summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/mm
diff options
context:
space:
mode:
Diffstat (limited to 'pkg/sentry/mm')
-rw-r--r--pkg/sentry/mm/BUILD142
-rw-r--r--pkg/sentry/mm/README.md280
-rwxr-xr-xpkg/sentry/mm/file_refcount_set.go1274
-rwxr-xr-xpkg/sentry/mm/io_list.go173
-rwxr-xr-xpkg/sentry/mm/mm_state_autogen.go386
-rw-r--r--pkg/sentry/mm/mm_test.go230
-rwxr-xr-xpkg/sentry/mm/pma_set.go1274
-rwxr-xr-xpkg/sentry/mm/vma_set.go1274
8 files changed, 4381 insertions, 652 deletions
diff --git a/pkg/sentry/mm/BUILD b/pkg/sentry/mm/BUILD
deleted file mode 100644
index c78cb4280..000000000
--- a/pkg/sentry/mm/BUILD
+++ /dev/null
@@ -1,142 +0,0 @@
-package(licenses = ["notice"])
-
-load("//tools/go_generics:defs.bzl", "go_template_instance")
-load("//tools/go_stateify:defs.bzl", "go_library", "go_test")
-
-go_template_instance(
- name = "file_refcount_set",
- out = "file_refcount_set.go",
- imports = {
- "platform": "gvisor.googlesource.com/gvisor/pkg/sentry/platform",
- },
- package = "mm",
- prefix = "fileRefcount",
- template = "//pkg/segment:generic_set",
- types = {
- "Key": "uint64",
- "Range": "platform.FileRange",
- "Value": "int32",
- "Functions": "fileRefcountSetFunctions",
- },
-)
-
-go_template_instance(
- name = "vma_set",
- out = "vma_set.go",
- consts = {
- "minDegree": "8",
- },
- imports = {
- "usermem": "gvisor.googlesource.com/gvisor/pkg/sentry/usermem",
- },
- package = "mm",
- prefix = "vma",
- template = "//pkg/segment:generic_set",
- types = {
- "Key": "usermem.Addr",
- "Range": "usermem.AddrRange",
- "Value": "vma",
- "Functions": "vmaSetFunctions",
- },
-)
-
-go_template_instance(
- name = "pma_set",
- out = "pma_set.go",
- consts = {
- "minDegree": "8",
- },
- imports = {
- "usermem": "gvisor.googlesource.com/gvisor/pkg/sentry/usermem",
- },
- package = "mm",
- prefix = "pma",
- template = "//pkg/segment:generic_set",
- types = {
- "Key": "usermem.Addr",
- "Range": "usermem.AddrRange",
- "Value": "pma",
- "Functions": "pmaSetFunctions",
- },
-)
-
-go_template_instance(
- name = "io_list",
- out = "io_list.go",
- package = "mm",
- prefix = "io",
- template = "//pkg/ilist:generic_list",
- types = {
- "Element": "*ioResult",
- "Linker": "*ioResult",
- },
-)
-
-go_library(
- name = "mm",
- srcs = [
- "address_space.go",
- "aio_context.go",
- "aio_context_state.go",
- "debug.go",
- "file_refcount_set.go",
- "io.go",
- "io_list.go",
- "lifecycle.go",
- "metadata.go",
- "mm.go",
- "pma.go",
- "pma_set.go",
- "procfs.go",
- "save_restore.go",
- "shm.go",
- "special_mappable.go",
- "syscalls.go",
- "vma.go",
- "vma_set.go",
- ],
- importpath = "gvisor.googlesource.com/gvisor/pkg/sentry/mm",
- visibility = ["//pkg/sentry:internal"],
- deps = [
- "//pkg/abi/linux",
- "//pkg/atomicbitops",
- "//pkg/log",
- "//pkg/refs",
- "//pkg/sentry/arch",
- "//pkg/sentry/context",
- "//pkg/sentry/fs",
- "//pkg/sentry/fs/proc/seqfile",
- "//pkg/sentry/kernel/auth",
- "//pkg/sentry/kernel/futex",
- "//pkg/sentry/kernel/shm",
- "//pkg/sentry/limits",
- "//pkg/sentry/memmap",
- "//pkg/sentry/pgalloc",
- "//pkg/sentry/platform",
- "//pkg/sentry/platform/safecopy",
- "//pkg/sentry/safemem",
- "//pkg/sentry/usage",
- "//pkg/sentry/usermem",
- "//pkg/syserror",
- "//pkg/tcpip/buffer",
- "//third_party/gvsync",
- ],
-)
-
-go_test(
- name = "mm_test",
- size = "small",
- srcs = ["mm_test.go"],
- embed = [":mm"],
- deps = [
- "//pkg/sentry/arch",
- "//pkg/sentry/context",
- "//pkg/sentry/context/contexttest",
- "//pkg/sentry/limits",
- "//pkg/sentry/memmap",
- "//pkg/sentry/pgalloc",
- "//pkg/sentry/platform",
- "//pkg/sentry/usermem",
- "//pkg/syserror",
- ],
-)
diff --git a/pkg/sentry/mm/README.md b/pkg/sentry/mm/README.md
deleted file mode 100644
index e6efbf565..000000000
--- a/pkg/sentry/mm/README.md
+++ /dev/null
@@ -1,280 +0,0 @@
-This package provides an emulation of Linux semantics for application virtual
-memory mappings.
-
-For completeness, this document also describes aspects of the memory management
-subsystem defined outside this package.
-
-# Background
-
-We begin by describing semantics for virtual memory in Linux.
-
-A virtual address space is defined as a collection of mappings from virtual
-addresses to physical memory. However, userspace applications do not configure
-mappings to physical memory directly. Instead, applications configure memory
-mappings from virtual addresses to offsets into a file using the `mmap` system
-call.[^mmap-anon] For example, a call to:
-
- mmap(
- /* addr = */ 0x400000,
- /* length = */ 0x1000,
- PROT_READ | PROT_WRITE,
- MAP_SHARED,
- /* fd = */ 3,
- /* offset = */ 0);
-
-creates a mapping of length 0x1000 bytes, starting at virtual address (VA)
-0x400000, to offset 0 in the file represented by file descriptor (FD) 3. Within
-the Linux kernel, virtual memory mappings are represented by *virtual memory
-areas* (VMAs). Supposing that FD 3 represents file /tmp/foo, the state of the
-virtual memory subsystem after the `mmap` call may be depicted as:
-
- VMA: VA:0x400000 -> /tmp/foo:0x0
-
-Establishing a virtual memory area does not necessarily establish a mapping to a
-physical address, because Linux has not necessarily provisioned physical memory
-to store the file's contents. Thus, if the application attempts to read the
-contents of VA 0x400000, it may incur a *page fault*, a CPU exception that
-forces the kernel to create such a mapping to service the read.
-
-For a file, doing so consists of several logical phases:
-
-1. The kernel allocates physical memory to store the contents of the required
- part of the file, and copies file contents to the allocated memory.
- Supposing that the kernel chooses the physical memory at physical address
- (PA) 0x2fb000, the resulting state of the system is:
-
- VMA: VA:0x400000 -> /tmp/foo:0x0
- Filemap: /tmp/foo:0x0 -> PA:0x2fb000
-
- (In Linux the state of the mapping from file offset to physical memory is
- stored in `struct address_space`, but to avoid confusion with other notions
- of address space we will refer to this system as filemap, named after Linux
- kernel source file `mm/filemap.c`.)
-
-2. The kernel stores the effective mapping from virtual to physical address in
- a *page table entry* (PTE) in the application's *page tables*, which are
- used by the CPU's virtual memory hardware to perform address translation.
- The resulting state of the system is:
-
- VMA: VA:0x400000 -> /tmp/foo:0x0
- Filemap: /tmp/foo:0x0 -> PA:0x2fb000
- PTE: VA:0x400000 -----------------> PA:0x2fb000
-
- The PTE is required for the application to actually use the contents of the
- mapped file as virtual memory. However, the PTE is derived from the VMA and
- filemap state, both of which are independently mutable, such that mutations
- to either will affect the PTE. For example:
-
- - The application may remove the VMA using the `munmap` system call. This
- breaks the mapping from VA:0x400000 to /tmp/foo:0x0, and consequently
- the mapping from VA:0x400000 to PA:0x2fb000. However, it does not
- necessarily break the mapping from /tmp/foo:0x0 to PA:0x2fb000, so a
- future mapping of the same file offset may reuse this physical memory.
-
- - The application may invalidate the file's contents by passing a length
- of 0 to the `ftruncate` system call. This breaks the mapping from
- /tmp/foo:0x0 to PA:0x2fb000, and consequently the mapping from
- VA:0x400000 to PA:0x2fb000. However, it does not break the mapping from
- VA:0x400000 to /tmp/foo:0x0, so future changes to the file's contents
- may again be made visible at VA:0x400000 after another page fault
- results in the allocation of a new physical address.
-
- Note that, in order to correctly break the mapping from VA:0x400000 to
- PA:0x2fb000 in the latter case, filemap must also store a *reverse mapping*
- from /tmp/foo:0x0 to VA:0x400000 so that it can locate and remove the PTE.
-
-[^mmap-anon]: Memory mappings to non-files are discussed in later sections.
-
-## Private Mappings
-
-The preceding example considered VMAs created using the `MAP_SHARED` flag, which
-means that PTEs derived from the mapping should always use physical memory that
-represents the current state of the mapped file.[^mmap-dev-zero] Applications
-can alternatively pass the `MAP_PRIVATE` flag to create a *private mapping*.
-Private mappings are *copy-on-write*.
-
-Suppose that the application instead created a private mapping in the previous
-example. In Linux, the state of the system after a read page fault would be:
-
- VMA: VA:0x400000 -> /tmp/foo:0x0 (private)
- Filemap: /tmp/foo:0x0 -> PA:0x2fb000
- PTE: VA:0x400000 -----------------> PA:0x2fb000 (read-only)
-
-Now suppose the application attempts to write to VA:0x400000. For a shared
-mapping, the write would be propagated to PA:0x2fb000, and the kernel would be
-responsible for ensuring that the write is later propagated to the mapped file.
-For a private mapping, the write incurs another page fault since the PTE is
-marked read-only. In response, the kernel allocates physical memory to store the
-mapping's *private copy* of the file's contents, copies file contents to the
-allocated memory, and changes the PTE to map to the private copy. Supposing that
-the kernel chooses the physical memory at physical address (PA) 0x5ea000, the
-resulting state of the system is:
-
- VMA: VA:0x400000 -> /tmp/foo:0x0 (private)
- Filemap: /tmp/foo:0x0 -> PA:0x2fb000
- PTE: VA:0x400000 -----------------> PA:0x5ea000
-
-Note that the filemap mapping from /tmp/foo:0x0 to PA:0x2fb000 may still exist,
-but is now irrelevant to this mapping.
-
-[^mmap-dev-zero]: Modulo files with special mmap semantics such as `/dev/zero`.
-
-## Anonymous Mappings
-
-Instead of passing a file to the `mmap` system call, applications can instead
-request an *anonymous* mapping by passing the `MAP_ANONYMOUS` flag.
-Semantically, an anonymous mapping is essentially a mapping to an ephemeral file
-initially filled with zero bytes. Practically speaking, this is how shared
-anonymous mappings are implemented, but private anonymous mappings do not result
-in the creation of an ephemeral file; since there would be no way to modify the
-contents of the underlying file through a private mapping, all private anonymous
-mappings use a single shared page filled with zero bytes until copy-on-write
-occurs.
-
-# Virtual Memory in the Sentry
-
-The sentry implements application virtual memory atop a host kernel, introducing
-an additional level of indirection to the above.
-
-Consider the same scenario as in the previous section. Since the sentry handles
-application system calls, the effect of an application `mmap` system call is to
-create a VMA in the sentry (as opposed to the host kernel):
-
- Sentry VMA: VA:0x400000 -> /tmp/foo:0x0
-
-When the application first incurs a page fault on this address, the host kernel
-delivers information about the page fault to the sentry in a platform-dependent
-manner, and the sentry handles the fault:
-
-1. The sentry allocates memory to store the contents of the required part of
- the file, and copies file contents to the allocated memory. However, since
- the sentry is implemented atop a host kernel, it does not configure mappings
- to physical memory directly. Instead, mappable "memory" in the sentry is
- represented by a host file descriptor and offset, since (as noted in
- "Background") this is the memory mapping primitive provided by the host
- kernel. In general, memory is allocated from a temporary host file using the
- `pgalloc` package. Supposing that the sentry allocates offset 0x3000 from
- host file "memory-file", the resulting state is:
-
- Sentry VMA: VA:0x400000 -> /tmp/foo:0x0
- Sentry filemap: /tmp/foo:0x0 -> host:memory-file:0x3000
-
-2. The sentry stores the effective mapping from virtual address to host file in
- a host VMA by invoking the `mmap` system call:
-
- Sentry VMA: VA:0x400000 -> /tmp/foo:0x0
- Sentry filemap: /tmp/foo:0x0 -> host:memory-file:0x3000
- Host VMA: VA:0x400000 -----------------> host:memory-file:0x3000
-
-3. The sentry returns control to the application, which immediately incurs the
- page fault again.[^mmap-populate] However, since a host VMA now exists for
- the faulting virtual address, the host kernel now handles the page fault as
- described in "Background":
-
- Sentry VMA: VA:0x400000 -> /tmp/foo:0x0
- Sentry filemap: /tmp/foo:0x0 -> host:memory-file:0x3000
- Host VMA: VA:0x400000 -----------------> host:memory-file:0x3000
- Host filemap: host:memory-file:0x3000 -> PA:0x2fb000
- Host PTE: VA:0x400000 --------------------------------------------> PA:0x2fb000
-
-Thus, from an implementation standpoint, host VMAs serve the same purpose in the
-sentry that PTEs do in Linux. As in Linux, sentry VMA and filemap state is
-independently mutable, and the desired state of host VMAs is derived from that
-state.
-
-[^mmap-populate]: The sentry could force the host kernel to establish PTEs when
- it creates the host VMA by passing the `MAP_POPULATE` flag to
- the `mmap` system call, but usually does not. This is because,
- to reduce the number of page faults that require handling by
- the sentry and (correspondingly) the number of host `mmap`
- system calls, the sentry usually creates host VMAs that are
- much larger than the single faulting page.
-
-## Private Mappings
-
-The sentry implements private mappings consistently with Linux. Before
-copy-on-write, the private mapping example given in the Background results in:
-
- Sentry VMA: VA:0x400000 -> /tmp/foo:0x0 (private)
- Sentry filemap: /tmp/foo:0x0 -> host:memory-file:0x3000
- Host VMA: VA:0x400000 -----------------> host:memory-file:0x3000 (read-only)
- Host filemap: host:memory-file:0x3000 -> PA:0x2fb000
- Host PTE: VA:0x400000 --------------------------------------------> PA:0x2fb000 (read-only)
-
-When the application attempts to write to this address, the host kernel delivers
-information about the resulting page fault to the sentry. Analogous to Linux,
-the sentry allocates memory to store the mapping's private copy of the file's
-contents, copies file contents to the allocated memory, and changes the host VMA
-to map to the private copy. Supposing that the sentry chooses the offset 0x4000
-in host file `memory-file` to store the private copy, the state of the system
-after copy-on-write is:
-
- Sentry VMA: VA:0x400000 -> /tmp/foo:0x0 (private)
- Sentry filemap: /tmp/foo:0x0 -> host:memory-file:0x3000
- Host VMA: VA:0x400000 -----------------> host:memory-file:0x4000
- Host filemap: host:memory-file:0x4000 -> PA:0x5ea000
- Host PTE: VA:0x400000 --------------------------------------------> PA:0x5ea000
-
-However, this highlights an important difference between Linux and the sentry.
-In Linux, page tables are concrete (architecture-dependent) data structures
-owned by the kernel. Conversely, the sentry has the ability to create and
-destroy host VMAs using host system calls, but it does not have direct access to
-their state. Thus, as written, if the application invokes the `munmap` system
-call to remove the sentry VMA, it is non-trivial for the sentry to determine
-that it should deallocate `host:memory-file:0x4000`. This implies that the
-sentry must retain information about the host VMAs that it has created.
-
-## Anonymous Mappings
-
-The sentry implements anonymous mappings consistently with Linux, except that
-there is no shared zero page.
-
-# Implementation Constructs
-
-In Linux:
-
-- A virtual address space is represented by `struct mm_struct`.
-
-- VMAs are represented by `struct vm_area_struct`, stored in `struct
- mm_struct::mmap`.
-
-- Mappings from file offsets to physical memory are stored in `struct
- address_space`.
-
-- Reverse mappings from file offsets to virtual mappings are stored in `struct
- address_space::i_mmap`.
-
-- Physical memory pages are represented by a pointer to `struct page` or an
- index called a *page frame number* (PFN), represented by `pfn_t`.
-
-- PTEs are represented by architecture-dependent type `pte_t`, stored in a
- table hierarchy rooted at `struct mm_struct::pgd`.
-
-In the sentry:
-
-- A virtual address space is represented by type [`mm.MemoryManager`][mm].
-
-- Sentry VMAs are represented by type [`mm.vma`][mm], stored in
- `mm.MemoryManager.vmas`.
-
-- Mappings from sentry file offsets to host file offsets are abstracted
- through interface method [`memmap.Mappable.Translate`][memmap].
-
-- Reverse mappings from sentry file offsets to virtual mappings are abstracted
- through interface methods
- [`memmap.Mappable.AddMapping` and `memmap.Mappable.RemoveMapping`][memmap].
-
-- Host files that may be mapped into host VMAs are represented by type
- [`platform.File`][platform].
-
-- Host VMAs are represented in the sentry by type [`mm.pma`][mm] ("platform
- mapping area"), stored in `mm.MemoryManager.pmas`.
-
-- Creation and destruction of host VMAs is abstracted through interface
- methods
- [`platform.AddressSpace.MapFile` and `platform.AddressSpace.Unmap`][platform].
-
-[memmap]: https://gvisor.googlesource.com/gvisor/+/master/pkg/sentry/memmap/memmap.go
-[mm]: https://gvisor.googlesource.com/gvisor/+/master/pkg/sentry/mm/mm.go
-[pgalloc]: https://gvisor.googlesource.com/gvisor/+/master/pkg/sentry/pgalloc/pgalloc.go
-[platform]: https://gvisor.googlesource.com/gvisor/+/master/pkg/sentry/platform/platform.go
diff --git a/pkg/sentry/mm/file_refcount_set.go b/pkg/sentry/mm/file_refcount_set.go
new file mode 100755
index 000000000..99c088c83
--- /dev/null
+++ b/pkg/sentry/mm/file_refcount_set.go
@@ -0,0 +1,1274 @@
+package mm
+
+import (
+ __generics_imported0 "gvisor.googlesource.com/gvisor/pkg/sentry/platform"
+)
+
+import (
+ "bytes"
+ "fmt"
+)
+
+const (
+ // minDegree is the minimum degree of an internal node in a Set B-tree.
+ //
+ // - Any non-root node has at least minDegree-1 segments.
+ //
+ // - Any non-root internal (non-leaf) node has at least minDegree children.
+ //
+ // - The root node may have fewer than minDegree-1 segments, but it may
+ // only have 0 segments if the tree is empty.
+ //
+ // Our implementation requires minDegree >= 3. Higher values of minDegree
+ // usually improve performance, but increase memory usage for small sets.
+ fileRefcountminDegree = 3
+
+ fileRefcountmaxDegree = 2 * fileRefcountminDegree
+)
+
+// A Set is a mapping of segments with non-overlapping Range keys. The zero
+// value for a Set is an empty set. Set values are not safely movable nor
+// copyable. Set is thread-compatible.
+//
+// +stateify savable
+type fileRefcountSet struct {
+ root fileRefcountnode `state:".(*fileRefcountSegmentDataSlices)"`
+}
+
+// IsEmpty returns true if the set contains no segments.
+func (s *fileRefcountSet) IsEmpty() bool {
+ return s.root.nrSegments == 0
+}
+
+// IsEmptyRange returns true iff no segments in the set overlap the given
+// range. This is semantically equivalent to s.SpanRange(r) == 0, but may be
+// more efficient.
+func (s *fileRefcountSet) IsEmptyRange(r __generics_imported0.FileRange) bool {
+ switch {
+ case r.Length() < 0:
+ panic(fmt.Sprintf("invalid range %v", r))
+ case r.Length() == 0:
+ return true
+ }
+ _, gap := s.Find(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ return r.End <= gap.End()
+}
+
+// Span returns the total size of all segments in the set.
+func (s *fileRefcountSet) Span() uint64 {
+ var sz uint64
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ sz += seg.Range().Length()
+ }
+ return sz
+}
+
+// SpanRange returns the total size of the intersection of segments in the set
+// with the given range.
+func (s *fileRefcountSet) SpanRange(r __generics_imported0.FileRange) uint64 {
+ switch {
+ case r.Length() < 0:
+ panic(fmt.Sprintf("invalid range %v", r))
+ case r.Length() == 0:
+ return 0
+ }
+ var sz uint64
+ for seg := s.LowerBoundSegment(r.Start); seg.Ok() && seg.Start() < r.End; seg = seg.NextSegment() {
+ sz += seg.Range().Intersect(r).Length()
+ }
+ return sz
+}
+
+// FirstSegment returns the first segment in the set. If the set is empty,
+// FirstSegment returns a terminal iterator.
+func (s *fileRefcountSet) FirstSegment() fileRefcountIterator {
+ if s.root.nrSegments == 0 {
+ return fileRefcountIterator{}
+ }
+ return s.root.firstSegment()
+}
+
+// LastSegment returns the last segment in the set. If the set is empty,
+// LastSegment returns a terminal iterator.
+func (s *fileRefcountSet) LastSegment() fileRefcountIterator {
+ if s.root.nrSegments == 0 {
+ return fileRefcountIterator{}
+ }
+ return s.root.lastSegment()
+}
+
+// FirstGap returns the first gap in the set.
+func (s *fileRefcountSet) FirstGap() fileRefcountGapIterator {
+ n := &s.root
+ for n.hasChildren {
+ n = n.children[0]
+ }
+ return fileRefcountGapIterator{n, 0}
+}
+
+// LastGap returns the last gap in the set.
+func (s *fileRefcountSet) LastGap() fileRefcountGapIterator {
+ n := &s.root
+ for n.hasChildren {
+ n = n.children[n.nrSegments]
+ }
+ return fileRefcountGapIterator{n, n.nrSegments}
+}
+
+// Find returns the segment or gap whose range contains the given key. If a
+// segment is found, the returned Iterator is non-terminal and the
+// returned GapIterator is terminal. Otherwise, the returned Iterator is
+// terminal and the returned GapIterator is non-terminal.
+func (s *fileRefcountSet) Find(key uint64) (fileRefcountIterator, fileRefcountGapIterator) {
+ n := &s.root
+ for {
+
+ lower := 0
+ upper := n.nrSegments
+ for lower < upper {
+ i := lower + (upper-lower)/2
+ if r := n.keys[i]; key < r.End {
+ if key >= r.Start {
+ return fileRefcountIterator{n, i}, fileRefcountGapIterator{}
+ }
+ upper = i
+ } else {
+ lower = i + 1
+ }
+ }
+ i := lower
+ if !n.hasChildren {
+ return fileRefcountIterator{}, fileRefcountGapIterator{n, i}
+ }
+ n = n.children[i]
+ }
+}
+
+// FindSegment returns the segment whose range contains the given key. If no
+// such segment exists, FindSegment returns a terminal iterator.
+func (s *fileRefcountSet) FindSegment(key uint64) fileRefcountIterator {
+ seg, _ := s.Find(key)
+ return seg
+}
+
+// LowerBoundSegment returns the segment with the lowest range that contains a
+// key greater than or equal to min. If no such segment exists,
+// LowerBoundSegment returns a terminal iterator.
+func (s *fileRefcountSet) LowerBoundSegment(min uint64) fileRefcountIterator {
+ seg, gap := s.Find(min)
+ if seg.Ok() {
+ return seg
+ }
+ return gap.NextSegment()
+}
+
+// UpperBoundSegment returns the segment with the highest range that contains a
+// key less than or equal to max. If no such segment exists, UpperBoundSegment
+// returns a terminal iterator.
+func (s *fileRefcountSet) UpperBoundSegment(max uint64) fileRefcountIterator {
+ seg, gap := s.Find(max)
+ if seg.Ok() {
+ return seg
+ }
+ return gap.PrevSegment()
+}
+
+// FindGap returns the gap containing the given key. If no such gap exists
+// (i.e. the set contains a segment containing that key), FindGap returns a
+// terminal iterator.
+func (s *fileRefcountSet) FindGap(key uint64) fileRefcountGapIterator {
+ _, gap := s.Find(key)
+ return gap
+}
+
+// LowerBoundGap returns the gap with the lowest range that is greater than or
+// equal to min.
+func (s *fileRefcountSet) LowerBoundGap(min uint64) fileRefcountGapIterator {
+ seg, gap := s.Find(min)
+ if gap.Ok() {
+ return gap
+ }
+ return seg.NextGap()
+}
+
+// UpperBoundGap returns the gap with the highest range that is less than or
+// equal to max.
+func (s *fileRefcountSet) UpperBoundGap(max uint64) fileRefcountGapIterator {
+ seg, gap := s.Find(max)
+ if gap.Ok() {
+ return gap
+ }
+ return seg.PrevGap()
+}
+
+// Add inserts the given segment into the set and returns true. If the new
+// segment can be merged with adjacent segments, Add will do so. If the new
+// segment would overlap an existing segment, Add returns false. If Add
+// succeeds, all existing iterators are invalidated.
+func (s *fileRefcountSet) Add(r __generics_imported0.FileRange, val int32) bool {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ gap := s.FindGap(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ if r.End > gap.End() {
+ return false
+ }
+ s.Insert(gap, r, val)
+ return true
+}
+
+// AddWithoutMerging inserts the given segment into the set and returns true.
+// If it would overlap an existing segment, AddWithoutMerging does nothing and
+// returns false. If AddWithoutMerging succeeds, all existing iterators are
+// invalidated.
+func (s *fileRefcountSet) AddWithoutMerging(r __generics_imported0.FileRange, val int32) bool {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ gap := s.FindGap(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ if r.End > gap.End() {
+ return false
+ }
+ s.InsertWithoutMergingUnchecked(gap, r, val)
+ return true
+}
+
+// Insert inserts the given segment into the given gap. If the new segment can
+// be merged with adjacent segments, Insert will do so. Insert returns an
+// iterator to the segment containing the inserted value (which may have been
+// merged with other values). All existing iterators (including gap, but not
+// including the returned iterator) are invalidated.
+//
+// If the gap cannot accommodate the segment, or if r is invalid, Insert panics.
+//
+// Insert is semantically equivalent to a InsertWithoutMerging followed by a
+// Merge, but may be more efficient. Note that there is no unchecked variant of
+// Insert since Insert must retrieve and inspect gap's predecessor and
+// successor segments regardless.
+func (s *fileRefcountSet) Insert(gap fileRefcountGapIterator, r __generics_imported0.FileRange, val int32) fileRefcountIterator {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ prev, next := gap.PrevSegment(), gap.NextSegment()
+ if prev.Ok() && prev.End() > r.Start {
+ panic(fmt.Sprintf("new segment %v overlaps predecessor %v", r, prev.Range()))
+ }
+ if next.Ok() && next.Start() < r.End {
+ panic(fmt.Sprintf("new segment %v overlaps successor %v", r, next.Range()))
+ }
+ if prev.Ok() && prev.End() == r.Start {
+ if mval, ok := (fileRefcountSetFunctions{}).Merge(prev.Range(), prev.Value(), r, val); ok {
+ prev.SetEndUnchecked(r.End)
+ prev.SetValue(mval)
+ if next.Ok() && next.Start() == r.End {
+ val = mval
+ if mval, ok := (fileRefcountSetFunctions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok {
+ prev.SetEndUnchecked(next.End())
+ prev.SetValue(mval)
+ return s.Remove(next).PrevSegment()
+ }
+ }
+ return prev
+ }
+ }
+ if next.Ok() && next.Start() == r.End {
+ if mval, ok := (fileRefcountSetFunctions{}).Merge(r, val, next.Range(), next.Value()); ok {
+ next.SetStartUnchecked(r.Start)
+ next.SetValue(mval)
+ return next
+ }
+ }
+ return s.InsertWithoutMergingUnchecked(gap, r, val)
+}
+
+// InsertWithoutMerging inserts the given segment into the given gap and
+// returns an iterator to the inserted segment. All existing iterators
+// (including gap, but not including the returned iterator) are invalidated.
+//
+// If the gap cannot accommodate the segment, or if r is invalid,
+// InsertWithoutMerging panics.
+func (s *fileRefcountSet) InsertWithoutMerging(gap fileRefcountGapIterator, r __generics_imported0.FileRange, val int32) fileRefcountIterator {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ if gr := gap.Range(); !gr.IsSupersetOf(r) {
+ panic(fmt.Sprintf("cannot insert segment range %v into gap range %v", r, gr))
+ }
+ return s.InsertWithoutMergingUnchecked(gap, r, val)
+}
+
+// InsertWithoutMergingUnchecked inserts the given segment into the given gap
+// and returns an iterator to the inserted segment. All existing iterators
+// (including gap, but not including the returned iterator) are invalidated.
+//
+// Preconditions: r.Start >= gap.Start(); r.End <= gap.End().
+func (s *fileRefcountSet) InsertWithoutMergingUnchecked(gap fileRefcountGapIterator, r __generics_imported0.FileRange, val int32) fileRefcountIterator {
+ gap = gap.node.rebalanceBeforeInsert(gap)
+ copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments])
+ copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments])
+ gap.node.keys[gap.index] = r
+ gap.node.values[gap.index] = val
+ gap.node.nrSegments++
+ return fileRefcountIterator{gap.node, gap.index}
+}
+
+// Remove removes the given segment and returns an iterator to the vacated gap.
+// All existing iterators (including seg, but not including the returned
+// iterator) are invalidated.
+func (s *fileRefcountSet) Remove(seg fileRefcountIterator) fileRefcountGapIterator {
+
+ if seg.node.hasChildren {
+
+ victim := seg.PrevSegment()
+
+ seg.SetRangeUnchecked(victim.Range())
+ seg.SetValue(victim.Value())
+ return s.Remove(victim).NextGap()
+ }
+ copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments])
+ copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments])
+ fileRefcountSetFunctions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1])
+ seg.node.nrSegments--
+ return seg.node.rebalanceAfterRemove(fileRefcountGapIterator{seg.node, seg.index})
+}
+
+// RemoveAll removes all segments from the set. All existing iterators are
+// invalidated.
+func (s *fileRefcountSet) RemoveAll() {
+ s.root = fileRefcountnode{}
+}
+
+// RemoveRange removes all segments in the given range. An iterator to the
+// newly formed gap is returned, and all existing iterators are invalidated.
+func (s *fileRefcountSet) RemoveRange(r __generics_imported0.FileRange) fileRefcountGapIterator {
+ seg, gap := s.Find(r.Start)
+ if seg.Ok() {
+ seg = s.Isolate(seg, r)
+ gap = s.Remove(seg)
+ }
+ for seg = gap.NextSegment(); seg.Ok() && seg.Start() < r.End; seg = gap.NextSegment() {
+ seg = s.Isolate(seg, r)
+ gap = s.Remove(seg)
+ }
+ return gap
+}
+
+// Merge attempts to merge two neighboring segments. If successful, Merge
+// returns an iterator to the merged segment, and all existing iterators are
+// invalidated. Otherwise, Merge returns a terminal iterator.
+//
+// If first is not the predecessor of second, Merge panics.
+func (s *fileRefcountSet) Merge(first, second fileRefcountIterator) fileRefcountIterator {
+ if first.NextSegment() != second {
+ panic(fmt.Sprintf("attempt to merge non-neighboring segments %v, %v", first.Range(), second.Range()))
+ }
+ return s.MergeUnchecked(first, second)
+}
+
+// MergeUnchecked attempts to merge two neighboring segments. If successful,
+// MergeUnchecked returns an iterator to the merged segment, and all existing
+// iterators are invalidated. Otherwise, MergeUnchecked returns a terminal
+// iterator.
+//
+// Precondition: first is the predecessor of second: first.NextSegment() ==
+// second, first == second.PrevSegment().
+func (s *fileRefcountSet) MergeUnchecked(first, second fileRefcountIterator) fileRefcountIterator {
+ if first.End() == second.Start() {
+ if mval, ok := (fileRefcountSetFunctions{}).Merge(first.Range(), first.Value(), second.Range(), second.Value()); ok {
+
+ first.SetEndUnchecked(second.End())
+ first.SetValue(mval)
+ return s.Remove(second).PrevSegment()
+ }
+ }
+ return fileRefcountIterator{}
+}
+
+// MergeAll attempts to merge all adjacent segments in the set. All existing
+// iterators are invalidated.
+func (s *fileRefcountSet) MergeAll() {
+ seg := s.FirstSegment()
+ if !seg.Ok() {
+ return
+ }
+ next := seg.NextSegment()
+ for next.Ok() {
+ if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
+ seg, next = mseg, mseg.NextSegment()
+ } else {
+ seg, next = next, next.NextSegment()
+ }
+ }
+}
+
+// MergeRange attempts to merge all adjacent segments that contain a key in the
+// specific range. All existing iterators are invalidated.
+func (s *fileRefcountSet) MergeRange(r __generics_imported0.FileRange) {
+ seg := s.LowerBoundSegment(r.Start)
+ if !seg.Ok() {
+ return
+ }
+ next := seg.NextSegment()
+ for next.Ok() && next.Range().Start < r.End {
+ if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
+ seg, next = mseg, mseg.NextSegment()
+ } else {
+ seg, next = next, next.NextSegment()
+ }
+ }
+}
+
+// MergeAdjacent attempts to merge the segment containing r.Start with its
+// predecessor, and the segment containing r.End-1 with its successor.
+func (s *fileRefcountSet) MergeAdjacent(r __generics_imported0.FileRange) {
+ first := s.FindSegment(r.Start)
+ if first.Ok() {
+ if prev := first.PrevSegment(); prev.Ok() {
+ s.Merge(prev, first)
+ }
+ }
+ last := s.FindSegment(r.End - 1)
+ if last.Ok() {
+ if next := last.NextSegment(); next.Ok() {
+ s.Merge(last, next)
+ }
+ }
+}
+
+// Split splits the given segment at the given key and returns iterators to the
+// two resulting segments. All existing iterators (including seg, but not
+// including the returned iterators) are invalidated.
+//
+// If the segment cannot be split at split (because split is at the start or
+// end of the segment's range, so splitting would produce a segment with zero
+// length, or because split falls outside the segment's range altogether),
+// Split panics.
+func (s *fileRefcountSet) Split(seg fileRefcountIterator, split uint64) (fileRefcountIterator, fileRefcountIterator) {
+ if !seg.Range().CanSplitAt(split) {
+ panic(fmt.Sprintf("can't split %v at %v", seg.Range(), split))
+ }
+ return s.SplitUnchecked(seg, split)
+}
+
+// SplitUnchecked splits the given segment at the given key and returns
+// iterators to the two resulting segments. All existing iterators (including
+// seg, but not including the returned iterators) are invalidated.
+//
+// Preconditions: seg.Start() < key < seg.End().
+func (s *fileRefcountSet) SplitUnchecked(seg fileRefcountIterator, split uint64) (fileRefcountIterator, fileRefcountIterator) {
+ val1, val2 := (fileRefcountSetFunctions{}).Split(seg.Range(), seg.Value(), split)
+ end2 := seg.End()
+ seg.SetEndUnchecked(split)
+ seg.SetValue(val1)
+ seg2 := s.InsertWithoutMergingUnchecked(seg.NextGap(), __generics_imported0.FileRange{split, end2}, val2)
+
+ return seg2.PrevSegment(), seg2
+}
+
+// SplitAt splits the segment straddling split, if one exists. SplitAt returns
+// true if a segment was split and false otherwise. If SplitAt splits a
+// segment, all existing iterators are invalidated.
+func (s *fileRefcountSet) SplitAt(split uint64) bool {
+ if seg := s.FindSegment(split); seg.Ok() && seg.Range().CanSplitAt(split) {
+ s.SplitUnchecked(seg, split)
+ return true
+ }
+ return false
+}
+
+// Isolate ensures that the given segment's range does not escape r by
+// splitting at r.Start and r.End if necessary, and returns an updated iterator
+// to the bounded segment. All existing iterators (including seg, but not
+// including the returned iterators) are invalidated.
+func (s *fileRefcountSet) Isolate(seg fileRefcountIterator, r __generics_imported0.FileRange) fileRefcountIterator {
+ if seg.Range().CanSplitAt(r.Start) {
+ _, seg = s.SplitUnchecked(seg, r.Start)
+ }
+ if seg.Range().CanSplitAt(r.End) {
+ seg, _ = s.SplitUnchecked(seg, r.End)
+ }
+ return seg
+}
+
+// ApplyContiguous applies a function to a contiguous range of segments,
+// splitting if necessary. The function is applied until the first gap is
+// encountered, at which point the gap is returned. If the function is applied
+// across the entire range, a terminal gap is returned. All existing iterators
+// are invalidated.
+//
+// N.B. The Iterator must not be invalidated by the function.
+func (s *fileRefcountSet) ApplyContiguous(r __generics_imported0.FileRange, fn func(seg fileRefcountIterator)) fileRefcountGapIterator {
+ seg, gap := s.Find(r.Start)
+ if !seg.Ok() {
+ return gap
+ }
+ for {
+ seg = s.Isolate(seg, r)
+ fn(seg)
+ if seg.End() >= r.End {
+ return fileRefcountGapIterator{}
+ }
+ gap = seg.NextGap()
+ if !gap.IsEmpty() {
+ return gap
+ }
+ seg = gap.NextSegment()
+ if !seg.Ok() {
+
+ return fileRefcountGapIterator{}
+ }
+ }
+}
+
+// +stateify savable
+type fileRefcountnode struct {
+ // An internal binary tree node looks like:
+ //
+ // K
+ // / \
+ // Cl Cr
+ //
+ // where all keys in the subtree rooted by Cl (the left subtree) are less
+ // than K (the key of the parent node), and all keys in the subtree rooted
+ // by Cr (the right subtree) are greater than K.
+ //
+ // An internal B-tree node's indexes work out to look like:
+ //
+ // K0 K1 K2 ... Kn-1
+ // / \/ \/ \ ... / \
+ // C0 C1 C2 C3 ... Cn-1 Cn
+ //
+ // where n is nrSegments.
+ nrSegments int
+
+ // parent is a pointer to this node's parent. If this node is root, parent
+ // is nil.
+ parent *fileRefcountnode
+
+ // parentIndex is the index of this node in parent.children.
+ parentIndex int
+
+ // Flag for internal nodes that is technically redundant with "children[0]
+ // != nil", but is stored in the first cache line. "hasChildren" rather
+ // than "isLeaf" because false must be the correct value for an empty root.
+ hasChildren bool
+
+ // Nodes store keys and values in separate arrays to maximize locality in
+ // the common case (scanning keys for lookup).
+ keys [fileRefcountmaxDegree - 1]__generics_imported0.FileRange
+ values [fileRefcountmaxDegree - 1]int32
+ children [fileRefcountmaxDegree]*fileRefcountnode
+}
+
+// firstSegment returns the first segment in the subtree rooted by n.
+//
+// Preconditions: n.nrSegments != 0.
+func (n *fileRefcountnode) firstSegment() fileRefcountIterator {
+ for n.hasChildren {
+ n = n.children[0]
+ }
+ return fileRefcountIterator{n, 0}
+}
+
+// lastSegment returns the last segment in the subtree rooted by n.
+//
+// Preconditions: n.nrSegments != 0.
+func (n *fileRefcountnode) lastSegment() fileRefcountIterator {
+ for n.hasChildren {
+ n = n.children[n.nrSegments]
+ }
+ return fileRefcountIterator{n, n.nrSegments - 1}
+}
+
+func (n *fileRefcountnode) prevSibling() *fileRefcountnode {
+ if n.parent == nil || n.parentIndex == 0 {
+ return nil
+ }
+ return n.parent.children[n.parentIndex-1]
+}
+
+func (n *fileRefcountnode) nextSibling() *fileRefcountnode {
+ if n.parent == nil || n.parentIndex == n.parent.nrSegments {
+ return nil
+ }
+ return n.parent.children[n.parentIndex+1]
+}
+
+// rebalanceBeforeInsert splits n and its ancestors if they are full, as
+// required for insertion, and returns an updated iterator to the position
+// represented by gap.
+func (n *fileRefcountnode) rebalanceBeforeInsert(gap fileRefcountGapIterator) fileRefcountGapIterator {
+ if n.parent != nil {
+ gap = n.parent.rebalanceBeforeInsert(gap)
+ }
+ if n.nrSegments < fileRefcountmaxDegree-1 {
+ return gap
+ }
+ if n.parent == nil {
+
+ left := &fileRefcountnode{
+ nrSegments: fileRefcountminDegree - 1,
+ parent: n,
+ parentIndex: 0,
+ hasChildren: n.hasChildren,
+ }
+ right := &fileRefcountnode{
+ nrSegments: fileRefcountminDegree - 1,
+ parent: n,
+ parentIndex: 1,
+ hasChildren: n.hasChildren,
+ }
+ copy(left.keys[:fileRefcountminDegree-1], n.keys[:fileRefcountminDegree-1])
+ copy(left.values[:fileRefcountminDegree-1], n.values[:fileRefcountminDegree-1])
+ copy(right.keys[:fileRefcountminDegree-1], n.keys[fileRefcountminDegree:])
+ copy(right.values[:fileRefcountminDegree-1], n.values[fileRefcountminDegree:])
+ n.keys[0], n.values[0] = n.keys[fileRefcountminDegree-1], n.values[fileRefcountminDegree-1]
+ fileRefcountzeroValueSlice(n.values[1:])
+ if n.hasChildren {
+ copy(left.children[:fileRefcountminDegree], n.children[:fileRefcountminDegree])
+ copy(right.children[:fileRefcountminDegree], n.children[fileRefcountminDegree:])
+ fileRefcountzeroNodeSlice(n.children[2:])
+ for i := 0; i < fileRefcountminDegree; i++ {
+ left.children[i].parent = left
+ left.children[i].parentIndex = i
+ right.children[i].parent = right
+ right.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments = 1
+ n.hasChildren = true
+ n.children[0] = left
+ n.children[1] = right
+ if gap.node != n {
+ return gap
+ }
+ if gap.index < fileRefcountminDegree {
+ return fileRefcountGapIterator{left, gap.index}
+ }
+ return fileRefcountGapIterator{right, gap.index - fileRefcountminDegree}
+ }
+
+ copy(n.parent.keys[n.parentIndex+1:], n.parent.keys[n.parentIndex:n.parent.nrSegments])
+ copy(n.parent.values[n.parentIndex+1:], n.parent.values[n.parentIndex:n.parent.nrSegments])
+ n.parent.keys[n.parentIndex], n.parent.values[n.parentIndex] = n.keys[fileRefcountminDegree-1], n.values[fileRefcountminDegree-1]
+ copy(n.parent.children[n.parentIndex+2:], n.parent.children[n.parentIndex+1:n.parent.nrSegments+1])
+ for i := n.parentIndex + 2; i < n.parent.nrSegments+2; i++ {
+ n.parent.children[i].parentIndex = i
+ }
+ sibling := &fileRefcountnode{
+ nrSegments: fileRefcountminDegree - 1,
+ parent: n.parent,
+ parentIndex: n.parentIndex + 1,
+ hasChildren: n.hasChildren,
+ }
+ n.parent.children[n.parentIndex+1] = sibling
+ n.parent.nrSegments++
+ copy(sibling.keys[:fileRefcountminDegree-1], n.keys[fileRefcountminDegree:])
+ copy(sibling.values[:fileRefcountminDegree-1], n.values[fileRefcountminDegree:])
+ fileRefcountzeroValueSlice(n.values[fileRefcountminDegree-1:])
+ if n.hasChildren {
+ copy(sibling.children[:fileRefcountminDegree], n.children[fileRefcountminDegree:])
+ fileRefcountzeroNodeSlice(n.children[fileRefcountminDegree:])
+ for i := 0; i < fileRefcountminDegree; i++ {
+ sibling.children[i].parent = sibling
+ sibling.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments = fileRefcountminDegree - 1
+
+ if gap.node != n {
+ return gap
+ }
+ if gap.index < fileRefcountminDegree {
+ return gap
+ }
+ return fileRefcountGapIterator{sibling, gap.index - fileRefcountminDegree}
+}
+
+// rebalanceAfterRemove "unsplits" n and its ancestors if they are deficient
+// (contain fewer segments than required by B-tree invariants), as required for
+// removal, and returns an updated iterator to the position represented by gap.
+//
+// Precondition: n is the only node in the tree that may currently violate a
+// B-tree invariant.
+func (n *fileRefcountnode) rebalanceAfterRemove(gap fileRefcountGapIterator) fileRefcountGapIterator {
+ for {
+ if n.nrSegments >= fileRefcountminDegree-1 {
+ return gap
+ }
+ if n.parent == nil {
+
+ return gap
+ }
+
+ if sibling := n.prevSibling(); sibling != nil && sibling.nrSegments >= fileRefcountminDegree {
+ copy(n.keys[1:], n.keys[:n.nrSegments])
+ copy(n.values[1:], n.values[:n.nrSegments])
+ n.keys[0] = n.parent.keys[n.parentIndex-1]
+ n.values[0] = n.parent.values[n.parentIndex-1]
+ n.parent.keys[n.parentIndex-1] = sibling.keys[sibling.nrSegments-1]
+ n.parent.values[n.parentIndex-1] = sibling.values[sibling.nrSegments-1]
+ fileRefcountSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
+ if n.hasChildren {
+ copy(n.children[1:], n.children[:n.nrSegments+1])
+ n.children[0] = sibling.children[sibling.nrSegments]
+ sibling.children[sibling.nrSegments] = nil
+ n.children[0].parent = n
+ n.children[0].parentIndex = 0
+ for i := 1; i < n.nrSegments+2; i++ {
+ n.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments++
+ sibling.nrSegments--
+ if gap.node == sibling && gap.index == sibling.nrSegments {
+ return fileRefcountGapIterator{n, 0}
+ }
+ if gap.node == n {
+ return fileRefcountGapIterator{n, gap.index + 1}
+ }
+ return gap
+ }
+ if sibling := n.nextSibling(); sibling != nil && sibling.nrSegments >= fileRefcountminDegree {
+ n.keys[n.nrSegments] = n.parent.keys[n.parentIndex]
+ n.values[n.nrSegments] = n.parent.values[n.parentIndex]
+ n.parent.keys[n.parentIndex] = sibling.keys[0]
+ n.parent.values[n.parentIndex] = sibling.values[0]
+ copy(sibling.keys[:sibling.nrSegments-1], sibling.keys[1:])
+ copy(sibling.values[:sibling.nrSegments-1], sibling.values[1:])
+ fileRefcountSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
+ if n.hasChildren {
+ n.children[n.nrSegments+1] = sibling.children[0]
+ copy(sibling.children[:sibling.nrSegments], sibling.children[1:])
+ sibling.children[sibling.nrSegments] = nil
+ n.children[n.nrSegments+1].parent = n
+ n.children[n.nrSegments+1].parentIndex = n.nrSegments + 1
+ for i := 0; i < sibling.nrSegments; i++ {
+ sibling.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments++
+ sibling.nrSegments--
+ if gap.node == sibling {
+ if gap.index == 0 {
+ return fileRefcountGapIterator{n, n.nrSegments}
+ }
+ return fileRefcountGapIterator{sibling, gap.index - 1}
+ }
+ return gap
+ }
+
+ p := n.parent
+ if p.nrSegments == 1 {
+
+ left, right := p.children[0], p.children[1]
+ p.nrSegments = left.nrSegments + right.nrSegments + 1
+ p.hasChildren = left.hasChildren
+ p.keys[left.nrSegments] = p.keys[0]
+ p.values[left.nrSegments] = p.values[0]
+ copy(p.keys[:left.nrSegments], left.keys[:left.nrSegments])
+ copy(p.values[:left.nrSegments], left.values[:left.nrSegments])
+ copy(p.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
+ copy(p.values[left.nrSegments+1:], right.values[:right.nrSegments])
+ if left.hasChildren {
+ copy(p.children[:left.nrSegments+1], left.children[:left.nrSegments+1])
+ copy(p.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
+ for i := 0; i < p.nrSegments+1; i++ {
+ p.children[i].parent = p
+ p.children[i].parentIndex = i
+ }
+ } else {
+ p.children[0] = nil
+ p.children[1] = nil
+ }
+ if gap.node == left {
+ return fileRefcountGapIterator{p, gap.index}
+ }
+ if gap.node == right {
+ return fileRefcountGapIterator{p, gap.index + left.nrSegments + 1}
+ }
+ return gap
+ }
+ // Merge n and either sibling, along with the segment separating the
+ // two, into whichever of the two nodes comes first. This is the
+ // reverse of the non-root splitting case in
+ // node.rebalanceBeforeInsert.
+ var left, right *fileRefcountnode
+ if n.parentIndex > 0 {
+ left = n.prevSibling()
+ right = n
+ } else {
+ left = n
+ right = n.nextSibling()
+ }
+
+ if gap.node == right {
+ gap = fileRefcountGapIterator{left, gap.index + left.nrSegments + 1}
+ }
+ left.keys[left.nrSegments] = p.keys[left.parentIndex]
+ left.values[left.nrSegments] = p.values[left.parentIndex]
+ copy(left.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
+ copy(left.values[left.nrSegments+1:], right.values[:right.nrSegments])
+ if left.hasChildren {
+ copy(left.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
+ for i := left.nrSegments + 1; i < left.nrSegments+right.nrSegments+2; i++ {
+ left.children[i].parent = left
+ left.children[i].parentIndex = i
+ }
+ }
+ left.nrSegments += right.nrSegments + 1
+ copy(p.keys[left.parentIndex:], p.keys[left.parentIndex+1:p.nrSegments])
+ copy(p.values[left.parentIndex:], p.values[left.parentIndex+1:p.nrSegments])
+ fileRefcountSetFunctions{}.ClearValue(&p.values[p.nrSegments-1])
+ copy(p.children[left.parentIndex+1:], p.children[left.parentIndex+2:p.nrSegments+1])
+ for i := 0; i < p.nrSegments; i++ {
+ p.children[i].parentIndex = i
+ }
+ p.children[p.nrSegments] = nil
+ p.nrSegments--
+
+ n = p
+ }
+}
+
+// A Iterator is conceptually one of:
+//
+// - A pointer to a segment in a set; or
+//
+// - A terminal iterator, which is a sentinel indicating that the end of
+// iteration has been reached.
+//
+// Iterators are copyable values and are meaningfully equality-comparable. The
+// zero value of Iterator is a terminal iterator.
+//
+// Unless otherwise specified, any mutation of a set invalidates all existing
+// iterators into the set.
+type fileRefcountIterator struct {
+ // node is the node containing the iterated segment. If the iterator is
+ // terminal, node is nil.
+ node *fileRefcountnode
+
+ // index is the index of the segment in node.keys/values.
+ index int
+}
+
+// Ok returns true if the iterator is not terminal. All other methods are only
+// valid for non-terminal iterators.
+func (seg fileRefcountIterator) Ok() bool {
+ return seg.node != nil
+}
+
+// Range returns the iterated segment's range key.
+func (seg fileRefcountIterator) Range() __generics_imported0.FileRange {
+ return seg.node.keys[seg.index]
+}
+
+// Start is equivalent to Range().Start, but should be preferred if only the
+// start of the range is needed.
+func (seg fileRefcountIterator) Start() uint64 {
+ return seg.node.keys[seg.index].Start
+}
+
+// End is equivalent to Range().End, but should be preferred if only the end of
+// the range is needed.
+func (seg fileRefcountIterator) End() uint64 {
+ return seg.node.keys[seg.index].End
+}
+
+// SetRangeUnchecked mutates the iterated segment's range key. This operation
+// does not invalidate any iterators.
+//
+// Preconditions:
+//
+// - r.Length() > 0.
+//
+// - The new range must not overlap an existing one: If seg.NextSegment().Ok(),
+// then r.end <= seg.NextSegment().Start(); if seg.PrevSegment().Ok(), then
+// r.start >= seg.PrevSegment().End().
+func (seg fileRefcountIterator) SetRangeUnchecked(r __generics_imported0.FileRange) {
+ seg.node.keys[seg.index] = r
+}
+
+// SetRange mutates the iterated segment's range key. If the new range would
+// cause the iterated segment to overlap another segment, or if the new range
+// is invalid, SetRange panics. This operation does not invalidate any
+// iterators.
+func (seg fileRefcountIterator) SetRange(r __generics_imported0.FileRange) {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ if prev := seg.PrevSegment(); prev.Ok() && r.Start < prev.End() {
+ panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, prev.Range()))
+ }
+ if next := seg.NextSegment(); next.Ok() && r.End > next.Start() {
+ panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, next.Range()))
+ }
+ seg.SetRangeUnchecked(r)
+}
+
+// SetStartUnchecked mutates the iterated segment's start. This operation does
+// not invalidate any iterators.
+//
+// Preconditions: The new start must be valid: start < seg.End(); if
+// seg.PrevSegment().Ok(), then start >= seg.PrevSegment().End().
+func (seg fileRefcountIterator) SetStartUnchecked(start uint64) {
+ seg.node.keys[seg.index].Start = start
+}
+
+// SetStart mutates the iterated segment's start. If the new start value would
+// cause the iterated segment to overlap another segment, or would result in an
+// invalid range, SetStart panics. This operation does not invalidate any
+// iterators.
+func (seg fileRefcountIterator) SetStart(start uint64) {
+ if start >= seg.End() {
+ panic(fmt.Sprintf("new start %v would invalidate segment range %v", start, seg.Range()))
+ }
+ if prev := seg.PrevSegment(); prev.Ok() && start < prev.End() {
+ panic(fmt.Sprintf("new start %v would cause segment range %v to overlap segment range %v", start, seg.Range(), prev.Range()))
+ }
+ seg.SetStartUnchecked(start)
+}
+
+// SetEndUnchecked mutates the iterated segment's end. This operation does not
+// invalidate any iterators.
+//
+// Preconditions: The new end must be valid: end > seg.Start(); if
+// seg.NextSegment().Ok(), then end <= seg.NextSegment().Start().
+func (seg fileRefcountIterator) SetEndUnchecked(end uint64) {
+ seg.node.keys[seg.index].End = end
+}
+
+// SetEnd mutates the iterated segment's end. If the new end value would cause
+// the iterated segment to overlap another segment, or would result in an
+// invalid range, SetEnd panics. This operation does not invalidate any
+// iterators.
+func (seg fileRefcountIterator) SetEnd(end uint64) {
+ if end <= seg.Start() {
+ panic(fmt.Sprintf("new end %v would invalidate segment range %v", end, seg.Range()))
+ }
+ if next := seg.NextSegment(); next.Ok() && end > next.Start() {
+ panic(fmt.Sprintf("new end %v would cause segment range %v to overlap segment range %v", end, seg.Range(), next.Range()))
+ }
+ seg.SetEndUnchecked(end)
+}
+
+// Value returns a copy of the iterated segment's value.
+func (seg fileRefcountIterator) Value() int32 {
+ return seg.node.values[seg.index]
+}
+
+// ValuePtr returns a pointer to the iterated segment's value. The pointer is
+// invalidated if the iterator is invalidated. This operation does not
+// invalidate any iterators.
+func (seg fileRefcountIterator) ValuePtr() *int32 {
+ return &seg.node.values[seg.index]
+}
+
+// SetValue mutates the iterated segment's value. This operation does not
+// invalidate any iterators.
+func (seg fileRefcountIterator) SetValue(val int32) {
+ seg.node.values[seg.index] = val
+}
+
+// PrevSegment returns the iterated segment's predecessor. If there is no
+// preceding segment, PrevSegment returns a terminal iterator.
+func (seg fileRefcountIterator) PrevSegment() fileRefcountIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index].lastSegment()
+ }
+ if seg.index > 0 {
+ return fileRefcountIterator{seg.node, seg.index - 1}
+ }
+ if seg.node.parent == nil {
+ return fileRefcountIterator{}
+ }
+ return fileRefcountsegmentBeforePosition(seg.node.parent, seg.node.parentIndex)
+}
+
+// NextSegment returns the iterated segment's successor. If there is no
+// succeeding segment, NextSegment returns a terminal iterator.
+func (seg fileRefcountIterator) NextSegment() fileRefcountIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index+1].firstSegment()
+ }
+ if seg.index < seg.node.nrSegments-1 {
+ return fileRefcountIterator{seg.node, seg.index + 1}
+ }
+ if seg.node.parent == nil {
+ return fileRefcountIterator{}
+ }
+ return fileRefcountsegmentAfterPosition(seg.node.parent, seg.node.parentIndex)
+}
+
+// PrevGap returns the gap immediately before the iterated segment.
+func (seg fileRefcountIterator) PrevGap() fileRefcountGapIterator {
+ if seg.node.hasChildren {
+
+ return seg.node.children[seg.index].lastSegment().NextGap()
+ }
+ return fileRefcountGapIterator{seg.node, seg.index}
+}
+
+// NextGap returns the gap immediately after the iterated segment.
+func (seg fileRefcountIterator) NextGap() fileRefcountGapIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index+1].firstSegment().PrevGap()
+ }
+ return fileRefcountGapIterator{seg.node, seg.index + 1}
+}
+
+// PrevNonEmpty returns the iterated segment's predecessor if it is adjacent,
+// or the gap before the iterated segment otherwise. If seg.Start() ==
+// Functions.MinKey(), PrevNonEmpty will return two terminal iterators.
+// Otherwise, exactly one of the iterators returned by PrevNonEmpty will be
+// non-terminal.
+func (seg fileRefcountIterator) PrevNonEmpty() (fileRefcountIterator, fileRefcountGapIterator) {
+ gap := seg.PrevGap()
+ if gap.Range().Length() != 0 {
+ return fileRefcountIterator{}, gap
+ }
+ return gap.PrevSegment(), fileRefcountGapIterator{}
+}
+
+// NextNonEmpty returns the iterated segment's successor if it is adjacent, or
+// the gap after the iterated segment otherwise. If seg.End() ==
+// Functions.MaxKey(), NextNonEmpty will return two terminal iterators.
+// Otherwise, exactly one of the iterators returned by NextNonEmpty will be
+// non-terminal.
+func (seg fileRefcountIterator) NextNonEmpty() (fileRefcountIterator, fileRefcountGapIterator) {
+ gap := seg.NextGap()
+ if gap.Range().Length() != 0 {
+ return fileRefcountIterator{}, gap
+ }
+ return gap.NextSegment(), fileRefcountGapIterator{}
+}
+
+// A GapIterator is conceptually one of:
+//
+// - A pointer to a position between two segments, before the first segment, or
+// after the last segment in a set, called a *gap*; or
+//
+// - A terminal iterator, which is a sentinel indicating that the end of
+// iteration has been reached.
+//
+// Note that the gap between two adjacent segments exists (iterators to it are
+// non-terminal), but has a length of zero. GapIterator.IsEmpty returns true
+// for such gaps. An empty set contains a single gap, spanning the entire range
+// of the set's keys.
+//
+// GapIterators are copyable values and are meaningfully equality-comparable.
+// The zero value of GapIterator is a terminal iterator.
+//
+// Unless otherwise specified, any mutation of a set invalidates all existing
+// iterators into the set.
+type fileRefcountGapIterator struct {
+ // The representation of a GapIterator is identical to that of an Iterator,
+ // except that index corresponds to positions between segments in the same
+ // way as for node.children (see comment for node.nrSegments).
+ node *fileRefcountnode
+ index int
+}
+
+// Ok returns true if the iterator is not terminal. All other methods are only
+// valid for non-terminal iterators.
+func (gap fileRefcountGapIterator) Ok() bool {
+ return gap.node != nil
+}
+
+// Range returns the range spanned by the iterated gap.
+func (gap fileRefcountGapIterator) Range() __generics_imported0.FileRange {
+ return __generics_imported0.FileRange{gap.Start(), gap.End()}
+}
+
+// Start is equivalent to Range().Start, but should be preferred if only the
+// start of the range is needed.
+func (gap fileRefcountGapIterator) Start() uint64 {
+ if ps := gap.PrevSegment(); ps.Ok() {
+ return ps.End()
+ }
+ return fileRefcountSetFunctions{}.MinKey()
+}
+
+// End is equivalent to Range().End, but should be preferred if only the end of
+// the range is needed.
+func (gap fileRefcountGapIterator) End() uint64 {
+ if ns := gap.NextSegment(); ns.Ok() {
+ return ns.Start()
+ }
+ return fileRefcountSetFunctions{}.MaxKey()
+}
+
+// IsEmpty returns true if the iterated gap is empty (that is, the "gap" is
+// between two adjacent segments.)
+func (gap fileRefcountGapIterator) IsEmpty() bool {
+ return gap.Range().Length() == 0
+}
+
+// PrevSegment returns the segment immediately before the iterated gap. If no
+// such segment exists, PrevSegment returns a terminal iterator.
+func (gap fileRefcountGapIterator) PrevSegment() fileRefcountIterator {
+ return fileRefcountsegmentBeforePosition(gap.node, gap.index)
+}
+
+// NextSegment returns the segment immediately after the iterated gap. If no
+// such segment exists, NextSegment returns a terminal iterator.
+func (gap fileRefcountGapIterator) NextSegment() fileRefcountIterator {
+ return fileRefcountsegmentAfterPosition(gap.node, gap.index)
+}
+
+// PrevGap returns the iterated gap's predecessor. If no such gap exists,
+// PrevGap returns a terminal iterator.
+func (gap fileRefcountGapIterator) PrevGap() fileRefcountGapIterator {
+ seg := gap.PrevSegment()
+ if !seg.Ok() {
+ return fileRefcountGapIterator{}
+ }
+ return seg.PrevGap()
+}
+
+// NextGap returns the iterated gap's successor. If no such gap exists, NextGap
+// returns a terminal iterator.
+func (gap fileRefcountGapIterator) NextGap() fileRefcountGapIterator {
+ seg := gap.NextSegment()
+ if !seg.Ok() {
+ return fileRefcountGapIterator{}
+ }
+ return seg.NextGap()
+}
+
+// segmentBeforePosition returns the predecessor segment of the position given
+// by n.children[i], which may or may not contain a child. If no such segment
+// exists, segmentBeforePosition returns a terminal iterator.
+func fileRefcountsegmentBeforePosition(n *fileRefcountnode, i int) fileRefcountIterator {
+ for i == 0 {
+ if n.parent == nil {
+ return fileRefcountIterator{}
+ }
+ n, i = n.parent, n.parentIndex
+ }
+ return fileRefcountIterator{n, i - 1}
+}
+
+// segmentAfterPosition returns the successor segment of the position given by
+// n.children[i], which may or may not contain a child. If no such segment
+// exists, segmentAfterPosition returns a terminal iterator.
+func fileRefcountsegmentAfterPosition(n *fileRefcountnode, i int) fileRefcountIterator {
+ for i == n.nrSegments {
+ if n.parent == nil {
+ return fileRefcountIterator{}
+ }
+ n, i = n.parent, n.parentIndex
+ }
+ return fileRefcountIterator{n, i}
+}
+
+func fileRefcountzeroValueSlice(slice []int32) {
+
+ for i := range slice {
+ fileRefcountSetFunctions{}.ClearValue(&slice[i])
+ }
+}
+
+func fileRefcountzeroNodeSlice(slice []*fileRefcountnode) {
+ for i := range slice {
+ slice[i] = nil
+ }
+}
+
+// String stringifies a Set for debugging.
+func (s *fileRefcountSet) String() string {
+ return s.root.String()
+}
+
+// String stringifes a node (and all of its children) for debugging.
+func (n *fileRefcountnode) String() string {
+ var buf bytes.Buffer
+ n.writeDebugString(&buf, "")
+ return buf.String()
+}
+
+func (n *fileRefcountnode) writeDebugString(buf *bytes.Buffer, prefix string) {
+ if n.hasChildren != (n.nrSegments > 0 && n.children[0] != nil) {
+ buf.WriteString(prefix)
+ buf.WriteString(fmt.Sprintf("WARNING: inconsistent value of hasChildren: got %v, want %v\n", n.hasChildren, !n.hasChildren))
+ }
+ for i := 0; i < n.nrSegments; i++ {
+ if child := n.children[i]; child != nil {
+ cprefix := fmt.Sprintf("%s- % 3d ", prefix, i)
+ if child.parent != n || child.parentIndex != i {
+ buf.WriteString(cprefix)
+ buf.WriteString(fmt.Sprintf("WARNING: inconsistent linkage to parent: got (%p, %d), want (%p, %d)\n", child.parent, child.parentIndex, n, i))
+ }
+ child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i))
+ }
+ buf.WriteString(prefix)
+ buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i]))
+ }
+ if child := n.children[n.nrSegments]; child != nil {
+ child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments))
+ }
+}
+
+// SegmentDataSlices represents segments from a set as slices of start, end, and
+// values. SegmentDataSlices is primarily used as an intermediate representation
+// for save/restore and the layout here is optimized for that.
+//
+// +stateify savable
+type fileRefcountSegmentDataSlices struct {
+ Start []uint64
+ End []uint64
+ Values []int32
+}
+
+// ExportSortedSlice returns a copy of all segments in the given set, in ascending
+// key order.
+func (s *fileRefcountSet) ExportSortedSlices() *fileRefcountSegmentDataSlices {
+ var sds fileRefcountSegmentDataSlices
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ sds.Start = append(sds.Start, seg.Start())
+ sds.End = append(sds.End, seg.End())
+ sds.Values = append(sds.Values, seg.Value())
+ }
+ sds.Start = sds.Start[:len(sds.Start):len(sds.Start)]
+ sds.End = sds.End[:len(sds.End):len(sds.End)]
+ sds.Values = sds.Values[:len(sds.Values):len(sds.Values)]
+ return &sds
+}
+
+// ImportSortedSlice initializes the given set from the given slice.
+//
+// Preconditions: s must be empty. sds must represent a valid set (the segments
+// in sds must have valid lengths that do not overlap). The segments in sds
+// must be sorted in ascending key order.
+func (s *fileRefcountSet) ImportSortedSlices(sds *fileRefcountSegmentDataSlices) error {
+ if !s.IsEmpty() {
+ return fmt.Errorf("cannot import into non-empty set %v", s)
+ }
+ gap := s.FirstGap()
+ for i := range sds.Start {
+ r := __generics_imported0.FileRange{sds.Start[i], sds.End[i]}
+ if !gap.Range().IsSupersetOf(r) {
+ return fmt.Errorf("segment overlaps a preceding segment or is incorrectly sorted: [%d, %d) => %v", sds.Start[i], sds.End[i], sds.Values[i])
+ }
+ gap = s.InsertWithoutMerging(gap, r, sds.Values[i]).NextGap()
+ }
+ return nil
+}
+func (s *fileRefcountSet) saveRoot() *fileRefcountSegmentDataSlices {
+ return s.ExportSortedSlices()
+}
+
+func (s *fileRefcountSet) loadRoot(sds *fileRefcountSegmentDataSlices) {
+ if err := s.ImportSortedSlices(sds); err != nil {
+ panic(err)
+ }
+}
diff --git a/pkg/sentry/mm/io_list.go b/pkg/sentry/mm/io_list.go
new file mode 100755
index 000000000..99c83c4b9
--- /dev/null
+++ b/pkg/sentry/mm/io_list.go
@@ -0,0 +1,173 @@
+package mm
+
+// ElementMapper provides an identity mapping by default.
+//
+// This can be replaced to provide a struct that maps elements to linker
+// objects, if they are not the same. An ElementMapper is not typically
+// required if: Linker is left as is, Element is left as is, or Linker and
+// Element are the same type.
+type ioElementMapper struct{}
+
+// linkerFor maps an Element to a Linker.
+//
+// This default implementation should be inlined.
+//
+//go:nosplit
+func (ioElementMapper) linkerFor(elem *ioResult) *ioResult { return elem }
+
+// List is an intrusive list. Entries can be added to or removed from the list
+// in O(1) time and with no additional memory allocations.
+//
+// The zero value for List is an empty list ready to use.
+//
+// To iterate over a list (where l is a List):
+// for e := l.Front(); e != nil; e = e.Next() {
+// // do something with e.
+// }
+//
+// +stateify savable
+type ioList struct {
+ head *ioResult
+ tail *ioResult
+}
+
+// Reset resets list l to the empty state.
+func (l *ioList) Reset() {
+ l.head = nil
+ l.tail = nil
+}
+
+// Empty returns true iff the list is empty.
+func (l *ioList) Empty() bool {
+ return l.head == nil
+}
+
+// Front returns the first element of list l or nil.
+func (l *ioList) Front() *ioResult {
+ return l.head
+}
+
+// Back returns the last element of list l or nil.
+func (l *ioList) Back() *ioResult {
+ return l.tail
+}
+
+// PushFront inserts the element e at the front of list l.
+func (l *ioList) PushFront(e *ioResult) {
+ ioElementMapper{}.linkerFor(e).SetNext(l.head)
+ ioElementMapper{}.linkerFor(e).SetPrev(nil)
+
+ if l.head != nil {
+ ioElementMapper{}.linkerFor(l.head).SetPrev(e)
+ } else {
+ l.tail = e
+ }
+
+ l.head = e
+}
+
+// PushBack inserts the element e at the back of list l.
+func (l *ioList) PushBack(e *ioResult) {
+ ioElementMapper{}.linkerFor(e).SetNext(nil)
+ ioElementMapper{}.linkerFor(e).SetPrev(l.tail)
+
+ if l.tail != nil {
+ ioElementMapper{}.linkerFor(l.tail).SetNext(e)
+ } else {
+ l.head = e
+ }
+
+ l.tail = e
+}
+
+// PushBackList inserts list m at the end of list l, emptying m.
+func (l *ioList) PushBackList(m *ioList) {
+ if l.head == nil {
+ l.head = m.head
+ l.tail = m.tail
+ } else if m.head != nil {
+ ioElementMapper{}.linkerFor(l.tail).SetNext(m.head)
+ ioElementMapper{}.linkerFor(m.head).SetPrev(l.tail)
+
+ l.tail = m.tail
+ }
+
+ m.head = nil
+ m.tail = nil
+}
+
+// InsertAfter inserts e after b.
+func (l *ioList) InsertAfter(b, e *ioResult) {
+ a := ioElementMapper{}.linkerFor(b).Next()
+ ioElementMapper{}.linkerFor(e).SetNext(a)
+ ioElementMapper{}.linkerFor(e).SetPrev(b)
+ ioElementMapper{}.linkerFor(b).SetNext(e)
+
+ if a != nil {
+ ioElementMapper{}.linkerFor(a).SetPrev(e)
+ } else {
+ l.tail = e
+ }
+}
+
+// InsertBefore inserts e before a.
+func (l *ioList) InsertBefore(a, e *ioResult) {
+ b := ioElementMapper{}.linkerFor(a).Prev()
+ ioElementMapper{}.linkerFor(e).SetNext(a)
+ ioElementMapper{}.linkerFor(e).SetPrev(b)
+ ioElementMapper{}.linkerFor(a).SetPrev(e)
+
+ if b != nil {
+ ioElementMapper{}.linkerFor(b).SetNext(e)
+ } else {
+ l.head = e
+ }
+}
+
+// Remove removes e from l.
+func (l *ioList) Remove(e *ioResult) {
+ prev := ioElementMapper{}.linkerFor(e).Prev()
+ next := ioElementMapper{}.linkerFor(e).Next()
+
+ if prev != nil {
+ ioElementMapper{}.linkerFor(prev).SetNext(next)
+ } else {
+ l.head = next
+ }
+
+ if next != nil {
+ ioElementMapper{}.linkerFor(next).SetPrev(prev)
+ } else {
+ l.tail = prev
+ }
+}
+
+// Entry is a default implementation of Linker. Users can add anonymous fields
+// of this type to their structs to make them automatically implement the
+// methods needed by List.
+//
+// +stateify savable
+type ioEntry struct {
+ next *ioResult
+ prev *ioResult
+}
+
+// Next returns the entry that follows e in the list.
+func (e *ioEntry) Next() *ioResult {
+ return e.next
+}
+
+// Prev returns the entry that precedes e in the list.
+func (e *ioEntry) Prev() *ioResult {
+ return e.prev
+}
+
+// SetNext assigns 'entry' as the entry that follows e in the list.
+func (e *ioEntry) SetNext(elem *ioResult) {
+ e.next = elem
+}
+
+// SetPrev assigns 'entry' as the entry that precedes e in the list.
+func (e *ioEntry) SetPrev(elem *ioResult) {
+ e.prev = elem
+}
diff --git a/pkg/sentry/mm/mm_state_autogen.go b/pkg/sentry/mm/mm_state_autogen.go
new file mode 100755
index 000000000..7d69f438f
--- /dev/null
+++ b/pkg/sentry/mm/mm_state_autogen.go
@@ -0,0 +1,386 @@
+// automatically generated by stateify.
+
+package mm
+
+import (
+ "gvisor.googlesource.com/gvisor/pkg/state"
+)
+
+func (x *aioManager) beforeSave() {}
+func (x *aioManager) save(m state.Map) {
+ x.beforeSave()
+ m.Save("contexts", &x.contexts)
+}
+
+func (x *aioManager) afterLoad() {}
+func (x *aioManager) load(m state.Map) {
+ m.Load("contexts", &x.contexts)
+}
+
+func (x *ioResult) beforeSave() {}
+func (x *ioResult) save(m state.Map) {
+ x.beforeSave()
+ m.Save("data", &x.data)
+ m.Save("ioEntry", &x.ioEntry)
+}
+
+func (x *ioResult) afterLoad() {}
+func (x *ioResult) load(m state.Map) {
+ m.Load("data", &x.data)
+ m.Load("ioEntry", &x.ioEntry)
+}
+
+func (x *AIOContext) beforeSave() {}
+func (x *AIOContext) save(m state.Map) {
+ x.beforeSave()
+ if !state.IsZeroValue(x.dead) { m.Failf("dead is %v, expected zero", x.dead) }
+ m.Save("results", &x.results)
+ m.Save("maxOutstanding", &x.maxOutstanding)
+ m.Save("outstanding", &x.outstanding)
+}
+
+func (x *AIOContext) load(m state.Map) {
+ m.Load("results", &x.results)
+ m.Load("maxOutstanding", &x.maxOutstanding)
+ m.Load("outstanding", &x.outstanding)
+ m.AfterLoad(x.afterLoad)
+}
+
+func (x *aioMappable) beforeSave() {}
+func (x *aioMappable) save(m state.Map) {
+ x.beforeSave()
+ m.Save("AtomicRefCount", &x.AtomicRefCount)
+ m.Save("mfp", &x.mfp)
+ m.Save("fr", &x.fr)
+}
+
+func (x *aioMappable) afterLoad() {}
+func (x *aioMappable) load(m state.Map) {
+ m.Load("AtomicRefCount", &x.AtomicRefCount)
+ m.Load("mfp", &x.mfp)
+ m.Load("fr", &x.fr)
+}
+
+func (x *fileRefcountSet) beforeSave() {}
+func (x *fileRefcountSet) save(m state.Map) {
+ x.beforeSave()
+ var root *fileRefcountSegmentDataSlices = x.saveRoot()
+ m.SaveValue("root", root)
+}
+
+func (x *fileRefcountSet) afterLoad() {}
+func (x *fileRefcountSet) load(m state.Map) {
+ m.LoadValue("root", new(*fileRefcountSegmentDataSlices), func(y interface{}) { x.loadRoot(y.(*fileRefcountSegmentDataSlices)) })
+}
+
+func (x *fileRefcountnode) beforeSave() {}
+func (x *fileRefcountnode) save(m state.Map) {
+ x.beforeSave()
+ m.Save("nrSegments", &x.nrSegments)
+ m.Save("parent", &x.parent)
+ m.Save("parentIndex", &x.parentIndex)
+ m.Save("hasChildren", &x.hasChildren)
+ m.Save("keys", &x.keys)
+ m.Save("values", &x.values)
+ m.Save("children", &x.children)
+}
+
+func (x *fileRefcountnode) afterLoad() {}
+func (x *fileRefcountnode) load(m state.Map) {
+ m.Load("nrSegments", &x.nrSegments)
+ m.Load("parent", &x.parent)
+ m.Load("parentIndex", &x.parentIndex)
+ m.Load("hasChildren", &x.hasChildren)
+ m.Load("keys", &x.keys)
+ m.Load("values", &x.values)
+ m.Load("children", &x.children)
+}
+
+func (x *fileRefcountSegmentDataSlices) beforeSave() {}
+func (x *fileRefcountSegmentDataSlices) save(m state.Map) {
+ x.beforeSave()
+ m.Save("Start", &x.Start)
+ m.Save("End", &x.End)
+ m.Save("Values", &x.Values)
+}
+
+func (x *fileRefcountSegmentDataSlices) afterLoad() {}
+func (x *fileRefcountSegmentDataSlices) load(m state.Map) {
+ m.Load("Start", &x.Start)
+ m.Load("End", &x.End)
+ m.Load("Values", &x.Values)
+}
+
+func (x *ioList) beforeSave() {}
+func (x *ioList) save(m state.Map) {
+ x.beforeSave()
+ m.Save("head", &x.head)
+ m.Save("tail", &x.tail)
+}
+
+func (x *ioList) afterLoad() {}
+func (x *ioList) load(m state.Map) {
+ m.Load("head", &x.head)
+ m.Load("tail", &x.tail)
+}
+
+func (x *ioEntry) beforeSave() {}
+func (x *ioEntry) save(m state.Map) {
+ x.beforeSave()
+ m.Save("next", &x.next)
+ m.Save("prev", &x.prev)
+}
+
+func (x *ioEntry) afterLoad() {}
+func (x *ioEntry) load(m state.Map) {
+ m.Load("next", &x.next)
+ m.Load("prev", &x.prev)
+}
+
+func (x *MemoryManager) save(m state.Map) {
+ x.beforeSave()
+ if !state.IsZeroValue(x.active) { m.Failf("active is %v, expected zero", x.active) }
+ if !state.IsZeroValue(x.captureInvalidations) { m.Failf("captureInvalidations is %v, expected zero", x.captureInvalidations) }
+ m.Save("p", &x.p)
+ m.Save("mfp", &x.mfp)
+ m.Save("layout", &x.layout)
+ m.Save("privateRefs", &x.privateRefs)
+ m.Save("users", &x.users)
+ m.Save("vmas", &x.vmas)
+ m.Save("brk", &x.brk)
+ m.Save("usageAS", &x.usageAS)
+ m.Save("lockedAS", &x.lockedAS)
+ m.Save("dataAS", &x.dataAS)
+ m.Save("defMLockMode", &x.defMLockMode)
+ m.Save("pmas", &x.pmas)
+ m.Save("curRSS", &x.curRSS)
+ m.Save("maxRSS", &x.maxRSS)
+ m.Save("argv", &x.argv)
+ m.Save("envv", &x.envv)
+ m.Save("auxv", &x.auxv)
+ m.Save("executable", &x.executable)
+ m.Save("dumpability", &x.dumpability)
+ m.Save("aioManager", &x.aioManager)
+}
+
+func (x *MemoryManager) load(m state.Map) {
+ m.Load("p", &x.p)
+ m.Load("mfp", &x.mfp)
+ m.Load("layout", &x.layout)
+ m.Load("privateRefs", &x.privateRefs)
+ m.Load("users", &x.users)
+ m.Load("vmas", &x.vmas)
+ m.Load("brk", &x.brk)
+ m.Load("usageAS", &x.usageAS)
+ m.Load("lockedAS", &x.lockedAS)
+ m.Load("dataAS", &x.dataAS)
+ m.Load("defMLockMode", &x.defMLockMode)
+ m.Load("pmas", &x.pmas)
+ m.Load("curRSS", &x.curRSS)
+ m.Load("maxRSS", &x.maxRSS)
+ m.Load("argv", &x.argv)
+ m.Load("envv", &x.envv)
+ m.Load("auxv", &x.auxv)
+ m.Load("executable", &x.executable)
+ m.Load("dumpability", &x.dumpability)
+ m.Load("aioManager", &x.aioManager)
+ m.AfterLoad(x.afterLoad)
+}
+
+func (x *vma) beforeSave() {}
+func (x *vma) save(m state.Map) {
+ x.beforeSave()
+ var realPerms int = x.saveRealPerms()
+ m.SaveValue("realPerms", realPerms)
+ m.Save("mappable", &x.mappable)
+ m.Save("off", &x.off)
+ m.Save("mlockMode", &x.mlockMode)
+ m.Save("numaPolicy", &x.numaPolicy)
+ m.Save("numaNodemask", &x.numaNodemask)
+ m.Save("id", &x.id)
+ m.Save("hint", &x.hint)
+}
+
+func (x *vma) afterLoad() {}
+func (x *vma) load(m state.Map) {
+ m.Load("mappable", &x.mappable)
+ m.Load("off", &x.off)
+ m.Load("mlockMode", &x.mlockMode)
+ m.Load("numaPolicy", &x.numaPolicy)
+ m.Load("numaNodemask", &x.numaNodemask)
+ m.Load("id", &x.id)
+ m.Load("hint", &x.hint)
+ m.LoadValue("realPerms", new(int), func(y interface{}) { x.loadRealPerms(y.(int)) })
+}
+
+func (x *pma) beforeSave() {}
+func (x *pma) save(m state.Map) {
+ x.beforeSave()
+ m.Save("off", &x.off)
+ m.Save("translatePerms", &x.translatePerms)
+ m.Save("effectivePerms", &x.effectivePerms)
+ m.Save("maxPerms", &x.maxPerms)
+ m.Save("needCOW", &x.needCOW)
+ m.Save("private", &x.private)
+}
+
+func (x *pma) afterLoad() {}
+func (x *pma) load(m state.Map) {
+ m.Load("off", &x.off)
+ m.Load("translatePerms", &x.translatePerms)
+ m.Load("effectivePerms", &x.effectivePerms)
+ m.Load("maxPerms", &x.maxPerms)
+ m.Load("needCOW", &x.needCOW)
+ m.Load("private", &x.private)
+}
+
+func (x *privateRefs) beforeSave() {}
+func (x *privateRefs) save(m state.Map) {
+ x.beforeSave()
+ m.Save("refs", &x.refs)
+}
+
+func (x *privateRefs) afterLoad() {}
+func (x *privateRefs) load(m state.Map) {
+ m.Load("refs", &x.refs)
+}
+
+func (x *pmaSet) beforeSave() {}
+func (x *pmaSet) save(m state.Map) {
+ x.beforeSave()
+ var root *pmaSegmentDataSlices = x.saveRoot()
+ m.SaveValue("root", root)
+}
+
+func (x *pmaSet) afterLoad() {}
+func (x *pmaSet) load(m state.Map) {
+ m.LoadValue("root", new(*pmaSegmentDataSlices), func(y interface{}) { x.loadRoot(y.(*pmaSegmentDataSlices)) })
+}
+
+func (x *pmanode) beforeSave() {}
+func (x *pmanode) save(m state.Map) {
+ x.beforeSave()
+ m.Save("nrSegments", &x.nrSegments)
+ m.Save("parent", &x.parent)
+ m.Save("parentIndex", &x.parentIndex)
+ m.Save("hasChildren", &x.hasChildren)
+ m.Save("keys", &x.keys)
+ m.Save("values", &x.values)
+ m.Save("children", &x.children)
+}
+
+func (x *pmanode) afterLoad() {}
+func (x *pmanode) load(m state.Map) {
+ m.Load("nrSegments", &x.nrSegments)
+ m.Load("parent", &x.parent)
+ m.Load("parentIndex", &x.parentIndex)
+ m.Load("hasChildren", &x.hasChildren)
+ m.Load("keys", &x.keys)
+ m.Load("values", &x.values)
+ m.Load("children", &x.children)
+}
+
+func (x *pmaSegmentDataSlices) beforeSave() {}
+func (x *pmaSegmentDataSlices) save(m state.Map) {
+ x.beforeSave()
+ m.Save("Start", &x.Start)
+ m.Save("End", &x.End)
+ m.Save("Values", &x.Values)
+}
+
+func (x *pmaSegmentDataSlices) afterLoad() {}
+func (x *pmaSegmentDataSlices) load(m state.Map) {
+ m.Load("Start", &x.Start)
+ m.Load("End", &x.End)
+ m.Load("Values", &x.Values)
+}
+
+func (x *SpecialMappable) beforeSave() {}
+func (x *SpecialMappable) save(m state.Map) {
+ x.beforeSave()
+ m.Save("AtomicRefCount", &x.AtomicRefCount)
+ m.Save("mfp", &x.mfp)
+ m.Save("fr", &x.fr)
+ m.Save("name", &x.name)
+}
+
+func (x *SpecialMappable) afterLoad() {}
+func (x *SpecialMappable) load(m state.Map) {
+ m.Load("AtomicRefCount", &x.AtomicRefCount)
+ m.Load("mfp", &x.mfp)
+ m.Load("fr", &x.fr)
+ m.Load("name", &x.name)
+}
+
+func (x *vmaSet) beforeSave() {}
+func (x *vmaSet) save(m state.Map) {
+ x.beforeSave()
+ var root *vmaSegmentDataSlices = x.saveRoot()
+ m.SaveValue("root", root)
+}
+
+func (x *vmaSet) afterLoad() {}
+func (x *vmaSet) load(m state.Map) {
+ m.LoadValue("root", new(*vmaSegmentDataSlices), func(y interface{}) { x.loadRoot(y.(*vmaSegmentDataSlices)) })
+}
+
+func (x *vmanode) beforeSave() {}
+func (x *vmanode) save(m state.Map) {
+ x.beforeSave()
+ m.Save("nrSegments", &x.nrSegments)
+ m.Save("parent", &x.parent)
+ m.Save("parentIndex", &x.parentIndex)
+ m.Save("hasChildren", &x.hasChildren)
+ m.Save("keys", &x.keys)
+ m.Save("values", &x.values)
+ m.Save("children", &x.children)
+}
+
+func (x *vmanode) afterLoad() {}
+func (x *vmanode) load(m state.Map) {
+ m.Load("nrSegments", &x.nrSegments)
+ m.Load("parent", &x.parent)
+ m.Load("parentIndex", &x.parentIndex)
+ m.Load("hasChildren", &x.hasChildren)
+ m.Load("keys", &x.keys)
+ m.Load("values", &x.values)
+ m.Load("children", &x.children)
+}
+
+func (x *vmaSegmentDataSlices) beforeSave() {}
+func (x *vmaSegmentDataSlices) save(m state.Map) {
+ x.beforeSave()
+ m.Save("Start", &x.Start)
+ m.Save("End", &x.End)
+ m.Save("Values", &x.Values)
+}
+
+func (x *vmaSegmentDataSlices) afterLoad() {}
+func (x *vmaSegmentDataSlices) load(m state.Map) {
+ m.Load("Start", &x.Start)
+ m.Load("End", &x.End)
+ m.Load("Values", &x.Values)
+}
+
+func init() {
+ state.Register("mm.aioManager", (*aioManager)(nil), state.Fns{Save: (*aioManager).save, Load: (*aioManager).load})
+ state.Register("mm.ioResult", (*ioResult)(nil), state.Fns{Save: (*ioResult).save, Load: (*ioResult).load})
+ state.Register("mm.AIOContext", (*AIOContext)(nil), state.Fns{Save: (*AIOContext).save, Load: (*AIOContext).load})
+ state.Register("mm.aioMappable", (*aioMappable)(nil), state.Fns{Save: (*aioMappable).save, Load: (*aioMappable).load})
+ state.Register("mm.fileRefcountSet", (*fileRefcountSet)(nil), state.Fns{Save: (*fileRefcountSet).save, Load: (*fileRefcountSet).load})
+ state.Register("mm.fileRefcountnode", (*fileRefcountnode)(nil), state.Fns{Save: (*fileRefcountnode).save, Load: (*fileRefcountnode).load})
+ state.Register("mm.fileRefcountSegmentDataSlices", (*fileRefcountSegmentDataSlices)(nil), state.Fns{Save: (*fileRefcountSegmentDataSlices).save, Load: (*fileRefcountSegmentDataSlices).load})
+ state.Register("mm.ioList", (*ioList)(nil), state.Fns{Save: (*ioList).save, Load: (*ioList).load})
+ state.Register("mm.ioEntry", (*ioEntry)(nil), state.Fns{Save: (*ioEntry).save, Load: (*ioEntry).load})
+ state.Register("mm.MemoryManager", (*MemoryManager)(nil), state.Fns{Save: (*MemoryManager).save, Load: (*MemoryManager).load})
+ state.Register("mm.vma", (*vma)(nil), state.Fns{Save: (*vma).save, Load: (*vma).load})
+ state.Register("mm.pma", (*pma)(nil), state.Fns{Save: (*pma).save, Load: (*pma).load})
+ state.Register("mm.privateRefs", (*privateRefs)(nil), state.Fns{Save: (*privateRefs).save, Load: (*privateRefs).load})
+ state.Register("mm.pmaSet", (*pmaSet)(nil), state.Fns{Save: (*pmaSet).save, Load: (*pmaSet).load})
+ state.Register("mm.pmanode", (*pmanode)(nil), state.Fns{Save: (*pmanode).save, Load: (*pmanode).load})
+ state.Register("mm.pmaSegmentDataSlices", (*pmaSegmentDataSlices)(nil), state.Fns{Save: (*pmaSegmentDataSlices).save, Load: (*pmaSegmentDataSlices).load})
+ state.Register("mm.SpecialMappable", (*SpecialMappable)(nil), state.Fns{Save: (*SpecialMappable).save, Load: (*SpecialMappable).load})
+ state.Register("mm.vmaSet", (*vmaSet)(nil), state.Fns{Save: (*vmaSet).save, Load: (*vmaSet).load})
+ state.Register("mm.vmanode", (*vmanode)(nil), state.Fns{Save: (*vmanode).save, Load: (*vmanode).load})
+ state.Register("mm.vmaSegmentDataSlices", (*vmaSegmentDataSlices)(nil), state.Fns{Save: (*vmaSegmentDataSlices).save, Load: (*vmaSegmentDataSlices).load})
+}
diff --git a/pkg/sentry/mm/mm_test.go b/pkg/sentry/mm/mm_test.go
deleted file mode 100644
index 7209c73ce..000000000
--- a/pkg/sentry/mm/mm_test.go
+++ /dev/null
@@ -1,230 +0,0 @@
-// Copyright 2018 The gVisor Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package mm
-
-import (
- "testing"
-
- "gvisor.googlesource.com/gvisor/pkg/sentry/arch"
- "gvisor.googlesource.com/gvisor/pkg/sentry/context"
- "gvisor.googlesource.com/gvisor/pkg/sentry/context/contexttest"
- "gvisor.googlesource.com/gvisor/pkg/sentry/limits"
- "gvisor.googlesource.com/gvisor/pkg/sentry/memmap"
- "gvisor.googlesource.com/gvisor/pkg/sentry/pgalloc"
- "gvisor.googlesource.com/gvisor/pkg/sentry/platform"
- "gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
- "gvisor.googlesource.com/gvisor/pkg/syserror"
-)
-
-func testMemoryManager(ctx context.Context) *MemoryManager {
- p := platform.FromContext(ctx)
- mfp := pgalloc.MemoryFileProviderFromContext(ctx)
- mm := NewMemoryManager(p, mfp)
- mm.layout = arch.MmapLayout{
- MinAddr: p.MinUserAddress(),
- MaxAddr: p.MaxUserAddress(),
- BottomUpBase: p.MinUserAddress(),
- TopDownBase: p.MaxUserAddress(),
- }
- return mm
-}
-
-func (mm *MemoryManager) realUsageAS() uint64 {
- return uint64(mm.vmas.Span())
-}
-
-func TestUsageASUpdates(t *testing.T) {
- ctx := contexttest.Context(t)
- mm := testMemoryManager(ctx)
- defer mm.DecUsers(ctx)
-
- addr, err := mm.MMap(ctx, memmap.MMapOpts{
- Length: 2 * usermem.PageSize,
- })
- if err != nil {
- t.Fatalf("MMap got err %v want nil", err)
- }
- realUsage := mm.realUsageAS()
- if mm.usageAS != realUsage {
- t.Fatalf("usageAS believes %v bytes are mapped; %v bytes are actually mapped", mm.usageAS, realUsage)
- }
-
- mm.MUnmap(ctx, addr, usermem.PageSize)
- realUsage = mm.realUsageAS()
- if mm.usageAS != realUsage {
- t.Fatalf("usageAS believes %v bytes are mapped; %v bytes are actually mapped", mm.usageAS, realUsage)
- }
-}
-
-func (mm *MemoryManager) realDataAS() uint64 {
- var sz uint64
- for seg := mm.vmas.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
- vma := seg.Value()
- if vma.isPrivateDataLocked() {
- sz += uint64(seg.Range().Length())
- }
- }
- return sz
-}
-
-func TestDataASUpdates(t *testing.T) {
- ctx := contexttest.Context(t)
- mm := testMemoryManager(ctx)
- defer mm.DecUsers(ctx)
-
- addr, err := mm.MMap(ctx, memmap.MMapOpts{
- Length: 3 * usermem.PageSize,
- Private: true,
- Perms: usermem.Write,
- MaxPerms: usermem.AnyAccess,
- })
- if err != nil {
- t.Fatalf("MMap got err %v want nil", err)
- }
- if mm.dataAS == 0 {
- t.Fatalf("dataAS is 0, wanted not 0")
- }
- realDataAS := mm.realDataAS()
- if mm.dataAS != realDataAS {
- t.Fatalf("dataAS believes %v bytes are mapped; %v bytes are actually mapped", mm.dataAS, realDataAS)
- }
-
- mm.MUnmap(ctx, addr, usermem.PageSize)
- realDataAS = mm.realDataAS()
- if mm.dataAS != realDataAS {
- t.Fatalf("dataAS believes %v bytes are mapped; %v bytes are actually mapped", mm.dataAS, realDataAS)
- }
-
- mm.MProtect(addr+usermem.PageSize, usermem.PageSize, usermem.Read, false)
- realDataAS = mm.realDataAS()
- if mm.dataAS != realDataAS {
- t.Fatalf("dataAS believes %v bytes are mapped; %v bytes are actually mapped", mm.dataAS, realDataAS)
- }
-
- mm.MRemap(ctx, addr+2*usermem.PageSize, usermem.PageSize, 2*usermem.PageSize, MRemapOpts{
- Move: MRemapMayMove,
- })
- realDataAS = mm.realDataAS()
- if mm.dataAS != realDataAS {
- t.Fatalf("dataAS believes %v bytes are mapped; %v bytes are actually mapped", mm.dataAS, realDataAS)
- }
-}
-
-func TestBrkDataLimitUpdates(t *testing.T) {
- limitSet := limits.NewLimitSet()
- limitSet.Set(limits.Data, limits.Limit{}, true /* privileged */) // zero RLIMIT_DATA
-
- ctx := contexttest.WithLimitSet(contexttest.Context(t), limitSet)
- mm := testMemoryManager(ctx)
- defer mm.DecUsers(ctx)
-
- // Try to extend the brk by one page and expect doing so to fail.
- oldBrk, _ := mm.Brk(ctx, 0)
- if newBrk, _ := mm.Brk(ctx, oldBrk+usermem.PageSize); newBrk != oldBrk {
- t.Errorf("brk() increased data segment above RLIMIT_DATA (old brk = %#x, new brk = %#x", oldBrk, newBrk)
- }
-}
-
-// TestIOAfterUnmap ensures that IO fails after unmap.
-func TestIOAfterUnmap(t *testing.T) {
- ctx := contexttest.Context(t)
- mm := testMemoryManager(ctx)
- defer mm.DecUsers(ctx)
-
- addr, err := mm.MMap(ctx, memmap.MMapOpts{
- Length: usermem.PageSize,
- Private: true,
- Perms: usermem.Read,
- MaxPerms: usermem.AnyAccess,
- })
- if err != nil {
- t.Fatalf("MMap got err %v want nil", err)
- }
-
- // IO works before munmap.
- b := make([]byte, 1)
- n, err := mm.CopyIn(ctx, addr, b, usermem.IOOpts{})
- if err != nil {
- t.Errorf("CopyIn got err %v want nil", err)
- }
- if n != 1 {
- t.Errorf("CopyIn got %d want 1", n)
- }
-
- err = mm.MUnmap(ctx, addr, usermem.PageSize)
- if err != nil {
- t.Fatalf("MUnmap got err %v want nil", err)
- }
-
- n, err = mm.CopyIn(ctx, addr, b, usermem.IOOpts{})
- if err != syserror.EFAULT {
- t.Errorf("CopyIn got err %v want EFAULT", err)
- }
- if n != 0 {
- t.Errorf("CopyIn got %d want 0", n)
- }
-}
-
-// TestIOAfterMProtect tests IO interaction with mprotect permissions.
-func TestIOAfterMProtect(t *testing.T) {
- ctx := contexttest.Context(t)
- mm := testMemoryManager(ctx)
- defer mm.DecUsers(ctx)
-
- addr, err := mm.MMap(ctx, memmap.MMapOpts{
- Length: usermem.PageSize,
- Private: true,
- Perms: usermem.ReadWrite,
- MaxPerms: usermem.AnyAccess,
- })
- if err != nil {
- t.Fatalf("MMap got err %v want nil", err)
- }
-
- // Writing works before mprotect.
- b := make([]byte, 1)
- n, err := mm.CopyOut(ctx, addr, b, usermem.IOOpts{})
- if err != nil {
- t.Errorf("CopyOut got err %v want nil", err)
- }
- if n != 1 {
- t.Errorf("CopyOut got %d want 1", n)
- }
-
- err = mm.MProtect(addr, usermem.PageSize, usermem.Read, false)
- if err != nil {
- t.Errorf("MProtect got err %v want nil", err)
- }
-
- // Without IgnorePermissions, CopyOut should no longer succeed.
- n, err = mm.CopyOut(ctx, addr, b, usermem.IOOpts{})
- if err != syserror.EFAULT {
- t.Errorf("CopyOut got err %v want EFAULT", err)
- }
- if n != 0 {
- t.Errorf("CopyOut got %d want 0", n)
- }
-
- // With IgnorePermissions, CopyOut should succeed despite mprotect.
- n, err = mm.CopyOut(ctx, addr, b, usermem.IOOpts{
- IgnorePermissions: true,
- })
- if err != nil {
- t.Errorf("CopyOut got err %v want nil", err)
- }
- if n != 1 {
- t.Errorf("CopyOut got %d want 1", n)
- }
-}
diff --git a/pkg/sentry/mm/pma_set.go b/pkg/sentry/mm/pma_set.go
new file mode 100755
index 000000000..6380d8619
--- /dev/null
+++ b/pkg/sentry/mm/pma_set.go
@@ -0,0 +1,1274 @@
+package mm
+
+import (
+ __generics_imported0 "gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
+)
+
+import (
+ "bytes"
+ "fmt"
+)
+
+const (
+ // minDegree is the minimum degree of an internal node in a Set B-tree.
+ //
+ // - Any non-root node has at least minDegree-1 segments.
+ //
+ // - Any non-root internal (non-leaf) node has at least minDegree children.
+ //
+ // - The root node may have fewer than minDegree-1 segments, but it may
+ // only have 0 segments if the tree is empty.
+ //
+ // Our implementation requires minDegree >= 3. Higher values of minDegree
+ // usually improve performance, but increase memory usage for small sets.
+ pmaminDegree = 8
+
+ pmamaxDegree = 2 * pmaminDegree
+)
+
+// A Set is a mapping of segments with non-overlapping Range keys. The zero
+// value for a Set is an empty set. Set values are not safely movable nor
+// copyable. Set is thread-compatible.
+//
+// +stateify savable
+type pmaSet struct {
+ root pmanode `state:".(*pmaSegmentDataSlices)"`
+}
+
+// IsEmpty returns true if the set contains no segments.
+func (s *pmaSet) IsEmpty() bool {
+ return s.root.nrSegments == 0
+}
+
+// IsEmptyRange returns true iff no segments in the set overlap the given
+// range. This is semantically equivalent to s.SpanRange(r) == 0, but may be
+// more efficient.
+func (s *pmaSet) IsEmptyRange(r __generics_imported0.AddrRange) bool {
+ switch {
+ case r.Length() < 0:
+ panic(fmt.Sprintf("invalid range %v", r))
+ case r.Length() == 0:
+ return true
+ }
+ _, gap := s.Find(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ return r.End <= gap.End()
+}
+
+// Span returns the total size of all segments in the set.
+func (s *pmaSet) Span() __generics_imported0.Addr {
+ var sz __generics_imported0.Addr
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ sz += seg.Range().Length()
+ }
+ return sz
+}
+
+// SpanRange returns the total size of the intersection of segments in the set
+// with the given range.
+func (s *pmaSet) SpanRange(r __generics_imported0.AddrRange) __generics_imported0.Addr {
+ switch {
+ case r.Length() < 0:
+ panic(fmt.Sprintf("invalid range %v", r))
+ case r.Length() == 0:
+ return 0
+ }
+ var sz __generics_imported0.Addr
+ for seg := s.LowerBoundSegment(r.Start); seg.Ok() && seg.Start() < r.End; seg = seg.NextSegment() {
+ sz += seg.Range().Intersect(r).Length()
+ }
+ return sz
+}
+
+// FirstSegment returns the first segment in the set. If the set is empty,
+// FirstSegment returns a terminal iterator.
+func (s *pmaSet) FirstSegment() pmaIterator {
+ if s.root.nrSegments == 0 {
+ return pmaIterator{}
+ }
+ return s.root.firstSegment()
+}
+
+// LastSegment returns the last segment in the set. If the set is empty,
+// LastSegment returns a terminal iterator.
+func (s *pmaSet) LastSegment() pmaIterator {
+ if s.root.nrSegments == 0 {
+ return pmaIterator{}
+ }
+ return s.root.lastSegment()
+}
+
+// FirstGap returns the first gap in the set.
+func (s *pmaSet) FirstGap() pmaGapIterator {
+ n := &s.root
+ for n.hasChildren {
+ n = n.children[0]
+ }
+ return pmaGapIterator{n, 0}
+}
+
+// LastGap returns the last gap in the set.
+func (s *pmaSet) LastGap() pmaGapIterator {
+ n := &s.root
+ for n.hasChildren {
+ n = n.children[n.nrSegments]
+ }
+ return pmaGapIterator{n, n.nrSegments}
+}
+
+// Find returns the segment or gap whose range contains the given key. If a
+// segment is found, the returned Iterator is non-terminal and the
+// returned GapIterator is terminal. Otherwise, the returned Iterator is
+// terminal and the returned GapIterator is non-terminal.
+func (s *pmaSet) Find(key __generics_imported0.Addr) (pmaIterator, pmaGapIterator) {
+ n := &s.root
+ for {
+
+ lower := 0
+ upper := n.nrSegments
+ for lower < upper {
+ i := lower + (upper-lower)/2
+ if r := n.keys[i]; key < r.End {
+ if key >= r.Start {
+ return pmaIterator{n, i}, pmaGapIterator{}
+ }
+ upper = i
+ } else {
+ lower = i + 1
+ }
+ }
+ i := lower
+ if !n.hasChildren {
+ return pmaIterator{}, pmaGapIterator{n, i}
+ }
+ n = n.children[i]
+ }
+}
+
+// FindSegment returns the segment whose range contains the given key. If no
+// such segment exists, FindSegment returns a terminal iterator.
+func (s *pmaSet) FindSegment(key __generics_imported0.Addr) pmaIterator {
+ seg, _ := s.Find(key)
+ return seg
+}
+
+// LowerBoundSegment returns the segment with the lowest range that contains a
+// key greater than or equal to min. If no such segment exists,
+// LowerBoundSegment returns a terminal iterator.
+func (s *pmaSet) LowerBoundSegment(min __generics_imported0.Addr) pmaIterator {
+ seg, gap := s.Find(min)
+ if seg.Ok() {
+ return seg
+ }
+ return gap.NextSegment()
+}
+
+// UpperBoundSegment returns the segment with the highest range that contains a
+// key less than or equal to max. If no such segment exists, UpperBoundSegment
+// returns a terminal iterator.
+func (s *pmaSet) UpperBoundSegment(max __generics_imported0.Addr) pmaIterator {
+ seg, gap := s.Find(max)
+ if seg.Ok() {
+ return seg
+ }
+ return gap.PrevSegment()
+}
+
+// FindGap returns the gap containing the given key. If no such gap exists
+// (i.e. the set contains a segment containing that key), FindGap returns a
+// terminal iterator.
+func (s *pmaSet) FindGap(key __generics_imported0.Addr) pmaGapIterator {
+ _, gap := s.Find(key)
+ return gap
+}
+
+// LowerBoundGap returns the gap with the lowest range that is greater than or
+// equal to min.
+func (s *pmaSet) LowerBoundGap(min __generics_imported0.Addr) pmaGapIterator {
+ seg, gap := s.Find(min)
+ if gap.Ok() {
+ return gap
+ }
+ return seg.NextGap()
+}
+
+// UpperBoundGap returns the gap with the highest range that is less than or
+// equal to max.
+func (s *pmaSet) UpperBoundGap(max __generics_imported0.Addr) pmaGapIterator {
+ seg, gap := s.Find(max)
+ if gap.Ok() {
+ return gap
+ }
+ return seg.PrevGap()
+}
+
+// Add inserts the given segment into the set and returns true. If the new
+// segment can be merged with adjacent segments, Add will do so. If the new
+// segment would overlap an existing segment, Add returns false. If Add
+// succeeds, all existing iterators are invalidated.
+func (s *pmaSet) Add(r __generics_imported0.AddrRange, val pma) bool {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ gap := s.FindGap(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ if r.End > gap.End() {
+ return false
+ }
+ s.Insert(gap, r, val)
+ return true
+}
+
+// AddWithoutMerging inserts the given segment into the set and returns true.
+// If it would overlap an existing segment, AddWithoutMerging does nothing and
+// returns false. If AddWithoutMerging succeeds, all existing iterators are
+// invalidated.
+func (s *pmaSet) AddWithoutMerging(r __generics_imported0.AddrRange, val pma) bool {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ gap := s.FindGap(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ if r.End > gap.End() {
+ return false
+ }
+ s.InsertWithoutMergingUnchecked(gap, r, val)
+ return true
+}
+
+// Insert inserts the given segment into the given gap. If the new segment can
+// be merged with adjacent segments, Insert will do so. Insert returns an
+// iterator to the segment containing the inserted value (which may have been
+// merged with other values). All existing iterators (including gap, but not
+// including the returned iterator) are invalidated.
+//
+// If the gap cannot accommodate the segment, or if r is invalid, Insert panics.
+//
+// Insert is semantically equivalent to a InsertWithoutMerging followed by a
+// Merge, but may be more efficient. Note that there is no unchecked variant of
+// Insert since Insert must retrieve and inspect gap's predecessor and
+// successor segments regardless.
+func (s *pmaSet) Insert(gap pmaGapIterator, r __generics_imported0.AddrRange, val pma) pmaIterator {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ prev, next := gap.PrevSegment(), gap.NextSegment()
+ if prev.Ok() && prev.End() > r.Start {
+ panic(fmt.Sprintf("new segment %v overlaps predecessor %v", r, prev.Range()))
+ }
+ if next.Ok() && next.Start() < r.End {
+ panic(fmt.Sprintf("new segment %v overlaps successor %v", r, next.Range()))
+ }
+ if prev.Ok() && prev.End() == r.Start {
+ if mval, ok := (pmaSetFunctions{}).Merge(prev.Range(), prev.Value(), r, val); ok {
+ prev.SetEndUnchecked(r.End)
+ prev.SetValue(mval)
+ if next.Ok() && next.Start() == r.End {
+ val = mval
+ if mval, ok := (pmaSetFunctions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok {
+ prev.SetEndUnchecked(next.End())
+ prev.SetValue(mval)
+ return s.Remove(next).PrevSegment()
+ }
+ }
+ return prev
+ }
+ }
+ if next.Ok() && next.Start() == r.End {
+ if mval, ok := (pmaSetFunctions{}).Merge(r, val, next.Range(), next.Value()); ok {
+ next.SetStartUnchecked(r.Start)
+ next.SetValue(mval)
+ return next
+ }
+ }
+ return s.InsertWithoutMergingUnchecked(gap, r, val)
+}
+
+// InsertWithoutMerging inserts the given segment into the given gap and
+// returns an iterator to the inserted segment. All existing iterators
+// (including gap, but not including the returned iterator) are invalidated.
+//
+// If the gap cannot accommodate the segment, or if r is invalid,
+// InsertWithoutMerging panics.
+func (s *pmaSet) InsertWithoutMerging(gap pmaGapIterator, r __generics_imported0.AddrRange, val pma) pmaIterator {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ if gr := gap.Range(); !gr.IsSupersetOf(r) {
+ panic(fmt.Sprintf("cannot insert segment range %v into gap range %v", r, gr))
+ }
+ return s.InsertWithoutMergingUnchecked(gap, r, val)
+}
+
+// InsertWithoutMergingUnchecked inserts the given segment into the given gap
+// and returns an iterator to the inserted segment. All existing iterators
+// (including gap, but not including the returned iterator) are invalidated.
+//
+// Preconditions: r.Start >= gap.Start(); r.End <= gap.End().
+func (s *pmaSet) InsertWithoutMergingUnchecked(gap pmaGapIterator, r __generics_imported0.AddrRange, val pma) pmaIterator {
+ gap = gap.node.rebalanceBeforeInsert(gap)
+ copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments])
+ copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments])
+ gap.node.keys[gap.index] = r
+ gap.node.values[gap.index] = val
+ gap.node.nrSegments++
+ return pmaIterator{gap.node, gap.index}
+}
+
+// Remove removes the given segment and returns an iterator to the vacated gap.
+// All existing iterators (including seg, but not including the returned
+// iterator) are invalidated.
+func (s *pmaSet) Remove(seg pmaIterator) pmaGapIterator {
+
+ if seg.node.hasChildren {
+
+ victim := seg.PrevSegment()
+
+ seg.SetRangeUnchecked(victim.Range())
+ seg.SetValue(victim.Value())
+ return s.Remove(victim).NextGap()
+ }
+ copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments])
+ copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments])
+ pmaSetFunctions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1])
+ seg.node.nrSegments--
+ return seg.node.rebalanceAfterRemove(pmaGapIterator{seg.node, seg.index})
+}
+
+// RemoveAll removes all segments from the set. All existing iterators are
+// invalidated.
+func (s *pmaSet) RemoveAll() {
+ s.root = pmanode{}
+}
+
+// RemoveRange removes all segments in the given range. An iterator to the
+// newly formed gap is returned, and all existing iterators are invalidated.
+func (s *pmaSet) RemoveRange(r __generics_imported0.AddrRange) pmaGapIterator {
+ seg, gap := s.Find(r.Start)
+ if seg.Ok() {
+ seg = s.Isolate(seg, r)
+ gap = s.Remove(seg)
+ }
+ for seg = gap.NextSegment(); seg.Ok() && seg.Start() < r.End; seg = gap.NextSegment() {
+ seg = s.Isolate(seg, r)
+ gap = s.Remove(seg)
+ }
+ return gap
+}
+
+// Merge attempts to merge two neighboring segments. If successful, Merge
+// returns an iterator to the merged segment, and all existing iterators are
+// invalidated. Otherwise, Merge returns a terminal iterator.
+//
+// If first is not the predecessor of second, Merge panics.
+func (s *pmaSet) Merge(first, second pmaIterator) pmaIterator {
+ if first.NextSegment() != second {
+ panic(fmt.Sprintf("attempt to merge non-neighboring segments %v, %v", first.Range(), second.Range()))
+ }
+ return s.MergeUnchecked(first, second)
+}
+
+// MergeUnchecked attempts to merge two neighboring segments. If successful,
+// MergeUnchecked returns an iterator to the merged segment, and all existing
+// iterators are invalidated. Otherwise, MergeUnchecked returns a terminal
+// iterator.
+//
+// Precondition: first is the predecessor of second: first.NextSegment() ==
+// second, first == second.PrevSegment().
+func (s *pmaSet) MergeUnchecked(first, second pmaIterator) pmaIterator {
+ if first.End() == second.Start() {
+ if mval, ok := (pmaSetFunctions{}).Merge(first.Range(), first.Value(), second.Range(), second.Value()); ok {
+
+ first.SetEndUnchecked(second.End())
+ first.SetValue(mval)
+ return s.Remove(second).PrevSegment()
+ }
+ }
+ return pmaIterator{}
+}
+
+// MergeAll attempts to merge all adjacent segments in the set. All existing
+// iterators are invalidated.
+func (s *pmaSet) MergeAll() {
+ seg := s.FirstSegment()
+ if !seg.Ok() {
+ return
+ }
+ next := seg.NextSegment()
+ for next.Ok() {
+ if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
+ seg, next = mseg, mseg.NextSegment()
+ } else {
+ seg, next = next, next.NextSegment()
+ }
+ }
+}
+
+// MergeRange attempts to merge all adjacent segments that contain a key in the
+// specific range. All existing iterators are invalidated.
+func (s *pmaSet) MergeRange(r __generics_imported0.AddrRange) {
+ seg := s.LowerBoundSegment(r.Start)
+ if !seg.Ok() {
+ return
+ }
+ next := seg.NextSegment()
+ for next.Ok() && next.Range().Start < r.End {
+ if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
+ seg, next = mseg, mseg.NextSegment()
+ } else {
+ seg, next = next, next.NextSegment()
+ }
+ }
+}
+
+// MergeAdjacent attempts to merge the segment containing r.Start with its
+// predecessor, and the segment containing r.End-1 with its successor.
+func (s *pmaSet) MergeAdjacent(r __generics_imported0.AddrRange) {
+ first := s.FindSegment(r.Start)
+ if first.Ok() {
+ if prev := first.PrevSegment(); prev.Ok() {
+ s.Merge(prev, first)
+ }
+ }
+ last := s.FindSegment(r.End - 1)
+ if last.Ok() {
+ if next := last.NextSegment(); next.Ok() {
+ s.Merge(last, next)
+ }
+ }
+}
+
+// Split splits the given segment at the given key and returns iterators to the
+// two resulting segments. All existing iterators (including seg, but not
+// including the returned iterators) are invalidated.
+//
+// If the segment cannot be split at split (because split is at the start or
+// end of the segment's range, so splitting would produce a segment with zero
+// length, or because split falls outside the segment's range altogether),
+// Split panics.
+func (s *pmaSet) Split(seg pmaIterator, split __generics_imported0.Addr) (pmaIterator, pmaIterator) {
+ if !seg.Range().CanSplitAt(split) {
+ panic(fmt.Sprintf("can't split %v at %v", seg.Range(), split))
+ }
+ return s.SplitUnchecked(seg, split)
+}
+
+// SplitUnchecked splits the given segment at the given key and returns
+// iterators to the two resulting segments. All existing iterators (including
+// seg, but not including the returned iterators) are invalidated.
+//
+// Preconditions: seg.Start() < key < seg.End().
+func (s *pmaSet) SplitUnchecked(seg pmaIterator, split __generics_imported0.Addr) (pmaIterator, pmaIterator) {
+ val1, val2 := (pmaSetFunctions{}).Split(seg.Range(), seg.Value(), split)
+ end2 := seg.End()
+ seg.SetEndUnchecked(split)
+ seg.SetValue(val1)
+ seg2 := s.InsertWithoutMergingUnchecked(seg.NextGap(), __generics_imported0.AddrRange{split, end2}, val2)
+
+ return seg2.PrevSegment(), seg2
+}
+
+// SplitAt splits the segment straddling split, if one exists. SplitAt returns
+// true if a segment was split and false otherwise. If SplitAt splits a
+// segment, all existing iterators are invalidated.
+func (s *pmaSet) SplitAt(split __generics_imported0.Addr) bool {
+ if seg := s.FindSegment(split); seg.Ok() && seg.Range().CanSplitAt(split) {
+ s.SplitUnchecked(seg, split)
+ return true
+ }
+ return false
+}
+
+// Isolate ensures that the given segment's range does not escape r by
+// splitting at r.Start and r.End if necessary, and returns an updated iterator
+// to the bounded segment. All existing iterators (including seg, but not
+// including the returned iterators) are invalidated.
+func (s *pmaSet) Isolate(seg pmaIterator, r __generics_imported0.AddrRange) pmaIterator {
+ if seg.Range().CanSplitAt(r.Start) {
+ _, seg = s.SplitUnchecked(seg, r.Start)
+ }
+ if seg.Range().CanSplitAt(r.End) {
+ seg, _ = s.SplitUnchecked(seg, r.End)
+ }
+ return seg
+}
+
+// ApplyContiguous applies a function to a contiguous range of segments,
+// splitting if necessary. The function is applied until the first gap is
+// encountered, at which point the gap is returned. If the function is applied
+// across the entire range, a terminal gap is returned. All existing iterators
+// are invalidated.
+//
+// N.B. The Iterator must not be invalidated by the function.
+func (s *pmaSet) ApplyContiguous(r __generics_imported0.AddrRange, fn func(seg pmaIterator)) pmaGapIterator {
+ seg, gap := s.Find(r.Start)
+ if !seg.Ok() {
+ return gap
+ }
+ for {
+ seg = s.Isolate(seg, r)
+ fn(seg)
+ if seg.End() >= r.End {
+ return pmaGapIterator{}
+ }
+ gap = seg.NextGap()
+ if !gap.IsEmpty() {
+ return gap
+ }
+ seg = gap.NextSegment()
+ if !seg.Ok() {
+
+ return pmaGapIterator{}
+ }
+ }
+}
+
+// +stateify savable
+type pmanode struct {
+ // An internal binary tree node looks like:
+ //
+ // K
+ // / \
+ // Cl Cr
+ //
+ // where all keys in the subtree rooted by Cl (the left subtree) are less
+ // than K (the key of the parent node), and all keys in the subtree rooted
+ // by Cr (the right subtree) are greater than K.
+ //
+ // An internal B-tree node's indexes work out to look like:
+ //
+ // K0 K1 K2 ... Kn-1
+ // / \/ \/ \ ... / \
+ // C0 C1 C2 C3 ... Cn-1 Cn
+ //
+ // where n is nrSegments.
+ nrSegments int
+
+ // parent is a pointer to this node's parent. If this node is root, parent
+ // is nil.
+ parent *pmanode
+
+ // parentIndex is the index of this node in parent.children.
+ parentIndex int
+
+ // Flag for internal nodes that is technically redundant with "children[0]
+ // != nil", but is stored in the first cache line. "hasChildren" rather
+ // than "isLeaf" because false must be the correct value for an empty root.
+ hasChildren bool
+
+ // Nodes store keys and values in separate arrays to maximize locality in
+ // the common case (scanning keys for lookup).
+ keys [pmamaxDegree - 1]__generics_imported0.AddrRange
+ values [pmamaxDegree - 1]pma
+ children [pmamaxDegree]*pmanode
+}
+
+// firstSegment returns the first segment in the subtree rooted by n.
+//
+// Preconditions: n.nrSegments != 0.
+func (n *pmanode) firstSegment() pmaIterator {
+ for n.hasChildren {
+ n = n.children[0]
+ }
+ return pmaIterator{n, 0}
+}
+
+// lastSegment returns the last segment in the subtree rooted by n.
+//
+// Preconditions: n.nrSegments != 0.
+func (n *pmanode) lastSegment() pmaIterator {
+ for n.hasChildren {
+ n = n.children[n.nrSegments]
+ }
+ return pmaIterator{n, n.nrSegments - 1}
+}
+
+func (n *pmanode) prevSibling() *pmanode {
+ if n.parent == nil || n.parentIndex == 0 {
+ return nil
+ }
+ return n.parent.children[n.parentIndex-1]
+}
+
+func (n *pmanode) nextSibling() *pmanode {
+ if n.parent == nil || n.parentIndex == n.parent.nrSegments {
+ return nil
+ }
+ return n.parent.children[n.parentIndex+1]
+}
+
+// rebalanceBeforeInsert splits n and its ancestors if they are full, as
+// required for insertion, and returns an updated iterator to the position
+// represented by gap.
+func (n *pmanode) rebalanceBeforeInsert(gap pmaGapIterator) pmaGapIterator {
+ if n.parent != nil {
+ gap = n.parent.rebalanceBeforeInsert(gap)
+ }
+ if n.nrSegments < pmamaxDegree-1 {
+ return gap
+ }
+ if n.parent == nil {
+
+ left := &pmanode{
+ nrSegments: pmaminDegree - 1,
+ parent: n,
+ parentIndex: 0,
+ hasChildren: n.hasChildren,
+ }
+ right := &pmanode{
+ nrSegments: pmaminDegree - 1,
+ parent: n,
+ parentIndex: 1,
+ hasChildren: n.hasChildren,
+ }
+ copy(left.keys[:pmaminDegree-1], n.keys[:pmaminDegree-1])
+ copy(left.values[:pmaminDegree-1], n.values[:pmaminDegree-1])
+ copy(right.keys[:pmaminDegree-1], n.keys[pmaminDegree:])
+ copy(right.values[:pmaminDegree-1], n.values[pmaminDegree:])
+ n.keys[0], n.values[0] = n.keys[pmaminDegree-1], n.values[pmaminDegree-1]
+ pmazeroValueSlice(n.values[1:])
+ if n.hasChildren {
+ copy(left.children[:pmaminDegree], n.children[:pmaminDegree])
+ copy(right.children[:pmaminDegree], n.children[pmaminDegree:])
+ pmazeroNodeSlice(n.children[2:])
+ for i := 0; i < pmaminDegree; i++ {
+ left.children[i].parent = left
+ left.children[i].parentIndex = i
+ right.children[i].parent = right
+ right.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments = 1
+ n.hasChildren = true
+ n.children[0] = left
+ n.children[1] = right
+ if gap.node != n {
+ return gap
+ }
+ if gap.index < pmaminDegree {
+ return pmaGapIterator{left, gap.index}
+ }
+ return pmaGapIterator{right, gap.index - pmaminDegree}
+ }
+
+ copy(n.parent.keys[n.parentIndex+1:], n.parent.keys[n.parentIndex:n.parent.nrSegments])
+ copy(n.parent.values[n.parentIndex+1:], n.parent.values[n.parentIndex:n.parent.nrSegments])
+ n.parent.keys[n.parentIndex], n.parent.values[n.parentIndex] = n.keys[pmaminDegree-1], n.values[pmaminDegree-1]
+ copy(n.parent.children[n.parentIndex+2:], n.parent.children[n.parentIndex+1:n.parent.nrSegments+1])
+ for i := n.parentIndex + 2; i < n.parent.nrSegments+2; i++ {
+ n.parent.children[i].parentIndex = i
+ }
+ sibling := &pmanode{
+ nrSegments: pmaminDegree - 1,
+ parent: n.parent,
+ parentIndex: n.parentIndex + 1,
+ hasChildren: n.hasChildren,
+ }
+ n.parent.children[n.parentIndex+1] = sibling
+ n.parent.nrSegments++
+ copy(sibling.keys[:pmaminDegree-1], n.keys[pmaminDegree:])
+ copy(sibling.values[:pmaminDegree-1], n.values[pmaminDegree:])
+ pmazeroValueSlice(n.values[pmaminDegree-1:])
+ if n.hasChildren {
+ copy(sibling.children[:pmaminDegree], n.children[pmaminDegree:])
+ pmazeroNodeSlice(n.children[pmaminDegree:])
+ for i := 0; i < pmaminDegree; i++ {
+ sibling.children[i].parent = sibling
+ sibling.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments = pmaminDegree - 1
+
+ if gap.node != n {
+ return gap
+ }
+ if gap.index < pmaminDegree {
+ return gap
+ }
+ return pmaGapIterator{sibling, gap.index - pmaminDegree}
+}
+
+// rebalanceAfterRemove "unsplits" n and its ancestors if they are deficient
+// (contain fewer segments than required by B-tree invariants), as required for
+// removal, and returns an updated iterator to the position represented by gap.
+//
+// Precondition: n is the only node in the tree that may currently violate a
+// B-tree invariant.
+func (n *pmanode) rebalanceAfterRemove(gap pmaGapIterator) pmaGapIterator {
+ for {
+ if n.nrSegments >= pmaminDegree-1 {
+ return gap
+ }
+ if n.parent == nil {
+
+ return gap
+ }
+
+ if sibling := n.prevSibling(); sibling != nil && sibling.nrSegments >= pmaminDegree {
+ copy(n.keys[1:], n.keys[:n.nrSegments])
+ copy(n.values[1:], n.values[:n.nrSegments])
+ n.keys[0] = n.parent.keys[n.parentIndex-1]
+ n.values[0] = n.parent.values[n.parentIndex-1]
+ n.parent.keys[n.parentIndex-1] = sibling.keys[sibling.nrSegments-1]
+ n.parent.values[n.parentIndex-1] = sibling.values[sibling.nrSegments-1]
+ pmaSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
+ if n.hasChildren {
+ copy(n.children[1:], n.children[:n.nrSegments+1])
+ n.children[0] = sibling.children[sibling.nrSegments]
+ sibling.children[sibling.nrSegments] = nil
+ n.children[0].parent = n
+ n.children[0].parentIndex = 0
+ for i := 1; i < n.nrSegments+2; i++ {
+ n.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments++
+ sibling.nrSegments--
+ if gap.node == sibling && gap.index == sibling.nrSegments {
+ return pmaGapIterator{n, 0}
+ }
+ if gap.node == n {
+ return pmaGapIterator{n, gap.index + 1}
+ }
+ return gap
+ }
+ if sibling := n.nextSibling(); sibling != nil && sibling.nrSegments >= pmaminDegree {
+ n.keys[n.nrSegments] = n.parent.keys[n.parentIndex]
+ n.values[n.nrSegments] = n.parent.values[n.parentIndex]
+ n.parent.keys[n.parentIndex] = sibling.keys[0]
+ n.parent.values[n.parentIndex] = sibling.values[0]
+ copy(sibling.keys[:sibling.nrSegments-1], sibling.keys[1:])
+ copy(sibling.values[:sibling.nrSegments-1], sibling.values[1:])
+ pmaSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
+ if n.hasChildren {
+ n.children[n.nrSegments+1] = sibling.children[0]
+ copy(sibling.children[:sibling.nrSegments], sibling.children[1:])
+ sibling.children[sibling.nrSegments] = nil
+ n.children[n.nrSegments+1].parent = n
+ n.children[n.nrSegments+1].parentIndex = n.nrSegments + 1
+ for i := 0; i < sibling.nrSegments; i++ {
+ sibling.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments++
+ sibling.nrSegments--
+ if gap.node == sibling {
+ if gap.index == 0 {
+ return pmaGapIterator{n, n.nrSegments}
+ }
+ return pmaGapIterator{sibling, gap.index - 1}
+ }
+ return gap
+ }
+
+ p := n.parent
+ if p.nrSegments == 1 {
+
+ left, right := p.children[0], p.children[1]
+ p.nrSegments = left.nrSegments + right.nrSegments + 1
+ p.hasChildren = left.hasChildren
+ p.keys[left.nrSegments] = p.keys[0]
+ p.values[left.nrSegments] = p.values[0]
+ copy(p.keys[:left.nrSegments], left.keys[:left.nrSegments])
+ copy(p.values[:left.nrSegments], left.values[:left.nrSegments])
+ copy(p.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
+ copy(p.values[left.nrSegments+1:], right.values[:right.nrSegments])
+ if left.hasChildren {
+ copy(p.children[:left.nrSegments+1], left.children[:left.nrSegments+1])
+ copy(p.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
+ for i := 0; i < p.nrSegments+1; i++ {
+ p.children[i].parent = p
+ p.children[i].parentIndex = i
+ }
+ } else {
+ p.children[0] = nil
+ p.children[1] = nil
+ }
+ if gap.node == left {
+ return pmaGapIterator{p, gap.index}
+ }
+ if gap.node == right {
+ return pmaGapIterator{p, gap.index + left.nrSegments + 1}
+ }
+ return gap
+ }
+ // Merge n and either sibling, along with the segment separating the
+ // two, into whichever of the two nodes comes first. This is the
+ // reverse of the non-root splitting case in
+ // node.rebalanceBeforeInsert.
+ var left, right *pmanode
+ if n.parentIndex > 0 {
+ left = n.prevSibling()
+ right = n
+ } else {
+ left = n
+ right = n.nextSibling()
+ }
+
+ if gap.node == right {
+ gap = pmaGapIterator{left, gap.index + left.nrSegments + 1}
+ }
+ left.keys[left.nrSegments] = p.keys[left.parentIndex]
+ left.values[left.nrSegments] = p.values[left.parentIndex]
+ copy(left.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
+ copy(left.values[left.nrSegments+1:], right.values[:right.nrSegments])
+ if left.hasChildren {
+ copy(left.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
+ for i := left.nrSegments + 1; i < left.nrSegments+right.nrSegments+2; i++ {
+ left.children[i].parent = left
+ left.children[i].parentIndex = i
+ }
+ }
+ left.nrSegments += right.nrSegments + 1
+ copy(p.keys[left.parentIndex:], p.keys[left.parentIndex+1:p.nrSegments])
+ copy(p.values[left.parentIndex:], p.values[left.parentIndex+1:p.nrSegments])
+ pmaSetFunctions{}.ClearValue(&p.values[p.nrSegments-1])
+ copy(p.children[left.parentIndex+1:], p.children[left.parentIndex+2:p.nrSegments+1])
+ for i := 0; i < p.nrSegments; i++ {
+ p.children[i].parentIndex = i
+ }
+ p.children[p.nrSegments] = nil
+ p.nrSegments--
+
+ n = p
+ }
+}
+
+// A Iterator is conceptually one of:
+//
+// - A pointer to a segment in a set; or
+//
+// - A terminal iterator, which is a sentinel indicating that the end of
+// iteration has been reached.
+//
+// Iterators are copyable values and are meaningfully equality-comparable. The
+// zero value of Iterator is a terminal iterator.
+//
+// Unless otherwise specified, any mutation of a set invalidates all existing
+// iterators into the set.
+type pmaIterator struct {
+ // node is the node containing the iterated segment. If the iterator is
+ // terminal, node is nil.
+ node *pmanode
+
+ // index is the index of the segment in node.keys/values.
+ index int
+}
+
+// Ok returns true if the iterator is not terminal. All other methods are only
+// valid for non-terminal iterators.
+func (seg pmaIterator) Ok() bool {
+ return seg.node != nil
+}
+
+// Range returns the iterated segment's range key.
+func (seg pmaIterator) Range() __generics_imported0.AddrRange {
+ return seg.node.keys[seg.index]
+}
+
+// Start is equivalent to Range().Start, but should be preferred if only the
+// start of the range is needed.
+func (seg pmaIterator) Start() __generics_imported0.Addr {
+ return seg.node.keys[seg.index].Start
+}
+
+// End is equivalent to Range().End, but should be preferred if only the end of
+// the range is needed.
+func (seg pmaIterator) End() __generics_imported0.Addr {
+ return seg.node.keys[seg.index].End
+}
+
+// SetRangeUnchecked mutates the iterated segment's range key. This operation
+// does not invalidate any iterators.
+//
+// Preconditions:
+//
+// - r.Length() > 0.
+//
+// - The new range must not overlap an existing one: If seg.NextSegment().Ok(),
+// then r.end <= seg.NextSegment().Start(); if seg.PrevSegment().Ok(), then
+// r.start >= seg.PrevSegment().End().
+func (seg pmaIterator) SetRangeUnchecked(r __generics_imported0.AddrRange) {
+ seg.node.keys[seg.index] = r
+}
+
+// SetRange mutates the iterated segment's range key. If the new range would
+// cause the iterated segment to overlap another segment, or if the new range
+// is invalid, SetRange panics. This operation does not invalidate any
+// iterators.
+func (seg pmaIterator) SetRange(r __generics_imported0.AddrRange) {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ if prev := seg.PrevSegment(); prev.Ok() && r.Start < prev.End() {
+ panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, prev.Range()))
+ }
+ if next := seg.NextSegment(); next.Ok() && r.End > next.Start() {
+ panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, next.Range()))
+ }
+ seg.SetRangeUnchecked(r)
+}
+
+// SetStartUnchecked mutates the iterated segment's start. This operation does
+// not invalidate any iterators.
+//
+// Preconditions: The new start must be valid: start < seg.End(); if
+// seg.PrevSegment().Ok(), then start >= seg.PrevSegment().End().
+func (seg pmaIterator) SetStartUnchecked(start __generics_imported0.Addr) {
+ seg.node.keys[seg.index].Start = start
+}
+
+// SetStart mutates the iterated segment's start. If the new start value would
+// cause the iterated segment to overlap another segment, or would result in an
+// invalid range, SetStart panics. This operation does not invalidate any
+// iterators.
+func (seg pmaIterator) SetStart(start __generics_imported0.Addr) {
+ if start >= seg.End() {
+ panic(fmt.Sprintf("new start %v would invalidate segment range %v", start, seg.Range()))
+ }
+ if prev := seg.PrevSegment(); prev.Ok() && start < prev.End() {
+ panic(fmt.Sprintf("new start %v would cause segment range %v to overlap segment range %v", start, seg.Range(), prev.Range()))
+ }
+ seg.SetStartUnchecked(start)
+}
+
+// SetEndUnchecked mutates the iterated segment's end. This operation does not
+// invalidate any iterators.
+//
+// Preconditions: The new end must be valid: end > seg.Start(); if
+// seg.NextSegment().Ok(), then end <= seg.NextSegment().Start().
+func (seg pmaIterator) SetEndUnchecked(end __generics_imported0.Addr) {
+ seg.node.keys[seg.index].End = end
+}
+
+// SetEnd mutates the iterated segment's end. If the new end value would cause
+// the iterated segment to overlap another segment, or would result in an
+// invalid range, SetEnd panics. This operation does not invalidate any
+// iterators.
+func (seg pmaIterator) SetEnd(end __generics_imported0.Addr) {
+ if end <= seg.Start() {
+ panic(fmt.Sprintf("new end %v would invalidate segment range %v", end, seg.Range()))
+ }
+ if next := seg.NextSegment(); next.Ok() && end > next.Start() {
+ panic(fmt.Sprintf("new end %v would cause segment range %v to overlap segment range %v", end, seg.Range(), next.Range()))
+ }
+ seg.SetEndUnchecked(end)
+}
+
+// Value returns a copy of the iterated segment's value.
+func (seg pmaIterator) Value() pma {
+ return seg.node.values[seg.index]
+}
+
+// ValuePtr returns a pointer to the iterated segment's value. The pointer is
+// invalidated if the iterator is invalidated. This operation does not
+// invalidate any iterators.
+func (seg pmaIterator) ValuePtr() *pma {
+ return &seg.node.values[seg.index]
+}
+
+// SetValue mutates the iterated segment's value. This operation does not
+// invalidate any iterators.
+func (seg pmaIterator) SetValue(val pma) {
+ seg.node.values[seg.index] = val
+}
+
+// PrevSegment returns the iterated segment's predecessor. If there is no
+// preceding segment, PrevSegment returns a terminal iterator.
+func (seg pmaIterator) PrevSegment() pmaIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index].lastSegment()
+ }
+ if seg.index > 0 {
+ return pmaIterator{seg.node, seg.index - 1}
+ }
+ if seg.node.parent == nil {
+ return pmaIterator{}
+ }
+ return pmasegmentBeforePosition(seg.node.parent, seg.node.parentIndex)
+}
+
+// NextSegment returns the iterated segment's successor. If there is no
+// succeeding segment, NextSegment returns a terminal iterator.
+func (seg pmaIterator) NextSegment() pmaIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index+1].firstSegment()
+ }
+ if seg.index < seg.node.nrSegments-1 {
+ return pmaIterator{seg.node, seg.index + 1}
+ }
+ if seg.node.parent == nil {
+ return pmaIterator{}
+ }
+ return pmasegmentAfterPosition(seg.node.parent, seg.node.parentIndex)
+}
+
+// PrevGap returns the gap immediately before the iterated segment.
+func (seg pmaIterator) PrevGap() pmaGapIterator {
+ if seg.node.hasChildren {
+
+ return seg.node.children[seg.index].lastSegment().NextGap()
+ }
+ return pmaGapIterator{seg.node, seg.index}
+}
+
+// NextGap returns the gap immediately after the iterated segment.
+func (seg pmaIterator) NextGap() pmaGapIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index+1].firstSegment().PrevGap()
+ }
+ return pmaGapIterator{seg.node, seg.index + 1}
+}
+
+// PrevNonEmpty returns the iterated segment's predecessor if it is adjacent,
+// or the gap before the iterated segment otherwise. If seg.Start() ==
+// Functions.MinKey(), PrevNonEmpty will return two terminal iterators.
+// Otherwise, exactly one of the iterators returned by PrevNonEmpty will be
+// non-terminal.
+func (seg pmaIterator) PrevNonEmpty() (pmaIterator, pmaGapIterator) {
+ gap := seg.PrevGap()
+ if gap.Range().Length() != 0 {
+ return pmaIterator{}, gap
+ }
+ return gap.PrevSegment(), pmaGapIterator{}
+}
+
+// NextNonEmpty returns the iterated segment's successor if it is adjacent, or
+// the gap after the iterated segment otherwise. If seg.End() ==
+// Functions.MaxKey(), NextNonEmpty will return two terminal iterators.
+// Otherwise, exactly one of the iterators returned by NextNonEmpty will be
+// non-terminal.
+func (seg pmaIterator) NextNonEmpty() (pmaIterator, pmaGapIterator) {
+ gap := seg.NextGap()
+ if gap.Range().Length() != 0 {
+ return pmaIterator{}, gap
+ }
+ return gap.NextSegment(), pmaGapIterator{}
+}
+
+// A GapIterator is conceptually one of:
+//
+// - A pointer to a position between two segments, before the first segment, or
+// after the last segment in a set, called a *gap*; or
+//
+// - A terminal iterator, which is a sentinel indicating that the end of
+// iteration has been reached.
+//
+// Note that the gap between two adjacent segments exists (iterators to it are
+// non-terminal), but has a length of zero. GapIterator.IsEmpty returns true
+// for such gaps. An empty set contains a single gap, spanning the entire range
+// of the set's keys.
+//
+// GapIterators are copyable values and are meaningfully equality-comparable.
+// The zero value of GapIterator is a terminal iterator.
+//
+// Unless otherwise specified, any mutation of a set invalidates all existing
+// iterators into the set.
+type pmaGapIterator struct {
+ // The representation of a GapIterator is identical to that of an Iterator,
+ // except that index corresponds to positions between segments in the same
+ // way as for node.children (see comment for node.nrSegments).
+ node *pmanode
+ index int
+}
+
+// Ok returns true if the iterator is not terminal. All other methods are only
+// valid for non-terminal iterators.
+func (gap pmaGapIterator) Ok() bool {
+ return gap.node != nil
+}
+
+// Range returns the range spanned by the iterated gap.
+func (gap pmaGapIterator) Range() __generics_imported0.AddrRange {
+ return __generics_imported0.AddrRange{gap.Start(), gap.End()}
+}
+
+// Start is equivalent to Range().Start, but should be preferred if only the
+// start of the range is needed.
+func (gap pmaGapIterator) Start() __generics_imported0.Addr {
+ if ps := gap.PrevSegment(); ps.Ok() {
+ return ps.End()
+ }
+ return pmaSetFunctions{}.MinKey()
+}
+
+// End is equivalent to Range().End, but should be preferred if only the end of
+// the range is needed.
+func (gap pmaGapIterator) End() __generics_imported0.Addr {
+ if ns := gap.NextSegment(); ns.Ok() {
+ return ns.Start()
+ }
+ return pmaSetFunctions{}.MaxKey()
+}
+
+// IsEmpty returns true if the iterated gap is empty (that is, the "gap" is
+// between two adjacent segments.)
+func (gap pmaGapIterator) IsEmpty() bool {
+ return gap.Range().Length() == 0
+}
+
+// PrevSegment returns the segment immediately before the iterated gap. If no
+// such segment exists, PrevSegment returns a terminal iterator.
+func (gap pmaGapIterator) PrevSegment() pmaIterator {
+ return pmasegmentBeforePosition(gap.node, gap.index)
+}
+
+// NextSegment returns the segment immediately after the iterated gap. If no
+// such segment exists, NextSegment returns a terminal iterator.
+func (gap pmaGapIterator) NextSegment() pmaIterator {
+ return pmasegmentAfterPosition(gap.node, gap.index)
+}
+
+// PrevGap returns the iterated gap's predecessor. If no such gap exists,
+// PrevGap returns a terminal iterator.
+func (gap pmaGapIterator) PrevGap() pmaGapIterator {
+ seg := gap.PrevSegment()
+ if !seg.Ok() {
+ return pmaGapIterator{}
+ }
+ return seg.PrevGap()
+}
+
+// NextGap returns the iterated gap's successor. If no such gap exists, NextGap
+// returns a terminal iterator.
+func (gap pmaGapIterator) NextGap() pmaGapIterator {
+ seg := gap.NextSegment()
+ if !seg.Ok() {
+ return pmaGapIterator{}
+ }
+ return seg.NextGap()
+}
+
+// segmentBeforePosition returns the predecessor segment of the position given
+// by n.children[i], which may or may not contain a child. If no such segment
+// exists, segmentBeforePosition returns a terminal iterator.
+func pmasegmentBeforePosition(n *pmanode, i int) pmaIterator {
+ for i == 0 {
+ if n.parent == nil {
+ return pmaIterator{}
+ }
+ n, i = n.parent, n.parentIndex
+ }
+ return pmaIterator{n, i - 1}
+}
+
+// segmentAfterPosition returns the successor segment of the position given by
+// n.children[i], which may or may not contain a child. If no such segment
+// exists, segmentAfterPosition returns a terminal iterator.
+func pmasegmentAfterPosition(n *pmanode, i int) pmaIterator {
+ for i == n.nrSegments {
+ if n.parent == nil {
+ return pmaIterator{}
+ }
+ n, i = n.parent, n.parentIndex
+ }
+ return pmaIterator{n, i}
+}
+
+func pmazeroValueSlice(slice []pma) {
+
+ for i := range slice {
+ pmaSetFunctions{}.ClearValue(&slice[i])
+ }
+}
+
+func pmazeroNodeSlice(slice []*pmanode) {
+ for i := range slice {
+ slice[i] = nil
+ }
+}
+
+// String stringifies a Set for debugging.
+func (s *pmaSet) String() string {
+ return s.root.String()
+}
+
+// String stringifes a node (and all of its children) for debugging.
+func (n *pmanode) String() string {
+ var buf bytes.Buffer
+ n.writeDebugString(&buf, "")
+ return buf.String()
+}
+
+func (n *pmanode) writeDebugString(buf *bytes.Buffer, prefix string) {
+ if n.hasChildren != (n.nrSegments > 0 && n.children[0] != nil) {
+ buf.WriteString(prefix)
+ buf.WriteString(fmt.Sprintf("WARNING: inconsistent value of hasChildren: got %v, want %v\n", n.hasChildren, !n.hasChildren))
+ }
+ for i := 0; i < n.nrSegments; i++ {
+ if child := n.children[i]; child != nil {
+ cprefix := fmt.Sprintf("%s- % 3d ", prefix, i)
+ if child.parent != n || child.parentIndex != i {
+ buf.WriteString(cprefix)
+ buf.WriteString(fmt.Sprintf("WARNING: inconsistent linkage to parent: got (%p, %d), want (%p, %d)\n", child.parent, child.parentIndex, n, i))
+ }
+ child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i))
+ }
+ buf.WriteString(prefix)
+ buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i]))
+ }
+ if child := n.children[n.nrSegments]; child != nil {
+ child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments))
+ }
+}
+
+// SegmentDataSlices represents segments from a set as slices of start, end, and
+// values. SegmentDataSlices is primarily used as an intermediate representation
+// for save/restore and the layout here is optimized for that.
+//
+// +stateify savable
+type pmaSegmentDataSlices struct {
+ Start []__generics_imported0.Addr
+ End []__generics_imported0.Addr
+ Values []pma
+}
+
+// ExportSortedSlice returns a copy of all segments in the given set, in ascending
+// key order.
+func (s *pmaSet) ExportSortedSlices() *pmaSegmentDataSlices {
+ var sds pmaSegmentDataSlices
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ sds.Start = append(sds.Start, seg.Start())
+ sds.End = append(sds.End, seg.End())
+ sds.Values = append(sds.Values, seg.Value())
+ }
+ sds.Start = sds.Start[:len(sds.Start):len(sds.Start)]
+ sds.End = sds.End[:len(sds.End):len(sds.End)]
+ sds.Values = sds.Values[:len(sds.Values):len(sds.Values)]
+ return &sds
+}
+
+// ImportSortedSlice initializes the given set from the given slice.
+//
+// Preconditions: s must be empty. sds must represent a valid set (the segments
+// in sds must have valid lengths that do not overlap). The segments in sds
+// must be sorted in ascending key order.
+func (s *pmaSet) ImportSortedSlices(sds *pmaSegmentDataSlices) error {
+ if !s.IsEmpty() {
+ return fmt.Errorf("cannot import into non-empty set %v", s)
+ }
+ gap := s.FirstGap()
+ for i := range sds.Start {
+ r := __generics_imported0.AddrRange{sds.Start[i], sds.End[i]}
+ if !gap.Range().IsSupersetOf(r) {
+ return fmt.Errorf("segment overlaps a preceding segment or is incorrectly sorted: [%d, %d) => %v", sds.Start[i], sds.End[i], sds.Values[i])
+ }
+ gap = s.InsertWithoutMerging(gap, r, sds.Values[i]).NextGap()
+ }
+ return nil
+}
+func (s *pmaSet) saveRoot() *pmaSegmentDataSlices {
+ return s.ExportSortedSlices()
+}
+
+func (s *pmaSet) loadRoot(sds *pmaSegmentDataSlices) {
+ if err := s.ImportSortedSlices(sds); err != nil {
+ panic(err)
+ }
+}
diff --git a/pkg/sentry/mm/vma_set.go b/pkg/sentry/mm/vma_set.go
new file mode 100755
index 000000000..c042fe606
--- /dev/null
+++ b/pkg/sentry/mm/vma_set.go
@@ -0,0 +1,1274 @@
+package mm
+
+import (
+ __generics_imported0 "gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
+)
+
+import (
+ "bytes"
+ "fmt"
+)
+
+const (
+ // minDegree is the minimum degree of an internal node in a Set B-tree.
+ //
+ // - Any non-root node has at least minDegree-1 segments.
+ //
+ // - Any non-root internal (non-leaf) node has at least minDegree children.
+ //
+ // - The root node may have fewer than minDegree-1 segments, but it may
+ // only have 0 segments if the tree is empty.
+ //
+ // Our implementation requires minDegree >= 3. Higher values of minDegree
+ // usually improve performance, but increase memory usage for small sets.
+ vmaminDegree = 8
+
+ vmamaxDegree = 2 * vmaminDegree
+)
+
+// A Set is a mapping of segments with non-overlapping Range keys. The zero
+// value for a Set is an empty set. Set values are not safely movable nor
+// copyable. Set is thread-compatible.
+//
+// +stateify savable
+type vmaSet struct {
+ root vmanode `state:".(*vmaSegmentDataSlices)"`
+}
+
+// IsEmpty returns true if the set contains no segments.
+func (s *vmaSet) IsEmpty() bool {
+ return s.root.nrSegments == 0
+}
+
+// IsEmptyRange returns true iff no segments in the set overlap the given
+// range. This is semantically equivalent to s.SpanRange(r) == 0, but may be
+// more efficient.
+func (s *vmaSet) IsEmptyRange(r __generics_imported0.AddrRange) bool {
+ switch {
+ case r.Length() < 0:
+ panic(fmt.Sprintf("invalid range %v", r))
+ case r.Length() == 0:
+ return true
+ }
+ _, gap := s.Find(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ return r.End <= gap.End()
+}
+
+// Span returns the total size of all segments in the set.
+func (s *vmaSet) Span() __generics_imported0.Addr {
+ var sz __generics_imported0.Addr
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ sz += seg.Range().Length()
+ }
+ return sz
+}
+
+// SpanRange returns the total size of the intersection of segments in the set
+// with the given range.
+func (s *vmaSet) SpanRange(r __generics_imported0.AddrRange) __generics_imported0.Addr {
+ switch {
+ case r.Length() < 0:
+ panic(fmt.Sprintf("invalid range %v", r))
+ case r.Length() == 0:
+ return 0
+ }
+ var sz __generics_imported0.Addr
+ for seg := s.LowerBoundSegment(r.Start); seg.Ok() && seg.Start() < r.End; seg = seg.NextSegment() {
+ sz += seg.Range().Intersect(r).Length()
+ }
+ return sz
+}
+
+// FirstSegment returns the first segment in the set. If the set is empty,
+// FirstSegment returns a terminal iterator.
+func (s *vmaSet) FirstSegment() vmaIterator {
+ if s.root.nrSegments == 0 {
+ return vmaIterator{}
+ }
+ return s.root.firstSegment()
+}
+
+// LastSegment returns the last segment in the set. If the set is empty,
+// LastSegment returns a terminal iterator.
+func (s *vmaSet) LastSegment() vmaIterator {
+ if s.root.nrSegments == 0 {
+ return vmaIterator{}
+ }
+ return s.root.lastSegment()
+}
+
+// FirstGap returns the first gap in the set.
+func (s *vmaSet) FirstGap() vmaGapIterator {
+ n := &s.root
+ for n.hasChildren {
+ n = n.children[0]
+ }
+ return vmaGapIterator{n, 0}
+}
+
+// LastGap returns the last gap in the set.
+func (s *vmaSet) LastGap() vmaGapIterator {
+ n := &s.root
+ for n.hasChildren {
+ n = n.children[n.nrSegments]
+ }
+ return vmaGapIterator{n, n.nrSegments}
+}
+
+// Find returns the segment or gap whose range contains the given key. If a
+// segment is found, the returned Iterator is non-terminal and the
+// returned GapIterator is terminal. Otherwise, the returned Iterator is
+// terminal and the returned GapIterator is non-terminal.
+func (s *vmaSet) Find(key __generics_imported0.Addr) (vmaIterator, vmaGapIterator) {
+ n := &s.root
+ for {
+
+ lower := 0
+ upper := n.nrSegments
+ for lower < upper {
+ i := lower + (upper-lower)/2
+ if r := n.keys[i]; key < r.End {
+ if key >= r.Start {
+ return vmaIterator{n, i}, vmaGapIterator{}
+ }
+ upper = i
+ } else {
+ lower = i + 1
+ }
+ }
+ i := lower
+ if !n.hasChildren {
+ return vmaIterator{}, vmaGapIterator{n, i}
+ }
+ n = n.children[i]
+ }
+}
+
+// FindSegment returns the segment whose range contains the given key. If no
+// such segment exists, FindSegment returns a terminal iterator.
+func (s *vmaSet) FindSegment(key __generics_imported0.Addr) vmaIterator {
+ seg, _ := s.Find(key)
+ return seg
+}
+
+// LowerBoundSegment returns the segment with the lowest range that contains a
+// key greater than or equal to min. If no such segment exists,
+// LowerBoundSegment returns a terminal iterator.
+func (s *vmaSet) LowerBoundSegment(min __generics_imported0.Addr) vmaIterator {
+ seg, gap := s.Find(min)
+ if seg.Ok() {
+ return seg
+ }
+ return gap.NextSegment()
+}
+
+// UpperBoundSegment returns the segment with the highest range that contains a
+// key less than or equal to max. If no such segment exists, UpperBoundSegment
+// returns a terminal iterator.
+func (s *vmaSet) UpperBoundSegment(max __generics_imported0.Addr) vmaIterator {
+ seg, gap := s.Find(max)
+ if seg.Ok() {
+ return seg
+ }
+ return gap.PrevSegment()
+}
+
+// FindGap returns the gap containing the given key. If no such gap exists
+// (i.e. the set contains a segment containing that key), FindGap returns a
+// terminal iterator.
+func (s *vmaSet) FindGap(key __generics_imported0.Addr) vmaGapIterator {
+ _, gap := s.Find(key)
+ return gap
+}
+
+// LowerBoundGap returns the gap with the lowest range that is greater than or
+// equal to min.
+func (s *vmaSet) LowerBoundGap(min __generics_imported0.Addr) vmaGapIterator {
+ seg, gap := s.Find(min)
+ if gap.Ok() {
+ return gap
+ }
+ return seg.NextGap()
+}
+
+// UpperBoundGap returns the gap with the highest range that is less than or
+// equal to max.
+func (s *vmaSet) UpperBoundGap(max __generics_imported0.Addr) vmaGapIterator {
+ seg, gap := s.Find(max)
+ if gap.Ok() {
+ return gap
+ }
+ return seg.PrevGap()
+}
+
+// Add inserts the given segment into the set and returns true. If the new
+// segment can be merged with adjacent segments, Add will do so. If the new
+// segment would overlap an existing segment, Add returns false. If Add
+// succeeds, all existing iterators are invalidated.
+func (s *vmaSet) Add(r __generics_imported0.AddrRange, val vma) bool {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ gap := s.FindGap(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ if r.End > gap.End() {
+ return false
+ }
+ s.Insert(gap, r, val)
+ return true
+}
+
+// AddWithoutMerging inserts the given segment into the set and returns true.
+// If it would overlap an existing segment, AddWithoutMerging does nothing and
+// returns false. If AddWithoutMerging succeeds, all existing iterators are
+// invalidated.
+func (s *vmaSet) AddWithoutMerging(r __generics_imported0.AddrRange, val vma) bool {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ gap := s.FindGap(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ if r.End > gap.End() {
+ return false
+ }
+ s.InsertWithoutMergingUnchecked(gap, r, val)
+ return true
+}
+
+// Insert inserts the given segment into the given gap. If the new segment can
+// be merged with adjacent segments, Insert will do so. Insert returns an
+// iterator to the segment containing the inserted value (which may have been
+// merged with other values). All existing iterators (including gap, but not
+// including the returned iterator) are invalidated.
+//
+// If the gap cannot accommodate the segment, or if r is invalid, Insert panics.
+//
+// Insert is semantically equivalent to a InsertWithoutMerging followed by a
+// Merge, but may be more efficient. Note that there is no unchecked variant of
+// Insert since Insert must retrieve and inspect gap's predecessor and
+// successor segments regardless.
+func (s *vmaSet) Insert(gap vmaGapIterator, r __generics_imported0.AddrRange, val vma) vmaIterator {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ prev, next := gap.PrevSegment(), gap.NextSegment()
+ if prev.Ok() && prev.End() > r.Start {
+ panic(fmt.Sprintf("new segment %v overlaps predecessor %v", r, prev.Range()))
+ }
+ if next.Ok() && next.Start() < r.End {
+ panic(fmt.Sprintf("new segment %v overlaps successor %v", r, next.Range()))
+ }
+ if prev.Ok() && prev.End() == r.Start {
+ if mval, ok := (vmaSetFunctions{}).Merge(prev.Range(), prev.Value(), r, val); ok {
+ prev.SetEndUnchecked(r.End)
+ prev.SetValue(mval)
+ if next.Ok() && next.Start() == r.End {
+ val = mval
+ if mval, ok := (vmaSetFunctions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok {
+ prev.SetEndUnchecked(next.End())
+ prev.SetValue(mval)
+ return s.Remove(next).PrevSegment()
+ }
+ }
+ return prev
+ }
+ }
+ if next.Ok() && next.Start() == r.End {
+ if mval, ok := (vmaSetFunctions{}).Merge(r, val, next.Range(), next.Value()); ok {
+ next.SetStartUnchecked(r.Start)
+ next.SetValue(mval)
+ return next
+ }
+ }
+ return s.InsertWithoutMergingUnchecked(gap, r, val)
+}
+
+// InsertWithoutMerging inserts the given segment into the given gap and
+// returns an iterator to the inserted segment. All existing iterators
+// (including gap, but not including the returned iterator) are invalidated.
+//
+// If the gap cannot accommodate the segment, or if r is invalid,
+// InsertWithoutMerging panics.
+func (s *vmaSet) InsertWithoutMerging(gap vmaGapIterator, r __generics_imported0.AddrRange, val vma) vmaIterator {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ if gr := gap.Range(); !gr.IsSupersetOf(r) {
+ panic(fmt.Sprintf("cannot insert segment range %v into gap range %v", r, gr))
+ }
+ return s.InsertWithoutMergingUnchecked(gap, r, val)
+}
+
+// InsertWithoutMergingUnchecked inserts the given segment into the given gap
+// and returns an iterator to the inserted segment. All existing iterators
+// (including gap, but not including the returned iterator) are invalidated.
+//
+// Preconditions: r.Start >= gap.Start(); r.End <= gap.End().
+func (s *vmaSet) InsertWithoutMergingUnchecked(gap vmaGapIterator, r __generics_imported0.AddrRange, val vma) vmaIterator {
+ gap = gap.node.rebalanceBeforeInsert(gap)
+ copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments])
+ copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments])
+ gap.node.keys[gap.index] = r
+ gap.node.values[gap.index] = val
+ gap.node.nrSegments++
+ return vmaIterator{gap.node, gap.index}
+}
+
+// Remove removes the given segment and returns an iterator to the vacated gap.
+// All existing iterators (including seg, but not including the returned
+// iterator) are invalidated.
+func (s *vmaSet) Remove(seg vmaIterator) vmaGapIterator {
+
+ if seg.node.hasChildren {
+
+ victim := seg.PrevSegment()
+
+ seg.SetRangeUnchecked(victim.Range())
+ seg.SetValue(victim.Value())
+ return s.Remove(victim).NextGap()
+ }
+ copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments])
+ copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments])
+ vmaSetFunctions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1])
+ seg.node.nrSegments--
+ return seg.node.rebalanceAfterRemove(vmaGapIterator{seg.node, seg.index})
+}
+
+// RemoveAll removes all segments from the set. All existing iterators are
+// invalidated.
+func (s *vmaSet) RemoveAll() {
+ s.root = vmanode{}
+}
+
+// RemoveRange removes all segments in the given range. An iterator to the
+// newly formed gap is returned, and all existing iterators are invalidated.
+func (s *vmaSet) RemoveRange(r __generics_imported0.AddrRange) vmaGapIterator {
+ seg, gap := s.Find(r.Start)
+ if seg.Ok() {
+ seg = s.Isolate(seg, r)
+ gap = s.Remove(seg)
+ }
+ for seg = gap.NextSegment(); seg.Ok() && seg.Start() < r.End; seg = gap.NextSegment() {
+ seg = s.Isolate(seg, r)
+ gap = s.Remove(seg)
+ }
+ return gap
+}
+
+// Merge attempts to merge two neighboring segments. If successful, Merge
+// returns an iterator to the merged segment, and all existing iterators are
+// invalidated. Otherwise, Merge returns a terminal iterator.
+//
+// If first is not the predecessor of second, Merge panics.
+func (s *vmaSet) Merge(first, second vmaIterator) vmaIterator {
+ if first.NextSegment() != second {
+ panic(fmt.Sprintf("attempt to merge non-neighboring segments %v, %v", first.Range(), second.Range()))
+ }
+ return s.MergeUnchecked(first, second)
+}
+
+// MergeUnchecked attempts to merge two neighboring segments. If successful,
+// MergeUnchecked returns an iterator to the merged segment, and all existing
+// iterators are invalidated. Otherwise, MergeUnchecked returns a terminal
+// iterator.
+//
+// Precondition: first is the predecessor of second: first.NextSegment() ==
+// second, first == second.PrevSegment().
+func (s *vmaSet) MergeUnchecked(first, second vmaIterator) vmaIterator {
+ if first.End() == second.Start() {
+ if mval, ok := (vmaSetFunctions{}).Merge(first.Range(), first.Value(), second.Range(), second.Value()); ok {
+
+ first.SetEndUnchecked(second.End())
+ first.SetValue(mval)
+ return s.Remove(second).PrevSegment()
+ }
+ }
+ return vmaIterator{}
+}
+
+// MergeAll attempts to merge all adjacent segments in the set. All existing
+// iterators are invalidated.
+func (s *vmaSet) MergeAll() {
+ seg := s.FirstSegment()
+ if !seg.Ok() {
+ return
+ }
+ next := seg.NextSegment()
+ for next.Ok() {
+ if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
+ seg, next = mseg, mseg.NextSegment()
+ } else {
+ seg, next = next, next.NextSegment()
+ }
+ }
+}
+
+// MergeRange attempts to merge all adjacent segments that contain a key in the
+// specific range. All existing iterators are invalidated.
+func (s *vmaSet) MergeRange(r __generics_imported0.AddrRange) {
+ seg := s.LowerBoundSegment(r.Start)
+ if !seg.Ok() {
+ return
+ }
+ next := seg.NextSegment()
+ for next.Ok() && next.Range().Start < r.End {
+ if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
+ seg, next = mseg, mseg.NextSegment()
+ } else {
+ seg, next = next, next.NextSegment()
+ }
+ }
+}
+
+// MergeAdjacent attempts to merge the segment containing r.Start with its
+// predecessor, and the segment containing r.End-1 with its successor.
+func (s *vmaSet) MergeAdjacent(r __generics_imported0.AddrRange) {
+ first := s.FindSegment(r.Start)
+ if first.Ok() {
+ if prev := first.PrevSegment(); prev.Ok() {
+ s.Merge(prev, first)
+ }
+ }
+ last := s.FindSegment(r.End - 1)
+ if last.Ok() {
+ if next := last.NextSegment(); next.Ok() {
+ s.Merge(last, next)
+ }
+ }
+}
+
+// Split splits the given segment at the given key and returns iterators to the
+// two resulting segments. All existing iterators (including seg, but not
+// including the returned iterators) are invalidated.
+//
+// If the segment cannot be split at split (because split is at the start or
+// end of the segment's range, so splitting would produce a segment with zero
+// length, or because split falls outside the segment's range altogether),
+// Split panics.
+func (s *vmaSet) Split(seg vmaIterator, split __generics_imported0.Addr) (vmaIterator, vmaIterator) {
+ if !seg.Range().CanSplitAt(split) {
+ panic(fmt.Sprintf("can't split %v at %v", seg.Range(), split))
+ }
+ return s.SplitUnchecked(seg, split)
+}
+
+// SplitUnchecked splits the given segment at the given key and returns
+// iterators to the two resulting segments. All existing iterators (including
+// seg, but not including the returned iterators) are invalidated.
+//
+// Preconditions: seg.Start() < key < seg.End().
+func (s *vmaSet) SplitUnchecked(seg vmaIterator, split __generics_imported0.Addr) (vmaIterator, vmaIterator) {
+ val1, val2 := (vmaSetFunctions{}).Split(seg.Range(), seg.Value(), split)
+ end2 := seg.End()
+ seg.SetEndUnchecked(split)
+ seg.SetValue(val1)
+ seg2 := s.InsertWithoutMergingUnchecked(seg.NextGap(), __generics_imported0.AddrRange{split, end2}, val2)
+
+ return seg2.PrevSegment(), seg2
+}
+
+// SplitAt splits the segment straddling split, if one exists. SplitAt returns
+// true if a segment was split and false otherwise. If SplitAt splits a
+// segment, all existing iterators are invalidated.
+func (s *vmaSet) SplitAt(split __generics_imported0.Addr) bool {
+ if seg := s.FindSegment(split); seg.Ok() && seg.Range().CanSplitAt(split) {
+ s.SplitUnchecked(seg, split)
+ return true
+ }
+ return false
+}
+
+// Isolate ensures that the given segment's range does not escape r by
+// splitting at r.Start and r.End if necessary, and returns an updated iterator
+// to the bounded segment. All existing iterators (including seg, but not
+// including the returned iterators) are invalidated.
+func (s *vmaSet) Isolate(seg vmaIterator, r __generics_imported0.AddrRange) vmaIterator {
+ if seg.Range().CanSplitAt(r.Start) {
+ _, seg = s.SplitUnchecked(seg, r.Start)
+ }
+ if seg.Range().CanSplitAt(r.End) {
+ seg, _ = s.SplitUnchecked(seg, r.End)
+ }
+ return seg
+}
+
+// ApplyContiguous applies a function to a contiguous range of segments,
+// splitting if necessary. The function is applied until the first gap is
+// encountered, at which point the gap is returned. If the function is applied
+// across the entire range, a terminal gap is returned. All existing iterators
+// are invalidated.
+//
+// N.B. The Iterator must not be invalidated by the function.
+func (s *vmaSet) ApplyContiguous(r __generics_imported0.AddrRange, fn func(seg vmaIterator)) vmaGapIterator {
+ seg, gap := s.Find(r.Start)
+ if !seg.Ok() {
+ return gap
+ }
+ for {
+ seg = s.Isolate(seg, r)
+ fn(seg)
+ if seg.End() >= r.End {
+ return vmaGapIterator{}
+ }
+ gap = seg.NextGap()
+ if !gap.IsEmpty() {
+ return gap
+ }
+ seg = gap.NextSegment()
+ if !seg.Ok() {
+
+ return vmaGapIterator{}
+ }
+ }
+}
+
+// +stateify savable
+type vmanode struct {
+ // An internal binary tree node looks like:
+ //
+ // K
+ // / \
+ // Cl Cr
+ //
+ // where all keys in the subtree rooted by Cl (the left subtree) are less
+ // than K (the key of the parent node), and all keys in the subtree rooted
+ // by Cr (the right subtree) are greater than K.
+ //
+ // An internal B-tree node's indexes work out to look like:
+ //
+ // K0 K1 K2 ... Kn-1
+ // / \/ \/ \ ... / \
+ // C0 C1 C2 C3 ... Cn-1 Cn
+ //
+ // where n is nrSegments.
+ nrSegments int
+
+ // parent is a pointer to this node's parent. If this node is root, parent
+ // is nil.
+ parent *vmanode
+
+ // parentIndex is the index of this node in parent.children.
+ parentIndex int
+
+ // Flag for internal nodes that is technically redundant with "children[0]
+ // != nil", but is stored in the first cache line. "hasChildren" rather
+ // than "isLeaf" because false must be the correct value for an empty root.
+ hasChildren bool
+
+ // Nodes store keys and values in separate arrays to maximize locality in
+ // the common case (scanning keys for lookup).
+ keys [vmamaxDegree - 1]__generics_imported0.AddrRange
+ values [vmamaxDegree - 1]vma
+ children [vmamaxDegree]*vmanode
+}
+
+// firstSegment returns the first segment in the subtree rooted by n.
+//
+// Preconditions: n.nrSegments != 0.
+func (n *vmanode) firstSegment() vmaIterator {
+ for n.hasChildren {
+ n = n.children[0]
+ }
+ return vmaIterator{n, 0}
+}
+
+// lastSegment returns the last segment in the subtree rooted by n.
+//
+// Preconditions: n.nrSegments != 0.
+func (n *vmanode) lastSegment() vmaIterator {
+ for n.hasChildren {
+ n = n.children[n.nrSegments]
+ }
+ return vmaIterator{n, n.nrSegments - 1}
+}
+
+func (n *vmanode) prevSibling() *vmanode {
+ if n.parent == nil || n.parentIndex == 0 {
+ return nil
+ }
+ return n.parent.children[n.parentIndex-1]
+}
+
+func (n *vmanode) nextSibling() *vmanode {
+ if n.parent == nil || n.parentIndex == n.parent.nrSegments {
+ return nil
+ }
+ return n.parent.children[n.parentIndex+1]
+}
+
+// rebalanceBeforeInsert splits n and its ancestors if they are full, as
+// required for insertion, and returns an updated iterator to the position
+// represented by gap.
+func (n *vmanode) rebalanceBeforeInsert(gap vmaGapIterator) vmaGapIterator {
+ if n.parent != nil {
+ gap = n.parent.rebalanceBeforeInsert(gap)
+ }
+ if n.nrSegments < vmamaxDegree-1 {
+ return gap
+ }
+ if n.parent == nil {
+
+ left := &vmanode{
+ nrSegments: vmaminDegree - 1,
+ parent: n,
+ parentIndex: 0,
+ hasChildren: n.hasChildren,
+ }
+ right := &vmanode{
+ nrSegments: vmaminDegree - 1,
+ parent: n,
+ parentIndex: 1,
+ hasChildren: n.hasChildren,
+ }
+ copy(left.keys[:vmaminDegree-1], n.keys[:vmaminDegree-1])
+ copy(left.values[:vmaminDegree-1], n.values[:vmaminDegree-1])
+ copy(right.keys[:vmaminDegree-1], n.keys[vmaminDegree:])
+ copy(right.values[:vmaminDegree-1], n.values[vmaminDegree:])
+ n.keys[0], n.values[0] = n.keys[vmaminDegree-1], n.values[vmaminDegree-1]
+ vmazeroValueSlice(n.values[1:])
+ if n.hasChildren {
+ copy(left.children[:vmaminDegree], n.children[:vmaminDegree])
+ copy(right.children[:vmaminDegree], n.children[vmaminDegree:])
+ vmazeroNodeSlice(n.children[2:])
+ for i := 0; i < vmaminDegree; i++ {
+ left.children[i].parent = left
+ left.children[i].parentIndex = i
+ right.children[i].parent = right
+ right.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments = 1
+ n.hasChildren = true
+ n.children[0] = left
+ n.children[1] = right
+ if gap.node != n {
+ return gap
+ }
+ if gap.index < vmaminDegree {
+ return vmaGapIterator{left, gap.index}
+ }
+ return vmaGapIterator{right, gap.index - vmaminDegree}
+ }
+
+ copy(n.parent.keys[n.parentIndex+1:], n.parent.keys[n.parentIndex:n.parent.nrSegments])
+ copy(n.parent.values[n.parentIndex+1:], n.parent.values[n.parentIndex:n.parent.nrSegments])
+ n.parent.keys[n.parentIndex], n.parent.values[n.parentIndex] = n.keys[vmaminDegree-1], n.values[vmaminDegree-1]
+ copy(n.parent.children[n.parentIndex+2:], n.parent.children[n.parentIndex+1:n.parent.nrSegments+1])
+ for i := n.parentIndex + 2; i < n.parent.nrSegments+2; i++ {
+ n.parent.children[i].parentIndex = i
+ }
+ sibling := &vmanode{
+ nrSegments: vmaminDegree - 1,
+ parent: n.parent,
+ parentIndex: n.parentIndex + 1,
+ hasChildren: n.hasChildren,
+ }
+ n.parent.children[n.parentIndex+1] = sibling
+ n.parent.nrSegments++
+ copy(sibling.keys[:vmaminDegree-1], n.keys[vmaminDegree:])
+ copy(sibling.values[:vmaminDegree-1], n.values[vmaminDegree:])
+ vmazeroValueSlice(n.values[vmaminDegree-1:])
+ if n.hasChildren {
+ copy(sibling.children[:vmaminDegree], n.children[vmaminDegree:])
+ vmazeroNodeSlice(n.children[vmaminDegree:])
+ for i := 0; i < vmaminDegree; i++ {
+ sibling.children[i].parent = sibling
+ sibling.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments = vmaminDegree - 1
+
+ if gap.node != n {
+ return gap
+ }
+ if gap.index < vmaminDegree {
+ return gap
+ }
+ return vmaGapIterator{sibling, gap.index - vmaminDegree}
+}
+
+// rebalanceAfterRemove "unsplits" n and its ancestors if they are deficient
+// (contain fewer segments than required by B-tree invariants), as required for
+// removal, and returns an updated iterator to the position represented by gap.
+//
+// Precondition: n is the only node in the tree that may currently violate a
+// B-tree invariant.
+func (n *vmanode) rebalanceAfterRemove(gap vmaGapIterator) vmaGapIterator {
+ for {
+ if n.nrSegments >= vmaminDegree-1 {
+ return gap
+ }
+ if n.parent == nil {
+
+ return gap
+ }
+
+ if sibling := n.prevSibling(); sibling != nil && sibling.nrSegments >= vmaminDegree {
+ copy(n.keys[1:], n.keys[:n.nrSegments])
+ copy(n.values[1:], n.values[:n.nrSegments])
+ n.keys[0] = n.parent.keys[n.parentIndex-1]
+ n.values[0] = n.parent.values[n.parentIndex-1]
+ n.parent.keys[n.parentIndex-1] = sibling.keys[sibling.nrSegments-1]
+ n.parent.values[n.parentIndex-1] = sibling.values[sibling.nrSegments-1]
+ vmaSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
+ if n.hasChildren {
+ copy(n.children[1:], n.children[:n.nrSegments+1])
+ n.children[0] = sibling.children[sibling.nrSegments]
+ sibling.children[sibling.nrSegments] = nil
+ n.children[0].parent = n
+ n.children[0].parentIndex = 0
+ for i := 1; i < n.nrSegments+2; i++ {
+ n.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments++
+ sibling.nrSegments--
+ if gap.node == sibling && gap.index == sibling.nrSegments {
+ return vmaGapIterator{n, 0}
+ }
+ if gap.node == n {
+ return vmaGapIterator{n, gap.index + 1}
+ }
+ return gap
+ }
+ if sibling := n.nextSibling(); sibling != nil && sibling.nrSegments >= vmaminDegree {
+ n.keys[n.nrSegments] = n.parent.keys[n.parentIndex]
+ n.values[n.nrSegments] = n.parent.values[n.parentIndex]
+ n.parent.keys[n.parentIndex] = sibling.keys[0]
+ n.parent.values[n.parentIndex] = sibling.values[0]
+ copy(sibling.keys[:sibling.nrSegments-1], sibling.keys[1:])
+ copy(sibling.values[:sibling.nrSegments-1], sibling.values[1:])
+ vmaSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
+ if n.hasChildren {
+ n.children[n.nrSegments+1] = sibling.children[0]
+ copy(sibling.children[:sibling.nrSegments], sibling.children[1:])
+ sibling.children[sibling.nrSegments] = nil
+ n.children[n.nrSegments+1].parent = n
+ n.children[n.nrSegments+1].parentIndex = n.nrSegments + 1
+ for i := 0; i < sibling.nrSegments; i++ {
+ sibling.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments++
+ sibling.nrSegments--
+ if gap.node == sibling {
+ if gap.index == 0 {
+ return vmaGapIterator{n, n.nrSegments}
+ }
+ return vmaGapIterator{sibling, gap.index - 1}
+ }
+ return gap
+ }
+
+ p := n.parent
+ if p.nrSegments == 1 {
+
+ left, right := p.children[0], p.children[1]
+ p.nrSegments = left.nrSegments + right.nrSegments + 1
+ p.hasChildren = left.hasChildren
+ p.keys[left.nrSegments] = p.keys[0]
+ p.values[left.nrSegments] = p.values[0]
+ copy(p.keys[:left.nrSegments], left.keys[:left.nrSegments])
+ copy(p.values[:left.nrSegments], left.values[:left.nrSegments])
+ copy(p.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
+ copy(p.values[left.nrSegments+1:], right.values[:right.nrSegments])
+ if left.hasChildren {
+ copy(p.children[:left.nrSegments+1], left.children[:left.nrSegments+1])
+ copy(p.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
+ for i := 0; i < p.nrSegments+1; i++ {
+ p.children[i].parent = p
+ p.children[i].parentIndex = i
+ }
+ } else {
+ p.children[0] = nil
+ p.children[1] = nil
+ }
+ if gap.node == left {
+ return vmaGapIterator{p, gap.index}
+ }
+ if gap.node == right {
+ return vmaGapIterator{p, gap.index + left.nrSegments + 1}
+ }
+ return gap
+ }
+ // Merge n and either sibling, along with the segment separating the
+ // two, into whichever of the two nodes comes first. This is the
+ // reverse of the non-root splitting case in
+ // node.rebalanceBeforeInsert.
+ var left, right *vmanode
+ if n.parentIndex > 0 {
+ left = n.prevSibling()
+ right = n
+ } else {
+ left = n
+ right = n.nextSibling()
+ }
+
+ if gap.node == right {
+ gap = vmaGapIterator{left, gap.index + left.nrSegments + 1}
+ }
+ left.keys[left.nrSegments] = p.keys[left.parentIndex]
+ left.values[left.nrSegments] = p.values[left.parentIndex]
+ copy(left.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
+ copy(left.values[left.nrSegments+1:], right.values[:right.nrSegments])
+ if left.hasChildren {
+ copy(left.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
+ for i := left.nrSegments + 1; i < left.nrSegments+right.nrSegments+2; i++ {
+ left.children[i].parent = left
+ left.children[i].parentIndex = i
+ }
+ }
+ left.nrSegments += right.nrSegments + 1
+ copy(p.keys[left.parentIndex:], p.keys[left.parentIndex+1:p.nrSegments])
+ copy(p.values[left.parentIndex:], p.values[left.parentIndex+1:p.nrSegments])
+ vmaSetFunctions{}.ClearValue(&p.values[p.nrSegments-1])
+ copy(p.children[left.parentIndex+1:], p.children[left.parentIndex+2:p.nrSegments+1])
+ for i := 0; i < p.nrSegments; i++ {
+ p.children[i].parentIndex = i
+ }
+ p.children[p.nrSegments] = nil
+ p.nrSegments--
+
+ n = p
+ }
+}
+
+// A Iterator is conceptually one of:
+//
+// - A pointer to a segment in a set; or
+//
+// - A terminal iterator, which is a sentinel indicating that the end of
+// iteration has been reached.
+//
+// Iterators are copyable values and are meaningfully equality-comparable. The
+// zero value of Iterator is a terminal iterator.
+//
+// Unless otherwise specified, any mutation of a set invalidates all existing
+// iterators into the set.
+type vmaIterator struct {
+ // node is the node containing the iterated segment. If the iterator is
+ // terminal, node is nil.
+ node *vmanode
+
+ // index is the index of the segment in node.keys/values.
+ index int
+}
+
+// Ok returns true if the iterator is not terminal. All other methods are only
+// valid for non-terminal iterators.
+func (seg vmaIterator) Ok() bool {
+ return seg.node != nil
+}
+
+// Range returns the iterated segment's range key.
+func (seg vmaIterator) Range() __generics_imported0.AddrRange {
+ return seg.node.keys[seg.index]
+}
+
+// Start is equivalent to Range().Start, but should be preferred if only the
+// start of the range is needed.
+func (seg vmaIterator) Start() __generics_imported0.Addr {
+ return seg.node.keys[seg.index].Start
+}
+
+// End is equivalent to Range().End, but should be preferred if only the end of
+// the range is needed.
+func (seg vmaIterator) End() __generics_imported0.Addr {
+ return seg.node.keys[seg.index].End
+}
+
+// SetRangeUnchecked mutates the iterated segment's range key. This operation
+// does not invalidate any iterators.
+//
+// Preconditions:
+//
+// - r.Length() > 0.
+//
+// - The new range must not overlap an existing one: If seg.NextSegment().Ok(),
+// then r.end <= seg.NextSegment().Start(); if seg.PrevSegment().Ok(), then
+// r.start >= seg.PrevSegment().End().
+func (seg vmaIterator) SetRangeUnchecked(r __generics_imported0.AddrRange) {
+ seg.node.keys[seg.index] = r
+}
+
+// SetRange mutates the iterated segment's range key. If the new range would
+// cause the iterated segment to overlap another segment, or if the new range
+// is invalid, SetRange panics. This operation does not invalidate any
+// iterators.
+func (seg vmaIterator) SetRange(r __generics_imported0.AddrRange) {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ if prev := seg.PrevSegment(); prev.Ok() && r.Start < prev.End() {
+ panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, prev.Range()))
+ }
+ if next := seg.NextSegment(); next.Ok() && r.End > next.Start() {
+ panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, next.Range()))
+ }
+ seg.SetRangeUnchecked(r)
+}
+
+// SetStartUnchecked mutates the iterated segment's start. This operation does
+// not invalidate any iterators.
+//
+// Preconditions: The new start must be valid: start < seg.End(); if
+// seg.PrevSegment().Ok(), then start >= seg.PrevSegment().End().
+func (seg vmaIterator) SetStartUnchecked(start __generics_imported0.Addr) {
+ seg.node.keys[seg.index].Start = start
+}
+
+// SetStart mutates the iterated segment's start. If the new start value would
+// cause the iterated segment to overlap another segment, or would result in an
+// invalid range, SetStart panics. This operation does not invalidate any
+// iterators.
+func (seg vmaIterator) SetStart(start __generics_imported0.Addr) {
+ if start >= seg.End() {
+ panic(fmt.Sprintf("new start %v would invalidate segment range %v", start, seg.Range()))
+ }
+ if prev := seg.PrevSegment(); prev.Ok() && start < prev.End() {
+ panic(fmt.Sprintf("new start %v would cause segment range %v to overlap segment range %v", start, seg.Range(), prev.Range()))
+ }
+ seg.SetStartUnchecked(start)
+}
+
+// SetEndUnchecked mutates the iterated segment's end. This operation does not
+// invalidate any iterators.
+//
+// Preconditions: The new end must be valid: end > seg.Start(); if
+// seg.NextSegment().Ok(), then end <= seg.NextSegment().Start().
+func (seg vmaIterator) SetEndUnchecked(end __generics_imported0.Addr) {
+ seg.node.keys[seg.index].End = end
+}
+
+// SetEnd mutates the iterated segment's end. If the new end value would cause
+// the iterated segment to overlap another segment, or would result in an
+// invalid range, SetEnd panics. This operation does not invalidate any
+// iterators.
+func (seg vmaIterator) SetEnd(end __generics_imported0.Addr) {
+ if end <= seg.Start() {
+ panic(fmt.Sprintf("new end %v would invalidate segment range %v", end, seg.Range()))
+ }
+ if next := seg.NextSegment(); next.Ok() && end > next.Start() {
+ panic(fmt.Sprintf("new end %v would cause segment range %v to overlap segment range %v", end, seg.Range(), next.Range()))
+ }
+ seg.SetEndUnchecked(end)
+}
+
+// Value returns a copy of the iterated segment's value.
+func (seg vmaIterator) Value() vma {
+ return seg.node.values[seg.index]
+}
+
+// ValuePtr returns a pointer to the iterated segment's value. The pointer is
+// invalidated if the iterator is invalidated. This operation does not
+// invalidate any iterators.
+func (seg vmaIterator) ValuePtr() *vma {
+ return &seg.node.values[seg.index]
+}
+
+// SetValue mutates the iterated segment's value. This operation does not
+// invalidate any iterators.
+func (seg vmaIterator) SetValue(val vma) {
+ seg.node.values[seg.index] = val
+}
+
+// PrevSegment returns the iterated segment's predecessor. If there is no
+// preceding segment, PrevSegment returns a terminal iterator.
+func (seg vmaIterator) PrevSegment() vmaIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index].lastSegment()
+ }
+ if seg.index > 0 {
+ return vmaIterator{seg.node, seg.index - 1}
+ }
+ if seg.node.parent == nil {
+ return vmaIterator{}
+ }
+ return vmasegmentBeforePosition(seg.node.parent, seg.node.parentIndex)
+}
+
+// NextSegment returns the iterated segment's successor. If there is no
+// succeeding segment, NextSegment returns a terminal iterator.
+func (seg vmaIterator) NextSegment() vmaIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index+1].firstSegment()
+ }
+ if seg.index < seg.node.nrSegments-1 {
+ return vmaIterator{seg.node, seg.index + 1}
+ }
+ if seg.node.parent == nil {
+ return vmaIterator{}
+ }
+ return vmasegmentAfterPosition(seg.node.parent, seg.node.parentIndex)
+}
+
+// PrevGap returns the gap immediately before the iterated segment.
+func (seg vmaIterator) PrevGap() vmaGapIterator {
+ if seg.node.hasChildren {
+
+ return seg.node.children[seg.index].lastSegment().NextGap()
+ }
+ return vmaGapIterator{seg.node, seg.index}
+}
+
+// NextGap returns the gap immediately after the iterated segment.
+func (seg vmaIterator) NextGap() vmaGapIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index+1].firstSegment().PrevGap()
+ }
+ return vmaGapIterator{seg.node, seg.index + 1}
+}
+
+// PrevNonEmpty returns the iterated segment's predecessor if it is adjacent,
+// or the gap before the iterated segment otherwise. If seg.Start() ==
+// Functions.MinKey(), PrevNonEmpty will return two terminal iterators.
+// Otherwise, exactly one of the iterators returned by PrevNonEmpty will be
+// non-terminal.
+func (seg vmaIterator) PrevNonEmpty() (vmaIterator, vmaGapIterator) {
+ gap := seg.PrevGap()
+ if gap.Range().Length() != 0 {
+ return vmaIterator{}, gap
+ }
+ return gap.PrevSegment(), vmaGapIterator{}
+}
+
+// NextNonEmpty returns the iterated segment's successor if it is adjacent, or
+// the gap after the iterated segment otherwise. If seg.End() ==
+// Functions.MaxKey(), NextNonEmpty will return two terminal iterators.
+// Otherwise, exactly one of the iterators returned by NextNonEmpty will be
+// non-terminal.
+func (seg vmaIterator) NextNonEmpty() (vmaIterator, vmaGapIterator) {
+ gap := seg.NextGap()
+ if gap.Range().Length() != 0 {
+ return vmaIterator{}, gap
+ }
+ return gap.NextSegment(), vmaGapIterator{}
+}
+
+// A GapIterator is conceptually one of:
+//
+// - A pointer to a position between two segments, before the first segment, or
+// after the last segment in a set, called a *gap*; or
+//
+// - A terminal iterator, which is a sentinel indicating that the end of
+// iteration has been reached.
+//
+// Note that the gap between two adjacent segments exists (iterators to it are
+// non-terminal), but has a length of zero. GapIterator.IsEmpty returns true
+// for such gaps. An empty set contains a single gap, spanning the entire range
+// of the set's keys.
+//
+// GapIterators are copyable values and are meaningfully equality-comparable.
+// The zero value of GapIterator is a terminal iterator.
+//
+// Unless otherwise specified, any mutation of a set invalidates all existing
+// iterators into the set.
+type vmaGapIterator struct {
+ // The representation of a GapIterator is identical to that of an Iterator,
+ // except that index corresponds to positions between segments in the same
+ // way as for node.children (see comment for node.nrSegments).
+ node *vmanode
+ index int
+}
+
+// Ok returns true if the iterator is not terminal. All other methods are only
+// valid for non-terminal iterators.
+func (gap vmaGapIterator) Ok() bool {
+ return gap.node != nil
+}
+
+// Range returns the range spanned by the iterated gap.
+func (gap vmaGapIterator) Range() __generics_imported0.AddrRange {
+ return __generics_imported0.AddrRange{gap.Start(), gap.End()}
+}
+
+// Start is equivalent to Range().Start, but should be preferred if only the
+// start of the range is needed.
+func (gap vmaGapIterator) Start() __generics_imported0.Addr {
+ if ps := gap.PrevSegment(); ps.Ok() {
+ return ps.End()
+ }
+ return vmaSetFunctions{}.MinKey()
+}
+
+// End is equivalent to Range().End, but should be preferred if only the end of
+// the range is needed.
+func (gap vmaGapIterator) End() __generics_imported0.Addr {
+ if ns := gap.NextSegment(); ns.Ok() {
+ return ns.Start()
+ }
+ return vmaSetFunctions{}.MaxKey()
+}
+
+// IsEmpty returns true if the iterated gap is empty (that is, the "gap" is
+// between two adjacent segments.)
+func (gap vmaGapIterator) IsEmpty() bool {
+ return gap.Range().Length() == 0
+}
+
+// PrevSegment returns the segment immediately before the iterated gap. If no
+// such segment exists, PrevSegment returns a terminal iterator.
+func (gap vmaGapIterator) PrevSegment() vmaIterator {
+ return vmasegmentBeforePosition(gap.node, gap.index)
+}
+
+// NextSegment returns the segment immediately after the iterated gap. If no
+// such segment exists, NextSegment returns a terminal iterator.
+func (gap vmaGapIterator) NextSegment() vmaIterator {
+ return vmasegmentAfterPosition(gap.node, gap.index)
+}
+
+// PrevGap returns the iterated gap's predecessor. If no such gap exists,
+// PrevGap returns a terminal iterator.
+func (gap vmaGapIterator) PrevGap() vmaGapIterator {
+ seg := gap.PrevSegment()
+ if !seg.Ok() {
+ return vmaGapIterator{}
+ }
+ return seg.PrevGap()
+}
+
+// NextGap returns the iterated gap's successor. If no such gap exists, NextGap
+// returns a terminal iterator.
+func (gap vmaGapIterator) NextGap() vmaGapIterator {
+ seg := gap.NextSegment()
+ if !seg.Ok() {
+ return vmaGapIterator{}
+ }
+ return seg.NextGap()
+}
+
+// segmentBeforePosition returns the predecessor segment of the position given
+// by n.children[i], which may or may not contain a child. If no such segment
+// exists, segmentBeforePosition returns a terminal iterator.
+func vmasegmentBeforePosition(n *vmanode, i int) vmaIterator {
+ for i == 0 {
+ if n.parent == nil {
+ return vmaIterator{}
+ }
+ n, i = n.parent, n.parentIndex
+ }
+ return vmaIterator{n, i - 1}
+}
+
+// segmentAfterPosition returns the successor segment of the position given by
+// n.children[i], which may or may not contain a child. If no such segment
+// exists, segmentAfterPosition returns a terminal iterator.
+func vmasegmentAfterPosition(n *vmanode, i int) vmaIterator {
+ for i == n.nrSegments {
+ if n.parent == nil {
+ return vmaIterator{}
+ }
+ n, i = n.parent, n.parentIndex
+ }
+ return vmaIterator{n, i}
+}
+
+func vmazeroValueSlice(slice []vma) {
+
+ for i := range slice {
+ vmaSetFunctions{}.ClearValue(&slice[i])
+ }
+}
+
+func vmazeroNodeSlice(slice []*vmanode) {
+ for i := range slice {
+ slice[i] = nil
+ }
+}
+
+// String stringifies a Set for debugging.
+func (s *vmaSet) String() string {
+ return s.root.String()
+}
+
+// String stringifes a node (and all of its children) for debugging.
+func (n *vmanode) String() string {
+ var buf bytes.Buffer
+ n.writeDebugString(&buf, "")
+ return buf.String()
+}
+
+func (n *vmanode) writeDebugString(buf *bytes.Buffer, prefix string) {
+ if n.hasChildren != (n.nrSegments > 0 && n.children[0] != nil) {
+ buf.WriteString(prefix)
+ buf.WriteString(fmt.Sprintf("WARNING: inconsistent value of hasChildren: got %v, want %v\n", n.hasChildren, !n.hasChildren))
+ }
+ for i := 0; i < n.nrSegments; i++ {
+ if child := n.children[i]; child != nil {
+ cprefix := fmt.Sprintf("%s- % 3d ", prefix, i)
+ if child.parent != n || child.parentIndex != i {
+ buf.WriteString(cprefix)
+ buf.WriteString(fmt.Sprintf("WARNING: inconsistent linkage to parent: got (%p, %d), want (%p, %d)\n", child.parent, child.parentIndex, n, i))
+ }
+ child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i))
+ }
+ buf.WriteString(prefix)
+ buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i]))
+ }
+ if child := n.children[n.nrSegments]; child != nil {
+ child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments))
+ }
+}
+
+// SegmentDataSlices represents segments from a set as slices of start, end, and
+// values. SegmentDataSlices is primarily used as an intermediate representation
+// for save/restore and the layout here is optimized for that.
+//
+// +stateify savable
+type vmaSegmentDataSlices struct {
+ Start []__generics_imported0.Addr
+ End []__generics_imported0.Addr
+ Values []vma
+}
+
+// ExportSortedSlice returns a copy of all segments in the given set, in ascending
+// key order.
+func (s *vmaSet) ExportSortedSlices() *vmaSegmentDataSlices {
+ var sds vmaSegmentDataSlices
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ sds.Start = append(sds.Start, seg.Start())
+ sds.End = append(sds.End, seg.End())
+ sds.Values = append(sds.Values, seg.Value())
+ }
+ sds.Start = sds.Start[:len(sds.Start):len(sds.Start)]
+ sds.End = sds.End[:len(sds.End):len(sds.End)]
+ sds.Values = sds.Values[:len(sds.Values):len(sds.Values)]
+ return &sds
+}
+
+// ImportSortedSlice initializes the given set from the given slice.
+//
+// Preconditions: s must be empty. sds must represent a valid set (the segments
+// in sds must have valid lengths that do not overlap). The segments in sds
+// must be sorted in ascending key order.
+func (s *vmaSet) ImportSortedSlices(sds *vmaSegmentDataSlices) error {
+ if !s.IsEmpty() {
+ return fmt.Errorf("cannot import into non-empty set %v", s)
+ }
+ gap := s.FirstGap()
+ for i := range sds.Start {
+ r := __generics_imported0.AddrRange{sds.Start[i], sds.End[i]}
+ if !gap.Range().IsSupersetOf(r) {
+ return fmt.Errorf("segment overlaps a preceding segment or is incorrectly sorted: [%d, %d) => %v", sds.Start[i], sds.End[i], sds.Values[i])
+ }
+ gap = s.InsertWithoutMerging(gap, r, sds.Values[i]).NextGap()
+ }
+ return nil
+}
+func (s *vmaSet) saveRoot() *vmaSegmentDataSlices {
+ return s.ExportSortedSlices()
+}
+
+func (s *vmaSet) loadRoot(sds *vmaSegmentDataSlices) {
+ if err := s.ImportSortedSlices(sds); err != nil {
+ panic(err)
+ }
+}