diff options
Diffstat (limited to 'pkg/sentry/pgalloc/usage_set.go')
-rw-r--r--[-rwxr-xr-x] | pkg/sentry/pgalloc/usage_set.go | 377 |
1 files changed, 373 insertions, 4 deletions
diff --git a/pkg/sentry/pgalloc/usage_set.go b/pkg/sentry/pgalloc/usage_set.go index 37b9235ca..79db792d9 100755..100644 --- a/pkg/sentry/pgalloc/usage_set.go +++ b/pkg/sentry/pgalloc/usage_set.go @@ -9,6 +9,34 @@ import ( "fmt" ) +// trackGaps is an optional parameter. +// +// If trackGaps is 1, the Set will track maximum gap size recursively, +// enabling the GapIterator.{Prev,Next}LargeEnoughGap functions. In this +// case, Key must be an unsigned integer. +// +// trackGaps must be 0 or 1. +const usagetrackGaps = 0 + +var _ = uint8(usagetrackGaps << 7) // Will fail if not zero or one. + +// dynamicGap is a type that disappears if trackGaps is 0. +type usagedynamicGap [usagetrackGaps]uint64 + +// Get returns the value of the gap. +// +// Precondition: trackGaps must be non-zero. +func (d *usagedynamicGap) Get() uint64 { + return d[:][0] +} + +// Set sets the value of the gap. +// +// Precondition: trackGaps must be non-zero. +func (d *usagedynamicGap) Set(v uint64) { + d[:][0] = v +} + const ( // minDegree is the minimum degree of an internal node in a Set B-tree. // @@ -267,8 +295,12 @@ func (s *usageSet) Insert(gap usageGapIterator, r __generics_imported0.FileRange } if prev.Ok() && prev.End() == r.Start { if mval, ok := (usageSetFunctions{}).Merge(prev.Range(), prev.Value(), r, val); ok { + shrinkMaxGap := usagetrackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get() prev.SetEndUnchecked(r.End) prev.SetValue(mval) + if shrinkMaxGap { + gap.node.updateMaxGapLeaf() + } if next.Ok() && next.Start() == r.End { val = mval if mval, ok := (usageSetFunctions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok { @@ -282,11 +314,16 @@ func (s *usageSet) Insert(gap usageGapIterator, r __generics_imported0.FileRange } if next.Ok() && next.Start() == r.End { if mval, ok := (usageSetFunctions{}).Merge(r, val, next.Range(), next.Value()); ok { + shrinkMaxGap := usagetrackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get() next.SetStartUnchecked(r.Start) next.SetValue(mval) + if shrinkMaxGap { + gap.node.updateMaxGapLeaf() + } return next } } + return s.InsertWithoutMergingUnchecked(gap, r, val) } @@ -313,11 +350,15 @@ func (s *usageSet) InsertWithoutMerging(gap usageGapIterator, r __generics_impor // Preconditions: r.Start >= gap.Start(); r.End <= gap.End(). func (s *usageSet) InsertWithoutMergingUnchecked(gap usageGapIterator, r __generics_imported0.FileRange, val usageInfo) usageIterator { gap = gap.node.rebalanceBeforeInsert(gap) + splitMaxGap := usagetrackGaps != 0 && (gap.node.nrSegments == 0 || gap.Range().Length() == gap.node.maxGap.Get()) copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments]) copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments]) gap.node.keys[gap.index] = r gap.node.values[gap.index] = val gap.node.nrSegments++ + if splitMaxGap { + gap.node.updateMaxGapLeaf() + } return usageIterator{gap.node, gap.index} } @@ -332,12 +373,20 @@ func (s *usageSet) Remove(seg usageIterator) usageGapIterator { seg.SetRangeUnchecked(victim.Range()) seg.SetValue(victim.Value()) + + nextAdjacentNode := seg.NextSegment().node + if usagetrackGaps != 0 { + nextAdjacentNode.updateMaxGapLeaf() + } return s.Remove(victim).NextGap() } copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments]) copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments]) usageSetFunctions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1]) seg.node.nrSegments-- + if usagetrackGaps != 0 { + seg.node.updateMaxGapLeaf() + } return seg.node.rebalanceAfterRemove(usageGapIterator{seg.node, seg.index}) } @@ -387,6 +436,7 @@ func (s *usageSet) MergeUnchecked(first, second usageIterator) usageIterator { first.SetEndUnchecked(second.End()) first.SetValue(mval) + return s.Remove(second).PrevSegment() } } @@ -562,6 +612,12 @@ type usagenode struct { // than "isLeaf" because false must be the correct value for an empty root. hasChildren bool + // The longest gap within this node. If the node is a leaf, it's simply the + // maximum gap among all the (nrSegments+1) gaps formed by its nrSegments keys + // including the 0th and nrSegments-th gap possibly shared with its upper-level + // nodes; if it's a non-leaf node, it's the max of all children's maxGap. + maxGap usagedynamicGap + // Nodes store keys and values in separate arrays to maximize locality in // the common case (scanning keys for lookup). keys [usagemaxDegree - 1]__generics_imported0.FileRange @@ -607,12 +663,12 @@ func (n *usagenode) nextSibling() *usagenode { // required for insertion, and returns an updated iterator to the position // represented by gap. func (n *usagenode) rebalanceBeforeInsert(gap usageGapIterator) usageGapIterator { - if n.parent != nil { - gap = n.parent.rebalanceBeforeInsert(gap) - } if n.nrSegments < usagemaxDegree-1 { return gap } + if n.parent != nil { + gap = n.parent.rebalanceBeforeInsert(gap) + } if n.parent == nil { left := &usagenode{ @@ -648,6 +704,11 @@ func (n *usagenode) rebalanceBeforeInsert(gap usageGapIterator) usageGapIterator n.hasChildren = true n.children[0] = left n.children[1] = right + + if usagetrackGaps != 0 { + left.updateMaxGapLocal() + right.updateMaxGapLocal() + } if gap.node != n { return gap } @@ -685,6 +746,11 @@ func (n *usagenode) rebalanceBeforeInsert(gap usageGapIterator) usageGapIterator } n.nrSegments = usageminDegree - 1 + if usagetrackGaps != 0 { + n.updateMaxGapLocal() + sibling.updateMaxGapLocal() + } + if gap.node != n { return gap } @@ -730,6 +796,11 @@ func (n *usagenode) rebalanceAfterRemove(gap usageGapIterator) usageGapIterator } n.nrSegments++ sibling.nrSegments-- + + if usagetrackGaps != 0 { + n.updateMaxGapLocal() + sibling.updateMaxGapLocal() + } if gap.node == sibling && gap.index == sibling.nrSegments { return usageGapIterator{n, 0} } @@ -758,6 +829,11 @@ func (n *usagenode) rebalanceAfterRemove(gap usageGapIterator) usageGapIterator } n.nrSegments++ sibling.nrSegments-- + + if usagetrackGaps != 0 { + n.updateMaxGapLocal() + sibling.updateMaxGapLocal() + } if gap.node == sibling { if gap.index == 0 { return usageGapIterator{n, n.nrSegments} @@ -790,6 +866,7 @@ func (n *usagenode) rebalanceAfterRemove(gap usageGapIterator) usageGapIterator p.children[0] = nil p.children[1] = nil } + if gap.node == left { return usageGapIterator{p, gap.index} } @@ -836,10 +913,146 @@ func (n *usagenode) rebalanceAfterRemove(gap usageGapIterator) usageGapIterator p.children[p.nrSegments] = nil p.nrSegments-- + if usagetrackGaps != 0 { + left.updateMaxGapLocal() + } + n = p } } +// updateMaxGapLeaf updates maxGap bottom-up from the calling leaf until no +// necessary update. +// +// Preconditions: n must be a leaf node, trackGaps must be 1. +func (n *usagenode) updateMaxGapLeaf() { + if n.hasChildren { + panic(fmt.Sprintf("updateMaxGapLeaf should always be called on leaf node: %v", n)) + } + max := n.calculateMaxGapLeaf() + if max == n.maxGap.Get() { + + return + } + oldMax := n.maxGap.Get() + n.maxGap.Set(max) + if max > oldMax { + + for p := n.parent; p != nil; p = p.parent { + if p.maxGap.Get() >= max { + + break + } + + p.maxGap.Set(max) + } + return + } + + for p := n.parent; p != nil; p = p.parent { + if p.maxGap.Get() > oldMax { + + break + } + + parentNewMax := p.calculateMaxGapInternal() + if p.maxGap.Get() == parentNewMax { + + break + } + + p.maxGap.Set(parentNewMax) + } +} + +// updateMaxGapLocal updates maxGap of the calling node solely with no +// propagation to ancestor nodes. +// +// Precondition: trackGaps must be 1. +func (n *usagenode) updateMaxGapLocal() { + if !n.hasChildren { + + n.maxGap.Set(n.calculateMaxGapLeaf()) + } else { + + n.maxGap.Set(n.calculateMaxGapInternal()) + } +} + +// calculateMaxGapLeaf iterates the gaps within a leaf node and calculate the +// max. +// +// Preconditions: n must be a leaf node. +func (n *usagenode) calculateMaxGapLeaf() uint64 { + max := usageGapIterator{n, 0}.Range().Length() + for i := 1; i <= n.nrSegments; i++ { + if current := (usageGapIterator{n, i}).Range().Length(); current > max { + max = current + } + } + return max +} + +// calculateMaxGapInternal iterates children's maxGap within an internal node n +// and calculate the max. +// +// Preconditions: n must be a non-leaf node. +func (n *usagenode) calculateMaxGapInternal() uint64 { + max := n.children[0].maxGap.Get() + for i := 1; i <= n.nrSegments; i++ { + if current := n.children[i].maxGap.Get(); current > max { + max = current + } + } + return max +} + +// searchFirstLargeEnoughGap returns the first gap having at least minSize length +// in the subtree rooted by n. If not found, return a terminal gap iterator. +func (n *usagenode) searchFirstLargeEnoughGap(minSize uint64) usageGapIterator { + if n.maxGap.Get() < minSize { + return usageGapIterator{} + } + if n.hasChildren { + for i := 0; i <= n.nrSegments; i++ { + if largeEnoughGap := n.children[i].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() { + return largeEnoughGap + } + } + } else { + for i := 0; i <= n.nrSegments; i++ { + currentGap := usageGapIterator{n, i} + if currentGap.Range().Length() >= minSize { + return currentGap + } + } + } + panic(fmt.Sprintf("invalid maxGap in %v", n)) +} + +// searchLastLargeEnoughGap returns the last gap having at least minSize length +// in the subtree rooted by n. If not found, return a terminal gap iterator. +func (n *usagenode) searchLastLargeEnoughGap(minSize uint64) usageGapIterator { + if n.maxGap.Get() < minSize { + return usageGapIterator{} + } + if n.hasChildren { + for i := n.nrSegments; i >= 0; i-- { + if largeEnoughGap := n.children[i].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() { + return largeEnoughGap + } + } + } else { + for i := n.nrSegments; i >= 0; i-- { + currentGap := usageGapIterator{n, i} + if currentGap.Range().Length() >= minSize { + return currentGap + } + } + } + panic(fmt.Sprintf("invalid maxGap in %v", n)) +} + // A Iterator is conceptually one of: // // - A pointer to a segment in a set; or @@ -1145,6 +1358,114 @@ func (gap usageGapIterator) NextGap() usageGapIterator { return seg.NextGap() } +// NextLargeEnoughGap returns the iterated gap's first next gap with larger +// length than minSize. If not found, return a terminal gap iterator (does NOT +// include this gap itself). +// +// Precondition: trackGaps must be 1. +func (gap usageGapIterator) NextLargeEnoughGap(minSize uint64) usageGapIterator { + if usagetrackGaps != 1 { + panic("set is not tracking gaps") + } + if gap.node != nil && gap.node.hasChildren && gap.index == gap.node.nrSegments { + + gap.node = gap.NextSegment().node + gap.index = 0 + return gap.nextLargeEnoughGapHelper(minSize) + } + return gap.nextLargeEnoughGapHelper(minSize) +} + +// nextLargeEnoughGapHelper is the helper function used by NextLargeEnoughGap +// to do the real recursions. +// +// Preconditions: gap is NOT the trailing gap of a non-leaf node. +func (gap usageGapIterator) nextLargeEnoughGapHelper(minSize uint64) usageGapIterator { + + for gap.node != nil && + (gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == gap.node.nrSegments)) { + gap.node, gap.index = gap.node.parent, gap.node.parentIndex + } + + if gap.node == nil { + return usageGapIterator{} + } + + gap.index++ + for gap.index <= gap.node.nrSegments { + if gap.node.hasChildren { + if largeEnoughGap := gap.node.children[gap.index].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() { + return largeEnoughGap + } + } else { + if gap.Range().Length() >= minSize { + return gap + } + } + gap.index++ + } + gap.node, gap.index = gap.node.parent, gap.node.parentIndex + if gap.node != nil && gap.index == gap.node.nrSegments { + + gap.node, gap.index = gap.node.parent, gap.node.parentIndex + } + return gap.nextLargeEnoughGapHelper(minSize) +} + +// PrevLargeEnoughGap returns the iterated gap's first prev gap with larger or +// equal length than minSize. If not found, return a terminal gap iterator +// (does NOT include this gap itself). +// +// Precondition: trackGaps must be 1. +func (gap usageGapIterator) PrevLargeEnoughGap(minSize uint64) usageGapIterator { + if usagetrackGaps != 1 { + panic("set is not tracking gaps") + } + if gap.node != nil && gap.node.hasChildren && gap.index == 0 { + + gap.node = gap.PrevSegment().node + gap.index = gap.node.nrSegments + return gap.prevLargeEnoughGapHelper(minSize) + } + return gap.prevLargeEnoughGapHelper(minSize) +} + +// prevLargeEnoughGapHelper is the helper function used by PrevLargeEnoughGap +// to do the real recursions. +// +// Preconditions: gap is NOT the first gap of a non-leaf node. +func (gap usageGapIterator) prevLargeEnoughGapHelper(minSize uint64) usageGapIterator { + + for gap.node != nil && + (gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == 0)) { + gap.node, gap.index = gap.node.parent, gap.node.parentIndex + } + + if gap.node == nil { + return usageGapIterator{} + } + + gap.index-- + for gap.index >= 0 { + if gap.node.hasChildren { + if largeEnoughGap := gap.node.children[gap.index].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() { + return largeEnoughGap + } + } else { + if gap.Range().Length() >= minSize { + return gap + } + } + gap.index-- + } + gap.node, gap.index = gap.node.parent, gap.node.parentIndex + if gap.node != nil && gap.index == 0 { + + gap.node, gap.index = gap.node.parent, gap.node.parentIndex + } + return gap.prevLargeEnoughGapHelper(minSize) +} + // segmentBeforePosition returns the predecessor segment of the position given // by n.children[i], which may or may not contain a child. If no such segment // exists, segmentBeforePosition returns a terminal iterator. @@ -1211,7 +1532,15 @@ func (n *usagenode) writeDebugString(buf *bytes.Buffer, prefix string) { child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i)) } buf.WriteString(prefix) - buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i])) + if n.hasChildren { + if usagetrackGaps != 0 { + buf.WriteString(fmt.Sprintf("- % 3d: %v => %v, maxGap: %d\n", i, n.keys[i], n.values[i], n.maxGap.Get())) + } else { + buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i])) + } + } else { + buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i])) + } } if child := n.children[n.nrSegments]; child != nil { child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments)) @@ -1263,6 +1592,46 @@ func (s *usageSet) ImportSortedSlices(sds *usageSegmentDataSlices) error { } return nil } + +// segmentTestCheck returns an error if s is incorrectly sorted, does not +// contain exactly expectedSegments segments, or contains a segment which +// fails the passed check. +// +// This should be used only for testing, and has been added to this package for +// templating convenience. +func (s *usageSet) segmentTestCheck(expectedSegments int, segFunc func(int, __generics_imported0.FileRange, usageInfo) error) error { + havePrev := false + prev := uint64(0) + nrSegments := 0 + for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { + next := seg.Start() + if havePrev && prev >= next { + return fmt.Errorf("incorrect order: key %d (segment %d) >= key %d (segment %d)", prev, nrSegments-1, next, nrSegments) + } + if segFunc != nil { + if err := segFunc(nrSegments, seg.Range(), seg.Value()); err != nil { + return err + } + } + prev = next + havePrev = true + nrSegments++ + } + if nrSegments != expectedSegments { + return fmt.Errorf("incorrect number of segments: got %d, wanted %d", nrSegments, expectedSegments) + } + return nil +} + +// countSegments counts the number of segments in the set. +// +// Similar to Check, this should only be used for testing. +func (s *usageSet) countSegments() (segments int) { + for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { + segments++ + } + return segments +} func (s *usageSet) saveRoot() *usageSegmentDataSlices { return s.ExportSortedSlices() } |