for i, m := range mappings {
+ if m != 0 {
+ _, _, errno := syscall.Syscall(syscall.SYS_MUNMAP, m, chunkSize, 0)
+ if errno != 0 {
+ log.Warningf("Failed to unmap mapping %#x for MemoryFile chunk %d: %v", m, i, errno)
+ }
+ }
+ }
+ // Similarly, invalidate f.mappings. (atomic.Value.Store(nil) panics.)
+ f.mappings.Store([]uintptr{})
+}
+
+func (f *MemoryFile) findReclaimable() (platform.FileRange, bool) {
+ f.mu.Lock()
+ defer f.mu.Unlock()
+ for {
+ for {
+ if f.destroyed {
+ return platform.FileRange{}, false
+ }
+ if f.reclaimable {
+ break
+ }
+ if f.opts.DelayedEviction == DelayedEvictionEnabled {
+ // No work to do. Evict any pending evictable allocations to
+ // get more reclaimable pages before going to sleep.
+ f.startEvictionsLocked()
+ }
+ f.reclaimCond.Wait()
+ }
+ // Allocate returns the first usable range in offset order and is
+ // currently a linear scan, so reclaiming from the beginning of the
+ // file minimizes the expected latency of Allocate.
+ for seg := f.usage.LowerBoundSegment(f.minReclaimablePage); seg.Ok(); seg = seg.NextSegment() {
+ if seg.ValuePtr().refs == 0 {
+ f.minReclaimablePage = seg.End()
+ return seg.Range(), true
+ }
+ }
+ // No pages are reclaimable.
+ f.reclaimable = false
+ f.minReclaimablePage = maxPage
+ }
+}
+
+func (f *MemoryFile) markReclaimed(fr platform.FileRange) {
+ f.mu.Lock()
+ defer f.mu.Unlock()
+ seg := f.usage.FindSegment(fr.Start)
+ // All of fr should be mapped to a single uncommitted reclaimable segment
+ // accounted to System.
+ if !seg.Ok() {
+ panic(fmt.Sprintf("reclaimed pages %v include unreferenced pages:\n%v", fr, &f.usage))
+ }
+ if !seg.Range().IsSupersetOf(fr) {
+ panic(fmt.Sprintf("reclaimed pages %v are not entirely contained in segment %v with state %v:\n%v", fr, seg.Range(), seg.Value(), &f.usage))
+ }
+ if got, want := seg.Value(), (usageInfo{
+ kind: usage.System,
+ knownCommitted: false,
+ refs: 0,
+ }); got != want {
+ panic(fmt.Sprintf("reclaimed pages %v in segment %v has incorrect state %v, wanted %v:\n%v", fr, seg.Range(), got, want, &f.usage))
+ }
+ // Deallocate reclaimed pages. Even though all of seg is reclaimable, the
+ // caller of markReclaimed may not have decommitted it, so we can only mark
+ // fr as reclaimed.
+ f.usage.Remove(f.usage.Isolate(seg, fr))
+ if fr.Start < f.minUnallocatedPage {
+ // We've deallocated at least one lower page.
+ f.minUnallocatedPage = fr.Start
+ }
+}
+
+// StartEvictions requests that f evict all evictable allocations. It does not
+// wait for eviction to complete; for this, see MemoryFile.WaitForEvictions.
+func (f *MemoryFile) StartEvictions() {
+ f.mu.Lock()
+ defer f.mu.Unlock()
+ f.startEvictionsLocked()
+}
+
+// Preconditions: f.mu must be locked.
+func (f *MemoryFile) startEvictionsLocked() {
+ for user, info := range f.evictable {
+ // Don't start multiple goroutines to evict the same user's
+ // allocations.
+ if !info.evicting {
+ f.startEvictionGoroutineLocked(user, info)
+ }
+ }
+}
+
+// Preconditions: info == f.evictable[user]. !info.evicting. f.mu must be
+// locked.
+func (f *MemoryFile) startEvictionGoroutineLocked(user EvictableMemoryUser, info *evictableMemoryUserInfo) {
+ info.evicting = true
+ f.evictionWG.Add(1)
+ go func() { // S/R-SAFE: f.evictionWG
+ defer f.evictionWG.Done()
+ for {
+ f.mu.Lock()
+ info, ok := f.evictable[user]
+ if !ok {
+ // This shouldn't happen: only this goroutine is permitted
+ // to delete this entry.
+ f.mu.Unlock()
+ panic(fmt.Sprintf("evictableMemoryUserInfo for EvictableMemoryUser %v deleted while eviction goroutine running", user))
+ }
+ if info.ranges.IsEmpty() {
+ delete(f.evictable, user)
+ f.mu.Unlock()
+ return
+ }
+ // Evict from the end of info.ranges, under the assumption that
+ // if ranges in user start being used again (and are
+ // consequently marked unevictable), such uses are more likely
+ // to start from the beginning of user.
+ seg := info.ranges.LastSegment()
+ er := seg.Range()
+ info.ranges.Remove(seg)
+ // user.Evict() must be called without holding f.mu to avoid
+ // circular lock ordering.
+ f.mu.Unlock()
+ user.Evict(context.Background(), er)
+ }
+ }()
+}
+
+// WaitForEvictions blocks until f is no longer evicting any evictable
+// allocations.
+func (f *MemoryFile) WaitForEvictions() {
+ f.evictionWG.Wait()
+}
+
+type usageSetFunctions struct{}
+
+func (usageSetFunctions) MinKey() uint64 {
+ return 0
+}
+
+func (usageSetFunctions) MaxKey() uint64 {
+ return math.MaxUint64
+}
+
+func (usageSetFunctions) ClearValue(val *usageInfo) {
+}
+
+func (usageSetFunctions) Merge(_ platform.FileRange, val1 usageInfo, _ platform.FileRange, val2 usageInfo) (usageInfo, bool) {
+ return val1, val1 == val2
+}
+
+func (usageSetFunctions) Split(_ platform.FileRange, val usageInfo, _ uint64) (usageInfo, usageInfo) {
+ return val, val
+}
+
+// evictableRangeSetValue is the value type of evictableRangeSet.
+type evictableRangeSetValue struct{}
+
+type evictableRangeSetFunctions struct{}
+
+func (evictableRangeSetFunctions) MinKey() uint64 {
+ return 0
+}
+
+func (evictableRangeSetFunctions) MaxKey() uint64 {
+ return math.MaxUint64
+}
+
+func (evictableRangeSetFunctions) ClearValue(val *evictableRangeSetValue) {
+}
+
+func (evictableRangeSetFunctions) Merge(_ EvictableRange, _ evictableRangeSetValue, _ EvictableRange, _ evictableRangeSetValue) (evictableRangeSetValue, bool) {
+ return evictableRangeSetValue{}, true
+}
+
+func (evictableRangeSetFunctions) Split(_ EvictableRange, _ evictableRangeSetValue, _ uint64) (evictableRangeSetValue, evictableRangeSetValue) {
+ return evictableRangeSetValue{}, evictableRangeSetValue{}
+}
diff --git a/pkg/sentry/pgalloc/pgalloc_state_autogen.go b/pkg/sentry/pgalloc/pgalloc_state_autogen.go
new file mode 100755
index 000000000..36a5aafa1
--- /dev/null
+++ b/pkg/sentry/pgalloc/pgalloc_state_autogen.go
@@ -0,0 +1,146 @@
+// automatically generated by stateify.
+
+package pgalloc
+
+import (
+ "gvisor.googlesource.com/gvisor/pkg/state"
+)
+
+func (x *EvictableRange) beforeSave() {}
+func (x *EvictableRange) save(m state.Map) {
+ x.beforeSave()
+ m.Save("Start", &x.Start)
+ m.Save("End", &x.End)
+}
+
+func (x *EvictableRange) afterLoad() {}
+func (x *EvictableRange) load(m state.Map) {
+ m.Load("Start", &x.Start)
+ m.Load("End", &x.End)
+}
+
+func (x *evictableRangeSet) beforeSave() {}
+func (x *evictableRangeSet) save(m state.Map) {
+ x.beforeSave()
+ var root *evictableRangeSegmentDataSlices = x.saveRoot()
+ m.SaveValue("root", root)
+}
+
+func (x *evictableRangeSet) afterLoad() {}
+func (x *evictableRangeSet) load(m state.Map) {
+ m.LoadValue("root", new(*evictableRangeSegmentDataSlices), func(y interface{}) { x.loadRoot(y.(*evictableRangeSegmentDataSlices)) })
+}
+
+func (x *evictableRangenode) beforeSave() {}
+func (x *evictableRangenode) save(m state.Map) {
+ x.beforeSave()
+ m.Save("nrSegments", &x.nrSegments)
+ m.Save("parent", &x.parent)
+ m.Save("parentIndex", &x.parentIndex)
+ m.Save("hasChildren", &x.hasChildren)
+ m.Save("keys", &x.keys)
+ m.Save("values", &x.values)
+ m.Save("children", &x.children)
+}
+
+func (x *evictableRangenode) afterLoad() {}
+func (x *evictableRangenode) load(m state.Map) {
+ m.Load("nrSegments", &x.nrSegments)
+ m.Load("parent", &x.parent)
+ m.Load("parentIndex", &x.parentIndex)
+ m.Load("hasChildren", &x.hasChildren)
+ m.Load("keys", &x.keys)
+ m.Load("values", &x.values)
+ m.Load("children", &x.children)
+}
+
+func (x *evictableRangeSegmentDataSlices) beforeSave() {}
+func (x *evictableRangeSegmentDataSlices) save(m state.Map) {
+ x.beforeSave()
+ m.Save("Start", &x.Start)
+ m.Save("End", &x.End)
+ m.Save("Values", &x.Values)
+}
+
+func (x *evictableRangeSegmentDataSlices) afterLoad() {}
+func (x *evictableRangeSegmentDataSlices) load(m state.Map) {
+ m.Load("Start", &x.Start)
+ m.Load("End", &x.End)
+ m.Load("Values", &x.Values)
+}
+
+func (x *usageInfo) beforeSave() {}
+func (x *usageInfo) save(m state.Map) {
+ x.beforeSave()
+ m.Save("kind", &x.kind)
+ m.Save("knownCommitted", &x.knownCommitted)
+ m.Save("refs", &x.refs)
+}
+
+func (x *usageInfo) afterLoad() {}
+func (x *usageInfo) load(m state.Map) {
+ m.Load("kind", &x.kind)
+ m.Load("knownCommitted", &x.knownCommitted)
+ m.Load("refs", &x.refs)
+}
+
+func (x *usageSet) beforeSave() {}
+func (x *usageSet) save(m state.Map) {
+ x.beforeSave()
+ var root *usageSegmentDataSlices = x.saveRoot()
+ m.SaveValue("root", root)
+}
+
+func (x *usageSet) afterLoad() {}
+func (x *usageSet) load(m state.Map) {
+ m.LoadValue("root", new(*usageSegmentDataSlices), func(y interface{}) { x.loadRoot(y.(*usageSegmentDataSlices)) })
+}
+
+func (x *usagenode) beforeSave() {}
+func (x *usagenode) save(m state.Map) {
+ x.beforeSave()
+ m.Save("nrSegments", &x.nrSegments)
+ m.Save("parent", &x.parent)
+ m.Save("parentIndex", &x.parentIndex)
+ m.Save("hasChildren", &x.hasChildren)
+ m.Save("keys", &x.keys)
+ m.Save("values", &x.values)
+ m.Save("children", &x.children)
+}
+
+func (x *usagenode) afterLoad() {}
+func (x *usagenode) load(m state.Map) {
+ m.Load("nrSegments", &x.nrSegments)
+ m.Load("parent", &x.parent)
+ m.Load("parentIndex", &x.parentIndex)
+ m.Load("hasChildren", &x.hasChildren)
+ m.Load("keys", &x.keys)
+ m.Load("values", &x.values)
+ m.Load("children", &x.children)
+}
+
+func (x *usageSegmentDataSlices) beforeSave() {}
+func (x *usageSegmentDataSlices) save(m state.Map) {
+ x.beforeSave()
+ m.Save("Start", &x.Start)
+ m.Save("End", &x.End)
+ m.Save("Values", &x.Values)
+}
+
+func (x *usageSegmentDataSlices) afterLoad() {}
+func (x *usageSegmentDataSlices) load(m state.Map) {
+ m.Load("Start", &x.Start)
+ m.Load("End", &x.End)
+ m.Load("Values", &x.Values)
+}
+
+func init() {
+ state.Register("pgalloc.EvictableRange", (*EvictableRange)(nil), state.Fns{Save: (*EvictableRange).save, Load: (*EvictableRange).load})
+ state.Register("pgalloc.evictableRangeSet", (*evictableRangeSet)(nil), state.Fns{Save: (*evictableRangeSet).save, Load: (*evictableRangeSet).load})
+ state.Register("pgalloc.evictableRangenode", (*evictableRangenode)(nil), state.Fns{Save: (*evictableRangenode).save, Load: (*evictableRangenode).load})
+ state.Register("pgalloc.evictableRangeSegmentDataSlices", (*evictableRangeSegmentDataSlices)(nil), state.Fns{Save: (*evictableRangeSegmentDataSlices).save, Load: (*evictableRangeSegmentDataSlices).load})
+ state.Register("pgalloc.usageInfo", (*usageInfo)(nil), state.Fns{Save: (*usageInfo).save, Load: (*usageInfo).load})
+ state.Register("pgalloc.usageSet", (*usageSet)(nil), state.Fns{Save: (*usageSet).save, Load: (*usageSet).load})
+ state.Register("pgalloc.usagenode", (*usagenode)(nil), state.Fns{Save: (*usagenode).save, Load: (*usagenode).load})
+ state.Register("pgalloc.usageSegmentDataSlices", (*usageSegmentDataSlices)(nil), state.Fns{Save: (*usageSegmentDataSlices).save, Load: (*usageSegmentDataSlices).load})
+}
diff --git a/pkg/sentry/pgalloc/pgalloc_unsafe.go b/pkg/sentry/pgalloc/pgalloc_unsafe.go
new file mode 100644
index 000000000..a4b5d581c
--- /dev/null
+++ b/pkg/sentry/pgalloc/pgalloc_unsafe.go
@@ -0,0 +1,40 @@
+// Copyright 2018 The gVisor Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package pgalloc
+
+import (
+ "reflect"
+ "syscall"
+ "unsafe"
+)
+
+func unsafeSlice(addr uintptr, length int) (slice []byte) {
+ sh := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
+ sh.Data = addr
+ sh.Len = length
+ sh.Cap = length
+ return
+}
+
+func mincore(s []byte, buf []byte) error {
+ if _, _, errno := syscall.RawSyscall(
+ syscall.SYS_MINCORE,
+ uintptr(unsafe.Pointer(&s[0])),
+ uintptr(len(s)),
+ uintptr(unsafe.Pointer(&buf[0]))); errno != 0 {
+ return errno
+ }
+ return nil
+}
diff --git a/pkg/sentry/pgalloc/save_restore.go b/pkg/sentry/pgalloc/save_restore.go
new file mode 100644
index 000000000..d4ba384b1
--- /dev/null
+++ b/pkg/sentry/pgalloc/save_restore.go
@@ -0,0 +1,210 @@
+// Copyright 2018 The gVisor Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package pgalloc
+
+import (
+ "bytes"
+ "fmt"
+ "io"
+ "runtime"
+ "sync/atomic"
+ "syscall"
+
+ "gvisor.googlesource.com/gvisor/pkg/log"
+ "gvisor.googlesource.com/gvisor/pkg/sentry/usage"
+ "gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
+ "gvisor.googlesource.com/gvisor/pkg/state"
+)
+
+// SaveTo writes f's state to the given stream.
+func (f *MemoryFile) SaveTo(w io.Writer) error {
+ // Wait for reclaim.
+ f.mu.Lock()
+ defer f.mu.Unlock()
+ for f.reclaimable {
+ f.reclaimCond.Signal()
+ f.mu.Unlock()
+ runtime.Gosched()
+ f.mu.Lock()
+ }
+
+ // Ensure that there are no pending evictions.
+ if len(f.evictable) != 0 {
+ panic(fmt.Sprintf("evictions still pending for %d users; call StartEvictions and WaitForEvictions before SaveTo", len(f.evictable)))
+ }
+
+ // Ensure that all pages that contain data have knownCommitted set, since
+ // we only store knownCommitted pages below.
+ zeroPage := make([]byte, usermem.PageSize)
+ err := f.updateUsageLocked(0, func(bs []byte, committed []byte) error {
+ for pgoff := 0; pgoff < len(bs); pgoff += usermem.PageSize {
+ i := pgoff / usermem.PageSize
+ pg := bs[pgoff : pgoff+usermem.PageSize]
+ if !bytes.Equal(pg, zeroPage) {
+ committed[i] = 1
+ continue
+ }
+ committed[i] = 0
+ // Reading the page caused it to be committed; decommit it to
+ // reduce memory usage.
+ //
+ // "MADV_REMOVE [...] Free up a given range of pages and its
+ // associated backing store. This is equivalent to punching a hole
+ // in the corresponding byte range of the backing store (see
+ // fallocate(2))." - madvise(2)
+ if err := syscall.Madvise(pg, syscall.MADV_REMOVE); err != nil {
+ // This doesn't impact the correctness of saved memory, it
+ // just means that we're incrementally more likely to OOM.
+ // Complain, but don't abort saving.
+ log.Warningf("Decommitting page %p while saving failed: %v", pg, err)
+ }
+ }
+ return nil
+ })
+ if err != nil {
+ return err
+ }
+
+ // Save metadata.
+ if err := state.Save(w, &f.fileSize, nil); err != nil {
+ return err
+ }
+ if err := state.Save(w, &f.usage, nil); err != nil {
+ return err
+ }
+
+ // Dump out committed pages.
+ for seg := f.usage.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ if !seg.Value().knownCommitted {
+ continue
+ }
+ // Write a header to distinguish from objects.
+ if err := state.WriteHeader(w, uint64(seg.Range().Length()), false); err != nil {
+ return err
+ }
+ // Write out data.
+ var ioErr error
+ err := f.forEachMappingSlice(seg.Range(), func(s []byte) {
+ if ioErr != nil {
+ return
+ }
+ _, ioErr = w.Write(s)
+ })
+ if ioErr != nil {
+ return ioErr
+ }
+ if err != nil {
+ return err
+ }
+ }
+
+ return nil
+}
+
+// LoadFrom loads MemoryFile state from the given stream.
+func (f *MemoryFile) LoadFrom(r io.Reader) error {
+ // Load metadata.
+ if err := state.Load(r, &f.fileSize, nil); err != nil {
+ return err
+ }
+ if err := f.file.Truncate(f.fileSize); err != nil {
+ return err
+ }
+ newMappings := make([]uintptr, f.fileSize>>chunkShift)
+ f.mappings.Store(newMappings)
+ if err := state.Load(r, &f.usage, nil); err != nil {
+ return err
+ }
+
+ // Try to map committed chunks concurrently: For any given chunk, either
+ // this loop or the following one will mmap the chunk first and cache it in
+ // f.mappings for the other, but this loop is likely to run ahead of the
+ // other since it doesn't do any work between mmaps. The rest of this
+ // function doesn't mutate f.usage, so it's safe to iterate concurrently.
+ mapperDone := make(chan struct{})
+ mapperCanceled := int32(0)
+ go func() { // S/R-SAFE: see comment
+ defer func() { close(mapperDone) }()
+ for seg := f.usage.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ if atomic.LoadInt32(&mapperCanceled) != 0 {
+ return
+ }
+ if seg.Value().knownCommitted {
+ f.forEachMappingSlice(seg.Range(), func(s []byte) {})
+ }
+ }
+ }()
+ defer func() {
+ atomic.StoreInt32(&mapperCanceled, 1)
+ <-mapperDone
+ }()
+
+ // Load committed pages.
+ for seg := f.usage.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ if !seg.Value().knownCommitted {
+ continue
+ }
+ // Verify header.
+ length, object, err := state.ReadHeader(r)
+ if err != nil {
+ return err
+ }
+ if object {
+ // Not expected.
+ return fmt.Errorf("unexpected object")
+ }
+ if expected := uint64(seg.Range().Length()); length != expected {
+ // Size mismatch.
+ return fmt.Errorf("mismatched segment: expected %d, got %d", expected, length)
+ }
+ // Read data.
+ var ioErr error
+ err = f.forEachMappingSlice(seg.Range(), func(s []byte) {
+ if ioErr != nil {
+ return
+ }
+ _, ioErr = io.ReadFull(r, s)
+ })
+ if ioErr != nil {
+ return ioErr
+ }
+ if err != nil {
+ return err
+ }
+
+ // Update accounting for restored pages. We need to do this here since
+ // these segments are marked as "known committed", and will be skipped
+ // over on accounting scans.
+ usage.MemoryAccounting.Inc(seg.End()-seg.Start(), seg.Value().kind)
+ }
+
+ return nil
+}
+
+// MemoryFileProvider provides the MemoryFile method.
+//
+// This type exists to work around a save/restore defect. The only object in a
+// saved object graph that S/R allows to be replaced at time of restore is the
+// starting point of the restore, kernel.Kernel. However, the MemoryFile
+// changes between save and restore as well, so objects that need persistent
+// access to the MemoryFile must instead store a pointer to the Kernel and call
+// Kernel.MemoryFile() as required. In most cases, depending on the kernel
+// package directly would create a package dependency loop, so the stored
+// pointer must instead be a MemoryProvider interface object. Correspondingly,
+// kernel.Kernel is the only implementation of this interface.
+type MemoryFileProvider interface {
+ // MemoryFile returns the Kernel MemoryFile.
+ MemoryFile() *MemoryFile
+}
diff --git a/pkg/sentry/pgalloc/usage_set.go b/pkg/sentry/pgalloc/usage_set.go
new file mode 100755
index 000000000..8ef4952eb
--- /dev/null
+++ b/pkg/sentry/pgalloc/usage_set.go
@@ -0,0 +1,1274 @@
+package pgalloc
+
+import (
+ __generics_imported0 "gvisor.googlesource.com/gvisor/pkg/sentry/platform"
+)
+
+import (
+ "bytes"
+ "fmt"
+)
+
+const (
+ // minDegree is the minimum degree of an internal node in a Set B-tree.
+ //
+ // - Any non-root node has at least minDegree-1 segments.
+ //
+ // - Any non-root internal (non-leaf) node has at least minDegree children.
+ //
+ // - The root node may have fewer than minDegree-1 segments, but it may
+ // only have 0 segments if the tree is empty.
+ //
+ // Our implementation requires minDegree >= 3. Higher values of minDegree
+ // usually improve performance, but increase memory usage for small sets.
+ usageminDegree = 10
+
+ usagemaxDegree = 2 * usageminDegree
+)
+
+// A Set is a mapping of segments with non-overlapping Range keys. The zero
+// value for a Set is an empty set. Set values are not safely movable nor
+// copyable. Set is thread-compatible.
+//
+// +stateify savable
+type usageSet struct {
+ root usagenode `state:".(*usageSegmentDataSlices)"`
+}
+
+// IsEmpty returns true if the set contains no segments.
+func (s *usageSet) IsEmpty() bool {
+ return s.root.nrSegments == 0
+}
+
+// IsEmptyRange returns true iff no segments in the set overlap the given
+// range. This is semantically equivalent to s.SpanRange(r) == 0, but may be
+// more efficient.
+func (s *usageSet) IsEmptyRange(r __generics_imported0.FileRange) bool {
+ switch {
+ case r.Length() < 0:
+ panic(fmt.Sprintf("invalid range %v", r))
+ case r.Length() == 0:
+ return true
+ }
+ _, gap := s.Find(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ return r.End <= gap.End()
+}
+
+// Span returns the total size of all segments in the set.
+func (s *usageSet) Span() uint64 {
+ var sz uint64
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ sz += seg.Range().Length()
+ }
+ return sz
+}
+
+// SpanRange returns the total size of the intersection of segments in the set
+// with the given range.
+func (s *usageSet) SpanRange(r __generics_imported0.FileRange) uint64 {
+ switch {
+ case r.Length() < 0:
+ panic(fmt.Sprintf("invalid range %v", r))
+ case r.Length() == 0:
+ return 0
+ }
+ var sz uint64
+ for seg := s.LowerBoundSegment(r.Start); seg.Ok() && seg.Start() < r.End; seg = seg.NextSegment() {
+ sz += seg.Range().Intersect(r).Length()
+ }
+ return sz
+}
+
+// FirstSegment returns the first segment in the set. If the set is empty,
+// FirstSegment returns a terminal iterator.
+func (s *usageSet) FirstSegment() usageIterator {
+ if s.root.nrSegments == 0 {
+ return usageIterator{}
+ }
+ return s.root.firstSegment()
+}
+
+// LastSegment returns the last segment in the set. If the set is empty,
+// LastSegment returns a terminal iterator.
+func (s *usageSet) LastSegment() usageIterator {
+ if s.root.nrSegments == 0 {
+ return usageIterator{}
+ }
+ return s.root.lastSegment()
+}
+
+// FirstGap returns the first gap in the set.
+func (s *usageSet) FirstGap() usageGapIterator {
+ n := &s.root
+ for n.hasChildren {
+ n = n.children[0]
+ }
+ return usageGapIterator{n, 0}
+}
+
+// LastGap returns the last gap in the set.
+func (s *usageSet) LastGap() usageGapIterator {
+ n := &s.root
+ for n.hasChildren {
+ n = n.children[n.nrSegments]
+ }
+ return usageGapIterator{n, n.nrSegments}
+}
+
+// Find returns the segment or gap whose range contains the given key. If a
+// segment is found, the returned Iterator is non-terminal and the
+// returned GapIterator is terminal. Otherwise, the returned Iterator is
+// terminal and the returned GapIterator is non-terminal.
+func (s *usageSet) Find(key uint64) (usageIterator, usageGapIterator) {
+ n := &s.root
+ for {
+
+ lower := 0
+ upper := n.nrSegments
+ for lower < upper {
+ i := lower + (upper-lower)/2
+ if r := n.keys[i]; key < r.End {
+ if key >= r.Start {
+ return usageIterator{n, i}, usageGapIterator{}
+ }
+ upper = i
+ } else {
+ lower = i + 1
+ }
+ }
+ i := lower
+ if !n.hasChildren {
+ return usageIterator{}, usageGapIterator{n, i}
+ }
+ n = n.children[i]
+ }
+}
+
+// FindSegment returns the segment whose range contains the given key. If no
+// such segment exists, FindSegment returns a terminal iterator.
+func (s *usageSet) FindSegment(key uint64) usageIterator {
+ seg, _ := s.Find(key)
+ return seg
+}
+
+// LowerBoundSegment returns the segment with the lowest range that contains a
+// key greater than or equal to min. If no such segment exists,
+// LowerBoundSegment returns a terminal iterator.
+func (s *usageSet) LowerBoundSegment(min uint64) usageIterator {
+ seg, gap := s.Find(min)
+ if seg.Ok() {
+ return seg
+ }
+ return gap.NextSegment()
+}
+
+// UpperBoundSegment returns the segment with the highest range that contains a
+// key less than or equal to max. If no such segment exists, UpperBoundSegment
+// returns a terminal iterator.
+func (s *usageSet) UpperBoundSegment(max uint64) usageIterator {
+ seg, gap := s.Find(max)
+ if seg.Ok() {
+ return seg
+ }
+ return gap.PrevSegment()
+}
+
+// FindGap returns the gap containing the given key. If no such gap exists
+// (i.e. the set contains a segment containing that key), FindGap returns a
+// terminal iterator.
+func (s *usageSet) FindGap(key uint64) usageGapIterator {
+ _, gap := s.Find(key)
+ return gap
+}
+
+// LowerBoundGap returns the gap with the lowest range that is greater than or
+// equal to min.
+func (s *usageSet) LowerBoundGap(min uint64) usageGapIterator {
+ seg, gap := s.Find(min)
+ if gap.Ok() {
+ return gap
+ }
+ return seg.NextGap()
+}
+
+// UpperBoundGap returns the gap with the highest range that is less than or
+// equal to max.
+func (s *usageSet) UpperBoundGap(max uint64) usageGapIterator {
+ seg, gap := s.Find(max)
+ if gap.Ok() {
+ return gap
+ }
+ return seg.PrevGap()
+}
+
+// Add inserts the given segment into the set and returns true. If the new
+// segment can be merged with adjacent segments, Add will do so. If the new
+// segment would overlap an existing segment, Add returns false. If Add
+// succeeds, all existing iterators are invalidated.
+func (s *usageSet) Add(r __generics_imported0.FileRange, val usageInfo) bool {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ gap := s.FindGap(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ if r.End > gap.End() {
+ return false
+ }
+ s.Insert(gap, r, val)
+ return true
+}
+
+// AddWithoutMerging inserts the given segment into the set and returns true.
+// If it would overlap an existing segment, AddWithoutMerging does nothing and
+// returns false. If AddWithoutMerging succeeds, all existing iterators are
+// invalidated.
+func (s *usageSet) AddWithoutMerging(r __generics_imported0.FileRange, val usageInfo) bool {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ gap := s.FindGap(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ if r.End > gap.End() {
+ return false
+ }
+ s.InsertWithoutMergingUnchecked(gap, r, val)
+ return true
+}
+
+// Insert inserts the given segment into the given gap. If the new segment can
+// be merged with adjacent segments, Insert will do so. Insert returns an
+// iterator to the segment containing the inserted value (which may have been
+// merged with other values). All existing iterators (including gap, but not
+// including the returned iterator) are invalidated.
+//
+// If the gap cannot accommodate the segment, or if r is invalid, Insert panics.
+//
+// Insert is semantically equivalent to a InsertWithoutMerging followed by a
+// Merge, but may be more efficient. Note that there is no unchecked variant of
+// Insert since Insert must retrieve and inspect gap's predecessor and
+// successor segments regardless.
+func (s *usageSet) Insert(gap usageGapIterator, r __generics_imported0.FileRange, val usageInfo) usageIterator {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ prev, next := gap.PrevSegment(), gap.NextSegment()
+ if prev.Ok() && prev.End() > r.Start {
+ panic(fmt.Sprintf("new segment %v overlaps predecessor %v", r, prev.Range()))
+ }
+ if next.Ok() && next.Start() < r.End {
+ panic(fmt.Sprintf("new segment %v overlaps successor %v", r, next.Range()))
+ }
+ if prev.Ok() && prev.End() == r.Start {
+ if mval, ok := (usageSetFunctions{}).Merge(prev.Range(), prev.Value(), r, val); ok {
+ prev.SetEndUnchecked(r.End)
+ prev.SetValue(mval)
+ if next.Ok() && next.Start() == r.End {
+ val = mval
+ if mval, ok := (usageSetFunctions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok {
+ prev.SetEndUnchecked(next.End())
+ prev.SetValue(mval)
+ return s.Remove(next).PrevSegment()
+ }
+ }
+ return prev
+ }
+ }
+ if next.Ok() && next.Start() == r.End {
+ if mval, ok := (usageSetFunctions{}).Merge(r, val, next.Range(), next.Value()); ok {
+ next.SetStartUnchecked(r.Start)
+ next.SetValue(mval)
+ return next
+ }
+ }
+ return s.InsertWithoutMergingUnchecked(gap, r, val)
+}
+
+// InsertWithoutMerging inserts the given segment into the given gap and
+// returns an iterator to the inserted segment. All existing iterators
+// (including gap, but not including the returned iterator) are invalidated.
+//
+// If the gap cannot accommodate the segment, or if r is invalid,
+// InsertWithoutMerging panics.
+func (s *usageSet) InsertWithoutMerging(gap usageGapIterator, r __generics_imported0.FileRange, val usageInfo) usageIterator {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ if gr := gap.Range(); !gr.IsSupersetOf(r) {
+ panic(fmt.Sprintf("cannot insert segment range %v into gap range %v", r, gr))
+ }
+ return s.InsertWithoutMergingUnchecked(gap, r, val)
+}
+
+// InsertWithoutMergingUnchecked inserts the given segment into the given gap
+// and returns an iterator to the inserted segment. All existing iterators
+// (including gap, but not including the returned iterator) are invalidated.
+//
+// Preconditions: r.Start >= gap.Start(); r.End <= gap.End().
+func (s *usageSet) InsertWithoutMergingUnchecked(gap usageGapIterator, r __generics_imported0.FileRange, val usageInfo) usageIterator {
+ gap = gap.node.rebalanceBeforeInsert(gap)
+ copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments])
+ copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments])
+ gap.node.keys[gap.index] = r
+ gap.node.values[gap.index] = val
+ gap.node.nrSegments++
+ return usageIterator{gap.node, gap.index}
+}
+
+// Remove removes the given segment and returns an iterator to the vacated gap.
+// All existing iterators (including seg, but not including the returned
+// iterator) are invalidated.
+func (s *usageSet) Remove(seg usageIterator) usageGapIterator {
+
+ if seg.node.hasChildren {
+
+ victim := seg.PrevSegment()
+
+ seg.SetRangeUnchecked(victim.Range())
+ seg.SetValue(victim.Value())
+ return s.Remove(victim).NextGap()
+ }
+ copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments])
+ copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments])
+ usageSetFunctions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1])
+ seg.node.nrSegments--
+ return seg.node.rebalanceAfterRemove(usageGapIterator{seg.node, seg.index})
+}
+
+// RemoveAll removes all segments from the set. All existing iterators are
+// invalidated.
+func (s *usageSet) RemoveAll() {
+ s.root = usagenode{}
+}
+
+// RemoveRange removes all segments in the given range. An iterator to the
+// newly formed gap is returned, and all existing iterators are invalidated.
+func (s *usageSet) RemoveRange(r __generics_imported0.FileRange) usageGapIterator {
+ seg, gap := s.Find(r.Start)
+ if seg.Ok() {
+ seg = s.Isolate(seg, r)
+ gap = s.Remove(seg)
+ }
+ for seg = gap.NextSegment(); seg.Ok() && seg.Start() < r.End; seg = gap.NextSegment() {
+ seg = s.Isolate(seg, r)
+ gap = s.Remove(seg)
+ }
+ return gap
+}
+
+// Merge attempts to merge two neighboring segments. If successful, Merge
+// returns an iterator to the merged segment, and all existing iterators are
+// invalidated. Otherwise, Merge returns a terminal iterator.
+//
+// If first is not the predecessor of second, Merge panics.
+func (s *usageSet) Merge(first, second usageIterator) usageIterator {
+ if first.NextSegment() != second {
+ panic(fmt.Sprintf("attempt to merge non-neighboring segments %v, %v", first.Range(), second.Range()))
+ }
+ return s.MergeUnchecked(first, second)
+}
+
+// MergeUnchecked attempts to merge two neighboring segments. If successful,
+// MergeUnchecked returns an iterator to the merged segment, and all existing
+// iterators are invalidated. Otherwise, MergeUnchecked returns a terminal
+// iterator.
+//
+// Precondition: first is the predecessor of second: first.NextSegment() ==
+// second, first == second.PrevSegment().
+func (s *usageSet) MergeUnchecked(first, second usageIterator) usageIterator {
+ if first.End() == second.Start() {
+ if mval, ok := (usageSetFunctions{}).Merge(first.Range(), first.Value(), second.Range(), second.Value()); ok {
+
+ first.SetEndUnchecked(second.End())
+ first.SetValue(mval)
+ return s.Remove(second).PrevSegment()
+ }
+ }
+ return usageIterator{}
+}
+
+// MergeAll attempts to merge all adjacent segments in the set. All existing
+// iterators are invalidated.
+func (s *usageSet) MergeAll() {
+ seg := s.FirstSegment()
+ if !seg.Ok() {
+ return
+ }
+ next := seg.NextSegment()
+ for next.Ok() {
+ if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
+ seg, next = mseg, mseg.NextSegment()
+ } else {
+ seg, next = next, next.NextSegment()
+ }
+ }
+}
+
+// MergeRange attempts to merge all adjacent segments that contain a key in the
+// specific range. All existing iterators are invalidated.
+func (s *usageSet) MergeRange(r __generics_imported0.FileRange) {
+ seg := s.LowerBoundSegment(r.Start)
+ if !seg.Ok() {
+ return
+ }
+ next := seg.NextSegment()
+ for next.Ok() && next.Range().Start < r.End {
+ if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
+ seg, next = mseg, mseg.NextSegment()
+ } else {
+ seg, next = next, next.NextSegment()
+ }
+ }
+}
+
+// MergeAdjacent attempts to merge the segment containing r.Start with its
+// predecessor, and the segment containing r.End-1 with its successor.
+func (s *usageSet) MergeAdjacent(r __generics_imported0.FileRange) {
+ first := s.FindSegment(r.Start)
+ if first.Ok() {
+ if prev := first.PrevSegment(); prev.Ok() {
+ s.Merge(prev, first)
+ }
+ }
+ last := s.FindSegment(r.End - 1)
+ if last.Ok() {
+ if next := last.NextSegment(); next.Ok() {
+ s.Merge(last, next)
+ }
+ }
+}
+
+// Split splits the given segment at the given key and returns iterators to the
+// two resulting segments. All existing iterators (including seg, but not
+// including the returned iterators) are invalidated.
+//
+// If the segment cannot be split at split (because split is at the start or
+// end of the segment's range, so splitting would produce a segment with zero
+// length, or because split falls outside the segment's range altogether),
+// Split panics.
+func (s *usageSet) Split(seg usageIterator, split uint64) (usageIterator, usageIterator) {
+ if !seg.Range().CanSplitAt(split) {
+ panic(fmt.Sprintf("can't split %v at %v", seg.Range(), split))
+ }
+ return s.SplitUnchecked(seg, split)
+}
+
+// SplitUnchecked splits the given segment at the given key and returns
+// iterators to the two resulting segments. All existing iterators (including
+// seg, but not including the returned iterators) are invalidated.
+//
+// Preconditions: seg.Start() < key < seg.End().
+func (s *usageSet) SplitUnchecked(seg usageIterator, split uint64) (usageIterator, usageIterator) {
+ val1, val2 := (usageSetFunctions{}).Split(seg.Range(), seg.Value(), split)
+ end2 := seg.End()
+ seg.SetEndUnchecked(split)
+ seg.SetValue(val1)
+ seg2 := s.InsertWithoutMergingUnchecked(seg.NextGap(), __generics_imported0.FileRange{split, end2}, val2)
+
+ return seg2.PrevSegment(), seg2
+}
+
+// SplitAt splits the segment straddling split, if one exists. SplitAt returns
+// true if a segment was split and false otherwise. If SplitAt splits a
+// segment, all existing iterators are invalidated.
+func (s *usageSet) SplitAt(split uint64) bool {
+ if seg := s.FindSegment(split); seg.Ok() && seg.Range().CanSplitAt(split) {
+ s.SplitUnchecked(seg, split)
+ return true
+ }
+ return false
+}
+
+// Isolate ensures that the given segment's range does not escape r by
+// splitting at r.Start and r.End if necessary, and returns an updated iterator
+// to the bounded segment. All existing iterators (including seg, but not
+// including the returned iterators) are invalidated.
+func (s *usageSet) Isolate(seg usageIterator, r __generics_imported0.FileRange) usageIterator {
+ if seg.Range().CanSplitAt(r.Start) {
+ _, seg = s.SplitUnchecked(seg, r.Start)
+ }
+ if seg.Range().CanSplitAt(r.End) {
+ seg, _ = s.SplitUnchecked(seg, r.End)
+ }
+ return seg
+}
+
+// ApplyContiguous applies a function to a contiguous range of segments,
+// splitting if necessary. The function is applied until the first gap is
+// encountered, at which point the gap is returned. If the function is applied
+// across the entire range, a terminal gap is returned. All existing iterators
+// are invalidated.
+//
+// N.B. The Iterator must not be invalidated by the function.
+func (s *usageSet) ApplyContiguous(r __generics_imported0.FileRange, fn func(seg usageIterator)) usageGapIterator {
+ seg, gap := s.Find(r.Start)
+ if !seg.Ok() {
+ return gap
+ }
+ for {
+ seg = s.Isolate(seg, r)
+ fn(seg)
+ if seg.End() >= r.End {
+ return usageGapIterator{}
+ }
+ gap = seg.NextGap()
+ if !gap.IsEmpty() {
+ return gap
+ }
+ seg = gap.NextSegment()
+ if !seg.Ok() {
+
+ return usageGapIterator{}
+ }
+ }
+}
+
+// +stateify savable
+type usagenode struct {
+ // An internal binary tree node looks like:
+ //
+ // K
+ // / \
+ // Cl Cr
+ //
+ // where all keys in the subtree rooted by Cl (the left subtree) are less
+ // than K (the key of the parent node), and all keys in the subtree rooted
+ // by Cr (the right subtree) are greater than K.
+ //
+ // An internal B-tree node's indexes work out to look like:
+ //
+ // K0 K1 K2 ... Kn-1
+ // / \/ \/ \ ... / \
+ // C0 C1 C2 C3 ... Cn-1 Cn
+ //
+ // where n is nrSegments.
+ nrSegments int
+
+ // parent is a pointer to this node's parent. If this node is root, parent
+ // is nil.
+ parent *usagenode
+
+ // parentIndex is the index of this node in parent.children.
+ parentIndex int
+
+ // Flag for internal nodes that is technically redundant with "children[0]
+ // != nil", but is stored in the first cache line. "hasChildren" rather
+ // than "isLeaf" because false must be the correct value for an empty root.
+ hasChildren bool
+
+ // Nodes store keys and values in separate arrays to maximize locality in
+ // the common case (scanning keys for lookup).
+ keys [usagemaxDegree - 1]__generics_imported0.FileRange
+ values [usagemaxDegree - 1]usageInfo
+ children [usagemaxDegree]*usagenode
+}
+
+// firstSegment returns the first segment in the subtree rooted by n.
+//
+// Preconditions: n.nrSegments != 0.
+func (n *usagenode) firstSegment() usageIterator {
+ for n.hasChildren {
+ n = n.children[0]
+ }
+ return usageIterator{n, 0}
+}
+
+// lastSegment returns the last segment in the subtree rooted by n.
+//
+// Preconditions: n.nrSegments != 0.
+func (n *usagenode) lastSegment() usageIterator {
+ for n.hasChildren {
+ n = n.children[n.nrSegments]
+ }
+ return usageIterator{n, n.nrSegments - 1}
+}
+
+func (n *usagenode) prevSibling() *usagenode {
+ if n.parent == nil || n.parentIndex == 0 {
+ return nil
+ }
+ return n.parent.children[n.parentIndex-1]
+}
+
+func (n *usagenode) nextSibling() *usagenode {
+ if n.parent == nil || n.parentIndex == n.parent.nrSegments {
+ return nil
+ }
+ return n.parent.children[n.parentIndex+1]
+}
+
+// rebalanceBeforeInsert splits n and its ancestors if they are full, as
+// required for insertion, and returns an updated iterator to the position
+// represented by gap.
+func (n *usagenode) rebalanceBeforeInsert(gap usageGapIterator) usageGapIterator {
+ if n.parent != nil {
+ gap = n.parent.rebalanceBeforeInsert(gap)
+ }
+ if n.nrSegments < usagemaxDegree-1 {
+ return gap
+ }
+ if n.parent == nil {
+
+ left := &usagenode{
+ nrSegments: usageminDegree - 1,
+ parent: n,
+ parentIndex: 0,
+ hasChildren: n.hasChildren,
+ }
+ right := &usagenode{
+ nrSegments: usageminDegree - 1,
+ parent: n,
+ parentIndex: 1,
+ hasChildren: n.hasChildren,
+ }
+ copy(left.keys[:usageminDegree-1], n.keys[:usageminDegree-1])
+ copy(left.values[:usageminDegree-1], n.values[:usageminDegree-1])
+ copy(right.keys[:usageminDegree-1], n.keys[usageminDegree:])
+ copy(right.values[:usageminDegree-1], n.values[usageminDegree:])
+ n.keys[0], n.values[0] = n.keys[usageminDegree-1], n.values[usageminDegree-1]
+ usagezeroValueSlice(n.values[1:])
+ if n.hasChildren {
+ copy(left.children[:usageminDegree], n.children[:usageminDegree])
+ copy(right.children[:usageminDegree], n.children[usageminDegree:])
+ usagezeroNodeSlice(n.children[2:])
+ for i := 0; i < usageminDegree; i++ {
+ left.children[i].parent = left
+ left.children[i].parentIndex = i
+ right.children[i].parent = right
+ right.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments = 1
+ n.hasChildren = true
+ n.children[0] = left
+ n.children[1] = right
+ if gap.node != n {
+ return gap
+ }
+ if gap.index < usageminDegree {
+ return usageGapIterator{left, gap.index}
+ }
+ return usageGapIterator{right, gap.index - usageminDegree}
+ }
+
+ copy(n.parent.keys[n.parentIndex+1:], n.parent.keys[n.parentIndex:n.parent.nrSegments])
+ copy(n.parent.values[n.parentIndex+1:], n.parent.values[n.parentIndex:n.parent.nrSegments])
+ n.parent.keys[n.parentIndex], n.parent.values[n.parentIndex] = n.keys[usageminDegree-1], n.values[usageminDegree-1]
+ copy(n.parent.children[n.parentIndex+2:], n.parent.children[n.parentIndex+1:n.parent.nrSegments+1])
+ for i := n.parentIndex + 2; i < n.parent.nrSegments+2; i++ {
+ n.parent.children[i].parentIndex = i
+ }
+ sibling := &usagenode{
+ nrSegments: usageminDegree - 1,
+ parent: n.parent,
+ parentIndex: n.parentIndex + 1,
+ hasChildren: n.hasChildren,
+ }
+ n.parent.children[n.parentIndex+1] = sibling
+ n.parent.nrSegments++
+ copy(sibling.keys[:usageminDegree-1], n.keys[usageminDegree:])
+ copy(sibling.values[:usageminDegree-1], n.values[usageminDegree:])
+ usagezeroValueSlice(n.values[usageminDegree-1:])
+ if n.hasChildren {
+ copy(sibling.children[:usageminDegree], n.children[usageminDegree:])
+ usagezeroNodeSlice(n.children[usageminDegree:])
+ for i := 0; i < usageminDegree; i++ {
+ sibling.children[i].parent = sibling
+ sibling.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments = usageminDegree - 1
+
+ if gap.node != n {
+ return gap
+ }
+ if gap.index < usageminDegree {
+ return gap
+ }
+ return usageGapIterator{sibling, gap.index - usageminDegree}
+}
+
+// rebalanceAfterRemove "unsplits" n and its ancestors if they are deficient
+// (contain fewer segments than required by B-tree invariants), as required for
+// removal, and returns an updated iterator to the position represented by gap.
+//
+// Precondition: n is the only node in the tree that may currently violate a
+// B-tree invariant.
+func (n *usagenode) rebalanceAfterRemove(gap usageGapIterator) usageGapIterator {
+ for {
+ if n.nrSegments >= usageminDegree-1 {
+ return gap
+ }
+ if n.parent == nil {
+
+ return gap
+ }
+
+ if sibling := n.prevSibling(); sibling != nil && sibling.nrSegments >= usageminDegree {
+ copy(n.keys[1:], n.keys[:n.nrSegments])
+ copy(n.values[1:], n.values[:n.nrSegments])
+ n.keys[0] = n.parent.keys[n.parentIndex-1]
+ n.values[0] = n.parent.values[n.parentIndex-1]
+ n.parent.keys[n.parentIndex-1] = sibling.keys[sibling.nrSegments-1]
+ n.parent.values[n.parentIndex-1] = sibling.values[sibling.nrSegments-1]
+ usageSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
+ if n.hasChildren {
+ copy(n.children[1:], n.children[:n.nrSegments+1])
+ n.children[0] = sibling.children[sibling.nrSegments]
+ sibling.children[sibling.nrSegments] = nil
+ n.children[0].parent = n
+ n.children[0].parentIndex = 0
+ for i := 1; i < n.nrSegments+2; i++ {
+ n.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments++
+ sibling.nrSegments--
+ if gap.node == sibling && gap.index == sibling.nrSegments {
+ return usageGapIterator{n, 0}
+ }
+ if gap.node == n {
+ return usageGapIterator{n, gap.index + 1}
+ }
+ return gap
+ }
+ if sibling := n.nextSibling(); sibling != nil && sibling.nrSegments >= usageminDegree {
+ n.keys[n.nrSegments] = n.parent.keys[n.parentIndex]
+ n.values[n.nrSegments] = n.parent.values[n.parentIndex]
+ n.parent.keys[n.parentIndex] = sibling.keys[0]
+ n.parent.values[n.parentIndex] = sibling.values[0]
+ copy(sibling.keys[:sibling.nrSegments-1], sibling.keys[1:])
+ copy(sibling.values[:sibling.nrSegments-1], sibling.values[1:])
+ usageSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
+ if n.hasChildren {
+ n.children[n.nrSegments+1] = sibling.children[0]
+ copy(sibling.children[:sibling.nrSegments], sibling.children[1:])
+ sibling.children[sibling.nrSegments] = nil
+ n.children[n.nrSegments+1].parent = n
+ n.children[n.nrSegments+1].parentIndex = n.nrSegments + 1
+ for i := 0; i < sibling.nrSegments; i++ {
+ sibling.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments++
+ sibling.nrSegments--
+ if gap.node == sibling {
+ if gap.index == 0 {
+ return usageGapIterator{n, n.nrSegments}
+ }
+ return usageGapIterator{sibling, gap.index - 1}
+ }
+ return gap
+ }
+
+ p := n.parent
+ if p.nrSegments == 1 {
+
+ left, right := p.children[0], p.children[1]
+ p.nrSegments = left.nrSegments + right.nrSegments + 1
+ p.hasChildren = left.hasChildren
+ p.keys[left.nrSegments] = p.keys[0]
+ p.values[left.nrSegments] = p.values[0]
+ copy(p.keys[:left.nrSegments], left.keys[:left.nrSegments])
+ copy(p.values[:left.nrSegments], left.values[:left.nrSegments])
+ copy(p.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
+ copy(p.values[left.nrSegments+1:], right.values[:right.nrSegments])
+ if left.hasChildren {
+ copy(p.children[:left.nrSegments+1], left.children[:left.nrSegments+1])
+ copy(p.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
+ for i := 0; i < p.nrSegments+1; i++ {
+ p.children[i].parent = p
+ p.children[i].parentIndex = i
+ }
+ } else {
+ p.children[0] = nil
+ p.children[1] = nil
+ }
+ if gap.node == left {
+ return usageGapIterator{p, gap.index}
+ }
+ if gap.node == right {
+ return usageGapIterator{p, gap.index + left.nrSegments + 1}
+ }
+ return gap
+ }
+ // Merge n and either sibling, along with the segment separating the
+ // two, into whichever of the two nodes comes first. This is the
+ // reverse of the non-root splitting case in
+ // node.rebalanceBeforeInsert.
+ var left, right *usagenode
+ if n.parentIndex > 0 {
+ left = n.prevSibling()
+ right = n
+ } else {
+ left = n
+ right = n.nextSibling()
+ }
+
+ if gap.node == right {
+ gap = usageGapIterator{left, gap.index + left.nrSegments + 1}
+ }
+ left.keys[left.nrSegments] = p.keys[left.parentIndex]
+ left.values[left.nrSegments] = p.values[left.parentIndex]
+ copy(left.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
+ copy(left.values[left.nrSegments+1:], right.values[:right.nrSegments])
+ if left.hasChildren {
+ copy(left.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
+ for i := left.nrSegments + 1; i < left.nrSegments+right.nrSegments+2; i++ {
+ left.children[i].parent = left
+ left.children[i].parentIndex = i
+ }
+ }
+ left.nrSegments += right.nrSegments + 1
+ copy(p.keys[left.parentIndex:], p.keys[left.parentIndex+1:p.nrSegments])
+ copy(p.values[left.parentIndex:], p.values[left.parentIndex+1:p.nrSegments])
+ usageSetFunctions{}.ClearValue(&p.values[p.nrSegments-1])
+ copy(p.children[left.parentIndex+1:], p.children[left.parentIndex+2:p.nrSegments+1])
+ for i := 0; i < p.nrSegments; i++ {
+ p.children[i].parentIndex = i
+ }
+ p.children[p.nrSegments] = nil
+ p.nrSegments--
+
+ n = p
+ }
+}
+
+// A Iterator is conceptually one of:
+//
+// - A pointer to a segment in a set; or
+//
+// - A terminal iterator, which is a sentinel indicating that the end of
+// iteration has been reached.
+//
+// Iterators are copyable values and are meaningfully equality-comparable. The
+// zero value of Iterator is a terminal iterator.
+//
+// Unless otherwise specified, any mutation of a set invalidates all existing
+// iterators into the set.
+type usageIterator struct {
+ // node is the node containing the iterated segment. If the iterator is
+ // terminal, node is nil.
+ node *usagenode
+
+ // index is the index of the segment in node.keys/values.
+ index int
+}
+
+// Ok returns true if the iterator is not terminal. All other methods are only
+// valid for non-terminal iterators.
+func (seg usageIterator) Ok() bool {
+ return seg.node != nil
+}
+
+// Range returns the iterated segment's range key.
+func (seg usageIterator) Range() __generics_imported0.FileRange {
+ return seg.node.keys[seg.index]
+}
+
+// Start is equivalent to Range().Start, but should be preferred if only the
+// start of the range is needed.
+func (seg usageIterator) Start() uint64 {
+ return seg.node.keys[seg.index].Start
+}
+
+// End is equivalent to Range().End, but should be preferred if only the end of
+// the range is needed.
+func (seg usageIterator) End() uint64 {
+ return seg.node.keys[seg.index].End
+}
+
+// SetRangeUnchecked mutates the iterated segment's range key. This operation
+// does not invalidate any iterators.
+//
+// Preconditions:
+//
+// - r.Length() > 0.
+//
+// - The new range must not overlap an existing one: If seg.NextSegment().Ok(),
+// then r.end <= seg.NextSegment().Start(); if seg.PrevSegment().Ok(), then
+// r.start >= seg.PrevSegment().End().
+func (seg usageIterator) SetRangeUnchecked(r __generics_imported0.FileRange) {
+ seg.node.keys[seg.index] = r
+}
+
+// SetRange mutates the iterated segment's range key. If the new range would
+// cause the iterated segment to overlap another segment, or if the new range
+// is invalid, SetRange panics. This operation does not invalidate any
+// iterators.
+func (seg usageIterator) SetRange(r __generics_imported0.FileRange) {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ if prev := seg.PrevSegment(); prev.Ok() && r.Start < prev.End() {
+ panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, prev.Range()))
+ }
+ if next := seg.NextSegment(); next.Ok() && r.End > next.Start() {
+ panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, next.Range()))
+ }
+ seg.SetRangeUnchecked(r)
+}
+
+// SetStartUnchecked mutates the iterated segment's start. This operation does
+// not invalidate any iterators.
+//
+// Preconditions: The new start must be valid: start < seg.End(); if
+// seg.PrevSegment().Ok(), then start >= seg.PrevSegment().End().
+func (seg usageIterator) SetStartUnchecked(start uint64) {
+ seg.node.keys[seg.index].Start = start
+}
+
+// SetStart mutates the iterated segment's start. If the new start value would
+// cause the iterated segment to overlap another segment, or would result in an
+// invalid range, SetStart panics. This operation does not invalidate any
+// iterators.
+func (seg usageIterator) SetStart(start uint64) {
+ if start >= seg.End() {
+ panic(fmt.Sprintf("new start %v would invalidate segment range %v", start, seg.Range()))
+ }
+ if prev := seg.PrevSegment(); prev.Ok() && start < prev.End() {
+ panic(fmt.Sprintf("new start %v would cause segment range %v to overlap segment range %v", start, seg.Range(), prev.Range()))
+ }
+ seg.SetStartUnchecked(start)
+}
+
+// SetEndUnchecked mutates the iterated segment's end. This operation does not
+// invalidate any iterators.
+//
+// Preconditions: The new end must be valid: end > seg.Start(); if
+// seg.NextSegment().Ok(), then end <= seg.NextSegment().Start().
+func (seg usageIterator) SetEndUnchecked(end uint64) {
+ seg.node.keys[seg.index].End = end
+}
+
+// SetEnd mutates the iterated segment's end. If the new end value would cause
+// the iterated segment to overlap another segment, or would result in an
+// invalid range, SetEnd panics. This operation does not invalidate any
+// iterators.
+func (seg usageIterator) SetEnd(end uint64) {
+ if end <= seg.Start() {
+ panic(fmt.Sprintf("new end %v would invalidate segment range %v", end, seg.Range()))
+ }
+ if next := seg.NextSegment(); next.Ok() && end > next.Start() {
+ panic(fmt.Sprintf("new end %v would cause segment range %v to overlap segment range %v", end, seg.Range(), next.Range()))
+ }
+ seg.SetEndUnchecked(end)
+}
+
+// Value returns a copy of the iterated segment's value.
+func (seg usageIterator) Value() usageInfo {
+ return seg.node.values[seg.index]
+}
+
+// ValuePtr returns a pointer to the iterated segment's value. The pointer is
+// invalidated if the iterator is invalidated. This operation does not
+// invalidate any iterators.
+func (seg usageIterator) ValuePtr() *usageInfo {
+ return &seg.node.values[seg.index]
+}
+
+// SetValue mutates the iterated segment's value. This operation does not
+// invalidate any iterators.
+func (seg usageIterator) SetValue(val usageInfo) {
+ seg.node.values[seg.index] = val
+}
+
+// PrevSegment returns the iterated segment's predecessor. If there is no
+// preceding segment, PrevSegment returns a terminal iterator.
+func (seg usageIterator) PrevSegment() usageIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index].lastSegment()
+ }
+ if seg.index > 0 {
+ return usageIterator{seg.node, seg.index - 1}
+ }
+ if seg.node.parent == nil {
+ return usageIterator{}
+ }
+ return usagesegmentBeforePosition(seg.node.parent, seg.node.parentIndex)
+}
+
+// NextSegment returns the iterated segment's successor. If there is no
+// succeeding segment, NextSegment returns a terminal iterator.
+func (seg usageIterator) NextSegment() usageIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index+1].firstSegment()
+ }
+ if seg.index < seg.node.nrSegments-1 {
+ return usageIterator{seg.node, seg.index + 1}
+ }
+ if seg.node.parent == nil {
+ return usageIterator{}
+ }
+ return usagesegmentAfterPosition(seg.node.parent, seg.node.parentIndex)
+}
+
+// PrevGap returns the gap immediately before the iterated segment.
+func (seg usageIterator) PrevGap() usageGapIterator {
+ if seg.node.hasChildren {
+
+ return seg.node.children[seg.index].lastSegment().NextGap()
+ }
+ return usageGapIterator{seg.node, seg.index}
+}
+
+// NextGap returns the gap immediately after the iterated segment.
+func (seg usageIterator) NextGap() usageGapIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index+1].firstSegment().PrevGap()
+ }
+ return usageGapIterator{seg.node, seg.index + 1}
+}
+
+// PrevNonEmpty returns the iterated segment's predecessor if it is adjacent,
+// or the gap before the iterated segment otherwise. If seg.Start() ==
+// Functions.MinKey(), PrevNonEmpty will return two terminal iterators.
+// Otherwise, exactly one of the iterators returned by PrevNonEmpty will be
+// non-terminal.
+func (seg usageIterator) PrevNonEmpty() (usageIterator, usageGapIterator) {
+ gap := seg.PrevGap()
+ if gap.Range().Length() != 0 {
+ return usageIterator{}, gap
+ }
+ return gap.PrevSegment(), usageGapIterator{}
+}
+
+// NextNonEmpty returns the iterated segment's successor if it is adjacent, or
+// the gap after the iterated segment otherwise. If seg.End() ==
+// Functions.MaxKey(), NextNonEmpty will return two terminal iterators.
+// Otherwise, exactly one of the iterators returned by NextNonEmpty will be
+// non-terminal.
+func (seg usageIterator) NextNonEmpty() (usageIterator, usageGapIterator) {
+ gap := seg.NextGap()
+ if gap.Range().Length() != 0 {
+ return usageIterator{}, gap
+ }
+ return gap.NextSegment(), usageGapIterator{}
+}
+
+// A GapIterator is conceptually one of:
+//
+// - A pointer to a position between two segments, before the first segment, or
+// after the last segment in a set, called a *gap*; or
+//
+// - A terminal iterator, which is a sentinel indicating that the end of
+// iteration has been reached.
+//
+// Note that the gap between two adjacent segments exists (iterators to it are
+// non-terminal), but has a length of zero. GapIterator.IsEmpty returns true
+// for such gaps. An empty set contains a single gap, spanning the entire range
+// of the set's keys.
+//
+// GapIterators are copyable values and are meaningfully equality-comparable.
+// The zero value of GapIterator is a terminal iterator.
+//
+// Unless otherwise specified, any mutation of a set invalidates all existing
+// iterators into the set.
+type usageGapIterator struct {
+ // The representation of a GapIterator is identical to that of an Iterator,
+ // except that index corresponds to positions between segments in the same
+ // way as for node.children (see comment for node.nrSegments).
+ node *usagenode
+ index int
+}
+
+// Ok returns true if the iterator is not terminal. All other methods are only
+// valid for non-terminal iterators.
+func (gap usageGapIterator) Ok() bool {
+ return gap.node != nil
+}
+
+// Range returns the range spanned by the iterated gap.
+func (gap usageGapIterator) Range() __generics_imported0.FileRange {
+ return __generics_imported0.FileRange{gap.Start(), gap.End()}
+}
+
+// Start is equivalent to Range().Start, but should be preferred if only the
+// start of the range is needed.
+func (gap usageGapIterator) Start() uint64 {
+ if ps := gap.PrevSegment(); ps.Ok() {
+ return ps.End()
+ }
+ return usageSetFunctions{}.MinKey()
+}
+
+// End is equivalent to Range().End, but should be preferred if only the end of
+// the range is needed.
+func (gap usageGapIterator) End() uint64 {
+ if ns := gap.NextSegment(); ns.Ok() {
+ return ns.Start()
+ }
+ return usageSetFunctions{}.MaxKey()
+}
+
+// IsEmpty returns true if the iterated gap is empty (that is, the "gap" is
+// between two adjacent segments.)
+func (gap usageGapIterator) IsEmpty() bool {
+ return gap.Range().Length() == 0
+}
+
+// PrevSegment returns the segment immediately before the iterated gap. If no
+// such segment exists, PrevSegment returns a terminal iterator.
+func (gap usageGapIterator) PrevSegment() usageIterator {
+ return usagesegmentBeforePosition(gap.node, gap.index)
+}
+
+// NextSegment returns the segment immediately after the iterated gap. If no
+// such segment exists, NextSegment returns a terminal iterator.
+func (gap usageGapIterator) NextSegment() usageIterator {
+ return usagesegmentAfterPosition(gap.node, gap.index)
+}
+
+// PrevGap returns the iterated gap's predecessor. If no such gap exists,
+// PrevGap returns a terminal iterator.
+func (gap usageGapIterator) PrevGap() usageGapIterator {
+ seg := gap.PrevSegment()
+ if !seg.Ok() {
+ return usageGapIterator{}
+ }
+ return seg.PrevGap()
+}
+
+// NextGap returns the iterated gap's successor. If no such gap exists, NextGap
+// returns a terminal iterator.
+func (gap usageGapIterator) NextGap() usageGapIterator {
+ seg := gap.NextSegment()
+ if !seg.Ok() {
+ return usageGapIterator{}
+ }
+ return seg.NextGap()
+}
+
+// segmentBeforePosition returns the predecessor segment of the position given
+// by n.children[i], which may or may not contain a child. If no such segment
+// exists, segmentBeforePosition returns a terminal iterator.
+func usagesegmentBeforePosition(n *usagenode, i int) usageIterator {
+ for i == 0 {
+ if n.parent == nil {
+ return usageIterator{}
+ }
+ n, i = n.parent, n.parentIndex
+ }
+ return usageIterator{n, i - 1}
+}
+
+// segmentAfterPosition returns the successor segment of the position given by
+// n.children[i], which may or may not contain a child. If no such segment
+// exists, segmentAfterPosition returns a terminal iterator.
+func usagesegmentAfterPosition(n *usagenode, i int) usageIterator {
+ for i == n.nrSegments {
+ if n.parent == nil {
+ return usageIterator{}
+ }
+ n, i = n.parent, n.parentIndex
+ }
+ return usageIterator{n, i}
+}
+
+func usagezeroValueSlice(slice []usageInfo) {
+
+ for i := range slice {
+ usageSetFunctions{}.ClearValue(&slice[i])
+ }
+}
+
+func usagezeroNodeSlice(slice []*usagenode) {
+ for i := range slice {
+ slice[i] = nil
+ }
+}
+
+// String stringifies a Set for debugging.
+func (s *usageSet) String() string {
+ return s.root.String()
+}
+
+// String stringifes a node (and all of its children) for debugging.
+func (n *usagenode) String() string {
+ var buf bytes.Buffer
+ n.writeDebugString(&buf, "")
+ return buf.String()
+}
+
+func (n *usagenode) writeDebugString(buf *bytes.Buffer, prefix string) {
+ if n.hasChildren != (n.nrSegments > 0 && n.children[0] != nil) {
+ buf.WriteString(prefix)
+ buf.WriteString(fmt.Sprintf("WARNING: inconsistent value of hasChildren: got %v, want %v\n", n.hasChildren, !n.hasChildren))
+ }
+ for i := 0; i < n.nrSegments; i++ {
+ if child := n.children[i]; child != nil {
+ cprefix := fmt.Sprintf("%s- % 3d ", prefix, i)
+ if child.parent != n || child.parentIndex != i {
+ buf.WriteString(cprefix)
+ buf.WriteString(fmt.Sprintf("WARNING: inconsistent linkage to parent: got (%p, %d), want (%p, %d)\n", child.parent, child.parentIndex, n, i))
+ }
+ child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i))
+ }
+ buf.WriteString(prefix)
+ buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i]))
+ }
+ if child := n.children[n.nrSegments]; child != nil {
+ child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments))
+ }
+}
+
+// SegmentDataSlices represents segments from a set as slices of start, end, and
+// values. SegmentDataSlices is primarily used as an intermediate representation
+// for save/restore and the layout here is optimized for that.
+//
+// +stateify savable
+type usageSegmentDataSlices struct {
+ Start []uint64
+ End []uint64
+ Values []usageInfo
+}
+
+// ExportSortedSlice returns a copy of all segments in the given set, in ascending
+// key order.
+func (s *usageSet) ExportSortedSlices() *usageSegmentDataSlices {
+ var sds usageSegmentDataSlices
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ sds.Start = append(sds.Start, seg.Start())
+ sds.End = append(sds.End, seg.End())
+ sds.Values = append(sds.Values, seg.Value())
+ }
+ sds.Start = sds.Start[:len(sds.Start):len(sds.Start)]
+ sds.End = sds.End[:len(sds.End):len(sds.End)]
+ sds.Values = sds.Values[:len(sds.Values):len(sds.Values)]
+ return &sds
+}
+
+// ImportSortedSlice initializes the given set from the given slice.
+//
+// Preconditions: s must be empty. sds must represent a valid set (the segments
+// in sds must have valid lengths that do not overlap). The segments in sds
+// must be sorted in ascending key order.
+func (s *usageSet) ImportSortedSlices(sds *usageSegmentDataSlices) error {
+ if !s.IsEmpty() {
+ return fmt.Errorf("cannot import into non-empty set %v", s)
+ }
+ gap := s.FirstGap()
+ for i := range sds.Start {
+ r := __generics_imported0.FileRange{sds.Start[i], sds.End[i]}
+ if !gap.Range().IsSupersetOf(r) {
+ return fmt.Errorf("segment overlaps a preceding segment or is incorrectly sorted: [%d, %d) => %v", sds.Start[i], sds.End[i], sds.Values[i])
+ }
+ gap = s.InsertWithoutMerging(gap, r, sds.Values[i]).NextGap()
+ }
+ return nil
+}
+func (s *usageSet) saveRoot() *usageSegmentDataSlices {
+ return s.ExportSortedSlices()
+}
+
+func (s *usageSet) loadRoot(sds *usageSegmentDataSlices) {
+ if err := s.ImportSortedSlices(sds); err != nil {
+ panic(err)
+ }
+}