diff options
Diffstat (limited to 'pkg/sentry/kernel/task_sched.go')
-rw-r--r-- | pkg/sentry/kernel/task_sched.go | 637 |
1 files changed, 637 insertions, 0 deletions
diff --git a/pkg/sentry/kernel/task_sched.go b/pkg/sentry/kernel/task_sched.go new file mode 100644 index 000000000..5455f6ea9 --- /dev/null +++ b/pkg/sentry/kernel/task_sched.go @@ -0,0 +1,637 @@ +// Copyright 2018 The gVisor Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +package kernel + +// CPU scheduling, real and fake. + +import ( + "fmt" + "math/rand" + "sync/atomic" + "time" + + "gvisor.googlesource.com/gvisor/pkg/abi/linux" + "gvisor.googlesource.com/gvisor/pkg/sentry/hostcpu" + "gvisor.googlesource.com/gvisor/pkg/sentry/kernel/sched" + ktime "gvisor.googlesource.com/gvisor/pkg/sentry/kernel/time" + "gvisor.googlesource.com/gvisor/pkg/sentry/limits" + "gvisor.googlesource.com/gvisor/pkg/sentry/usage" + "gvisor.googlesource.com/gvisor/pkg/syserror" +) + +// TaskGoroutineState is a coarse representation of the current execution +// status of a kernel.Task goroutine. +type TaskGoroutineState int + +const ( + // TaskGoroutineNonexistent indicates that the task goroutine has either + // not yet been created by Task.Start() or has returned from Task.run(). + // This must be the zero value for TaskGoroutineState. + TaskGoroutineNonexistent TaskGoroutineState = iota + + // TaskGoroutineRunningSys indicates that the task goroutine is executing + // sentry code. + TaskGoroutineRunningSys + + // TaskGoroutineRunningApp indicates that the task goroutine is executing + // application code. + TaskGoroutineRunningApp + + // TaskGoroutineBlockedInterruptible indicates that the task goroutine is + // blocked in Task.block(), and hence may be woken by Task.interrupt() + // (e.g. due to signal delivery). + TaskGoroutineBlockedInterruptible + + // TaskGoroutineBlockedUninterruptible indicates that the task goroutine is + // stopped outside of Task.block() and Task.doStop(), and hence cannot be + // woken by Task.interrupt(). + TaskGoroutineBlockedUninterruptible + + // TaskGoroutineStopped indicates that the task goroutine is blocked in + // Task.doStop(). TaskGoroutineStopped is similar to + // TaskGoroutineBlockedUninterruptible, but is a separate state to make it + // possible to determine when Task.stop is meaningful. + TaskGoroutineStopped +) + +// TaskGoroutineSchedInfo contains task goroutine scheduling state which must +// be read and updated atomically. +// +// +stateify savable +type TaskGoroutineSchedInfo struct { + // Timestamp was the value of Kernel.cpuClock when this + // TaskGoroutineSchedInfo was last updated. + Timestamp uint64 + + // State is the current state of the task goroutine. + State TaskGoroutineState + + // UserTicks is the amount of time the task goroutine has spent executing + // its associated Task's application code, in units of linux.ClockTick. + UserTicks uint64 + + // SysTicks is the amount of time the task goroutine has spent executing in + // the sentry, in units of linux.ClockTick. + SysTicks uint64 +} + +// userTicksAt returns the extrapolated value of ts.UserTicks after +// Kernel.CPUClockNow() indicates a time of now. +// +// Preconditions: now <= Kernel.CPUClockNow(). (Since Kernel.cpuClock is +// monotonic, this is satisfied if now is the result of a previous call to +// Kernel.CPUClockNow().) This requirement exists because otherwise a racing +// change to t.gosched can cause userTicksAt to adjust stats by too much, +// making the observed stats non-monotonic. +func (ts *TaskGoroutineSchedInfo) userTicksAt(now uint64) uint64 { + if ts.Timestamp < now && ts.State == TaskGoroutineRunningApp { + // Update stats to reflect execution since the last update. + return ts.UserTicks + (now - ts.Timestamp) + } + return ts.UserTicks +} + +// sysTicksAt returns the extrapolated value of ts.SysTicks after +// Kernel.CPUClockNow() indicates a time of now. +// +// Preconditions: As for userTicksAt. +func (ts *TaskGoroutineSchedInfo) sysTicksAt(now uint64) uint64 { + if ts.Timestamp < now && ts.State == TaskGoroutineRunningSys { + return ts.SysTicks + (now - ts.Timestamp) + } + return ts.SysTicks +} + +// Preconditions: The caller must be running on the task goroutine. +func (t *Task) accountTaskGoroutineEnter(state TaskGoroutineState) { + now := t.k.CPUClockNow() + if t.gosched.State != TaskGoroutineRunningSys { + panic(fmt.Sprintf("Task goroutine switching from state %v (expected %v) to %v", t.gosched.State, TaskGoroutineRunningSys, state)) + } + t.goschedSeq.BeginWrite() + // This function is very hot; avoid defer. + t.gosched.SysTicks += now - t.gosched.Timestamp + t.gosched.Timestamp = now + t.gosched.State = state + t.goschedSeq.EndWrite() +} + +// Preconditions: The caller must be running on the task goroutine, and leaving +// a state indicated by a previous call to +// t.accountTaskGoroutineEnter(state). +func (t *Task) accountTaskGoroutineLeave(state TaskGoroutineState) { + now := t.k.CPUClockNow() + if t.gosched.State != state { + panic(fmt.Sprintf("Task goroutine switching from state %v (expected %v) to %v", t.gosched.State, state, TaskGoroutineRunningSys)) + } + t.goschedSeq.BeginWrite() + // This function is very hot; avoid defer. + if state == TaskGoroutineRunningApp { + t.gosched.UserTicks += now - t.gosched.Timestamp + } + t.gosched.Timestamp = now + t.gosched.State = TaskGoroutineRunningSys + t.goschedSeq.EndWrite() +} + +// TaskGoroutineSchedInfo returns a copy of t's task goroutine scheduling info. +// Most clients should use t.CPUStats() instead. +func (t *Task) TaskGoroutineSchedInfo() TaskGoroutineSchedInfo { + return SeqAtomicLoadTaskGoroutineSchedInfo(&t.goschedSeq, &t.gosched) +} + +// CPUStats returns the CPU usage statistics of t. +func (t *Task) CPUStats() usage.CPUStats { + return t.cpuStatsAt(t.k.CPUClockNow()) +} + +// Preconditions: As for TaskGoroutineSchedInfo.userTicksAt. +func (t *Task) cpuStatsAt(now uint64) usage.CPUStats { + tsched := t.TaskGoroutineSchedInfo() + return usage.CPUStats{ + UserTime: time.Duration(tsched.userTicksAt(now) * uint64(linux.ClockTick)), + SysTime: time.Duration(tsched.sysTicksAt(now) * uint64(linux.ClockTick)), + VoluntarySwitches: atomic.LoadUint64(&t.yieldCount), + } +} + +// CPUStats returns the combined CPU usage statistics of all past and present +// threads in tg. +func (tg *ThreadGroup) CPUStats() usage.CPUStats { + tg.pidns.owner.mu.RLock() + defer tg.pidns.owner.mu.RUnlock() + // Hack to get a pointer to the Kernel. + if tg.leader == nil { + // Per comment on tg.leader, this is only possible if nothing in the + // ThreadGroup has ever executed anyway. + return usage.CPUStats{} + } + return tg.cpuStatsAtLocked(tg.leader.k.CPUClockNow()) +} + +// Preconditions: As for TaskGoroutineSchedInfo.userTicksAt. The TaskSet mutex +// must be locked. +func (tg *ThreadGroup) cpuStatsAtLocked(now uint64) usage.CPUStats { + stats := tg.exitedCPUStats + // Account for live tasks. + for t := tg.tasks.Front(); t != nil; t = t.Next() { + stats.Accumulate(t.cpuStatsAt(now)) + } + return stats +} + +// JoinedChildCPUStats implements the semantics of RUSAGE_CHILDREN: "Return +// resource usage statistics for all children of [tg] that have terminated and +// been waited for. These statistics will include the resources used by +// grandchildren, and further removed descendants, if all of the intervening +// descendants waited on their terminated children." +func (tg *ThreadGroup) JoinedChildCPUStats() usage.CPUStats { + tg.pidns.owner.mu.RLock() + defer tg.pidns.owner.mu.RUnlock() + return tg.childCPUStats +} + +// taskClock is a ktime.Clock that measures the time that a task has spent +// executing. taskClock is primarily used to implement CLOCK_THREAD_CPUTIME_ID. +// +// +stateify savable +type taskClock struct { + t *Task + + // If includeSys is true, the taskClock includes both time spent executing + // application code as well as time spent in the sentry. Otherwise, the + // taskClock includes only time spent executing application code. + includeSys bool + + // Implements waiter.Waitable. TimeUntil wouldn't change its estimation + // based on either of the clock events, so there's no event to be + // notified for. + ktime.NoClockEvents `state:"nosave"` + + // Implements ktime.Clock.WallTimeUntil. + // + // As an upper bound, a task's clock cannot advance faster than CPU + // time. It would have to execute at a rate of more than 1 task-second + // per 1 CPU-second, which isn't possible. + ktime.WallRateClock `state:"nosave"` +} + +// UserCPUClock returns a clock measuring the CPU time the task has spent +// executing application code. +func (t *Task) UserCPUClock() ktime.Clock { + return &taskClock{t: t, includeSys: false} +} + +// CPUClock returns a clock measuring the CPU time the task has spent executing +// application and "kernel" code. +func (t *Task) CPUClock() ktime.Clock { + return &taskClock{t: t, includeSys: true} +} + +// Now implements ktime.Clock.Now. +func (tc *taskClock) Now() ktime.Time { + stats := tc.t.CPUStats() + if tc.includeSys { + return ktime.FromNanoseconds((stats.UserTime + stats.SysTime).Nanoseconds()) + } + return ktime.FromNanoseconds(stats.UserTime.Nanoseconds()) +} + +// tgClock is a ktime.Clock that measures the time a thread group has spent +// executing. tgClock is primarily used to implement CLOCK_PROCESS_CPUTIME_ID. +// +// +stateify savable +type tgClock struct { + tg *ThreadGroup + + // If includeSys is true, the tgClock includes both time spent executing + // application code as well as time spent in the sentry. Otherwise, the + // tgClock includes only time spent executing application code. + includeSys bool + + // Implements waiter.Waitable. + ktime.ClockEventsQueue `state:"nosave"` +} + +// Now implements ktime.Clock.Now. +func (tgc *tgClock) Now() ktime.Time { + stats := tgc.tg.CPUStats() + if tgc.includeSys { + return ktime.FromNanoseconds((stats.UserTime + stats.SysTime).Nanoseconds()) + } + return ktime.FromNanoseconds(stats.UserTime.Nanoseconds()) +} + +// WallTimeUntil implements ktime.Clock.WallTimeUntil. +func (tgc *tgClock) WallTimeUntil(t, now ktime.Time) time.Duration { + // Thread group CPU time should not exceed wall time * live tasks, since + // task goroutines exit after the transition to TaskExitZombie in + // runExitNotify. + tgc.tg.pidns.owner.mu.RLock() + n := tgc.tg.liveTasks + tgc.tg.pidns.owner.mu.RUnlock() + if n == 0 { + if t.Before(now) { + return 0 + } + // The timer tick raced with thread group exit, after which no more + // tasks can enter the thread group. So tgc.Now() will never advance + // again. Return a large delay; the timer should be stopped long before + // it comes again anyway. + return time.Hour + } + // This is a lower bound on the amount of time that can elapse before an + // associated timer expires, so returning this value tends to result in a + // sequence of closely-spaced ticks just before timer expiry. To avoid + // this, round up to the nearest ClockTick; CPU usage measurements are + // limited to this resolution anyway. + remaining := time.Duration(t.Sub(now).Nanoseconds()/int64(n)) * time.Nanosecond + return ((remaining + (linux.ClockTick - time.Nanosecond)) / linux.ClockTick) * linux.ClockTick +} + +// UserCPUClock returns a ktime.Clock that measures the time that a thread +// group has spent executing. +func (tg *ThreadGroup) UserCPUClock() ktime.Clock { + return &tgClock{tg: tg, includeSys: false} +} + +// CPUClock returns a ktime.Clock that measures the time that a thread group +// has spent executing, including sentry time. +func (tg *ThreadGroup) CPUClock() ktime.Clock { + return &tgClock{tg: tg, includeSys: true} +} + +type kernelCPUClockTicker struct { + k *Kernel + + // These are essentially kernelCPUClockTicker.Notify local variables that + // are cached between calls to reduce allocations. + rng *rand.Rand + tgs []*ThreadGroup +} + +func newKernelCPUClockTicker(k *Kernel) *kernelCPUClockTicker { + return &kernelCPUClockTicker{ + k: k, + rng: rand.New(rand.NewSource(rand.Int63())), + } +} + +// Notify implements ktime.TimerListener.Notify. +func (ticker *kernelCPUClockTicker) Notify(exp uint64) { + // Only increment cpuClock by 1 regardless of the number of expirations. + // This approximately compensates for cases where thread throttling or bad + // Go runtime scheduling prevents the kernelCPUClockTicker goroutine, and + // presumably task goroutines as well, from executing for a long period of + // time. It's also necessary to prevent CPU clocks from seeing large + // discontinuous jumps. + now := atomic.AddUint64(&ticker.k.cpuClock, 1) + + // Check thread group CPU timers. + tgs := ticker.k.tasks.Root.ThreadGroupsAppend(ticker.tgs) + for _, tg := range tgs { + if atomic.LoadUint32(&tg.cpuTimersEnabled) == 0 { + continue + } + + ticker.k.tasks.mu.RLock() + if tg.leader == nil { + // No tasks have ever run in this thread group. + ticker.k.tasks.mu.RUnlock() + continue + } + // Accumulate thread group CPU stats, and randomly select running tasks + // using reservoir sampling to receive CPU timer signals. + var virtReceiver *Task + nrVirtCandidates := 0 + var profReceiver *Task + nrProfCandidates := 0 + tgUserTime := tg.exitedCPUStats.UserTime + tgSysTime := tg.exitedCPUStats.SysTime + for t := tg.tasks.Front(); t != nil; t = t.Next() { + tsched := t.TaskGoroutineSchedInfo() + tgUserTime += time.Duration(tsched.userTicksAt(now) * uint64(linux.ClockTick)) + tgSysTime += time.Duration(tsched.sysTicksAt(now) * uint64(linux.ClockTick)) + switch tsched.State { + case TaskGoroutineRunningApp: + // Considered by ITIMER_VIRT, ITIMER_PROF, and RLIMIT_CPU + // timers. + nrVirtCandidates++ + if int(randInt31n(ticker.rng, int32(nrVirtCandidates))) == 0 { + virtReceiver = t + } + fallthrough + case TaskGoroutineRunningSys: + // Considered by ITIMER_PROF and RLIMIT_CPU timers. + nrProfCandidates++ + if int(randInt31n(ticker.rng, int32(nrProfCandidates))) == 0 { + profReceiver = t + } + } + } + tgVirtNow := ktime.FromNanoseconds(tgUserTime.Nanoseconds()) + tgProfNow := ktime.FromNanoseconds((tgUserTime + tgSysTime).Nanoseconds()) + + // All of the following are standard (not real-time) signals, which are + // automatically deduplicated, so we ignore the number of expirations. + tg.signalHandlers.mu.Lock() + // It should only be possible for these timers to advance if we found + // at least one running task. + if virtReceiver != nil { + // ITIMER_VIRTUAL + newItimerVirtSetting, exp := tg.itimerVirtSetting.At(tgVirtNow) + tg.itimerVirtSetting = newItimerVirtSetting + if exp != 0 { + virtReceiver.sendSignalLocked(SignalInfoPriv(linux.SIGVTALRM), true) + } + } + if profReceiver != nil { + // ITIMER_PROF + newItimerProfSetting, exp := tg.itimerProfSetting.At(tgProfNow) + tg.itimerProfSetting = newItimerProfSetting + if exp != 0 { + profReceiver.sendSignalLocked(SignalInfoPriv(linux.SIGPROF), true) + } + // RLIMIT_CPU soft limit + newRlimitCPUSoftSetting, exp := tg.rlimitCPUSoftSetting.At(tgProfNow) + tg.rlimitCPUSoftSetting = newRlimitCPUSoftSetting + if exp != 0 { + profReceiver.sendSignalLocked(SignalInfoPriv(linux.SIGXCPU), true) + } + // RLIMIT_CPU hard limit + rlimitCPUMax := tg.limits.Get(limits.CPU).Max + if rlimitCPUMax != limits.Infinity && !tgProfNow.Before(ktime.FromSeconds(int64(rlimitCPUMax))) { + profReceiver.sendSignalLocked(SignalInfoPriv(linux.SIGKILL), true) + } + } + tg.signalHandlers.mu.Unlock() + + ticker.k.tasks.mu.RUnlock() + } + + // Retain tgs between calls to Notify to reduce allocations. + for i := range tgs { + tgs[i] = nil + } + ticker.tgs = tgs[:0] +} + +// Destroy implements ktime.TimerListener.Destroy. +func (ticker *kernelCPUClockTicker) Destroy() { +} + +// randInt31n returns a random integer in [0, n). +// +// randInt31n is equivalent to math/rand.Rand.int31n(), which is unexported. +// See that function for details. +func randInt31n(rng *rand.Rand, n int32) int32 { + v := rng.Uint32() + prod := uint64(v) * uint64(n) + low := uint32(prod) + if low < uint32(n) { + thresh := uint32(-n) % uint32(n) + for low < thresh { + v = rng.Uint32() + prod = uint64(v) * uint64(n) + low = uint32(prod) + } + } + return int32(prod >> 32) +} + +// NotifyRlimitCPUUpdated is called by setrlimit. +// +// Preconditions: The caller must be running on the task goroutine. +func (t *Task) NotifyRlimitCPUUpdated() { + t.k.cpuClockTicker.Atomically(func() { + t.tg.pidns.owner.mu.RLock() + defer t.tg.pidns.owner.mu.RUnlock() + t.tg.signalHandlers.mu.Lock() + defer t.tg.signalHandlers.mu.Unlock() + rlimitCPU := t.tg.limits.Get(limits.CPU) + t.tg.rlimitCPUSoftSetting = ktime.Setting{ + Enabled: rlimitCPU.Cur != limits.Infinity, + Next: ktime.FromNanoseconds((time.Duration(rlimitCPU.Cur) * time.Second).Nanoseconds()), + Period: time.Second, + } + if rlimitCPU.Max != limits.Infinity { + // Check if tg is already over the hard limit. + tgcpu := t.tg.cpuStatsAtLocked(t.k.CPUClockNow()) + tgProfNow := ktime.FromNanoseconds((tgcpu.UserTime + tgcpu.SysTime).Nanoseconds()) + if !tgProfNow.Before(ktime.FromSeconds(int64(rlimitCPU.Max))) { + t.sendSignalLocked(SignalInfoPriv(linux.SIGKILL), true) + } + } + t.tg.updateCPUTimersEnabledLocked() + }) +} + +// Preconditions: The signal mutex must be locked. +func (tg *ThreadGroup) updateCPUTimersEnabledLocked() { + rlimitCPU := tg.limits.Get(limits.CPU) + if tg.itimerVirtSetting.Enabled || tg.itimerProfSetting.Enabled || tg.rlimitCPUSoftSetting.Enabled || rlimitCPU.Max != limits.Infinity { + atomic.StoreUint32(&tg.cpuTimersEnabled, 1) + } else { + atomic.StoreUint32(&tg.cpuTimersEnabled, 0) + } +} + +// StateStatus returns a string representation of the task's current state, +// appropriate for /proc/[pid]/status. +func (t *Task) StateStatus() string { + switch s := t.TaskGoroutineSchedInfo().State; s { + case TaskGoroutineNonexistent: + t.tg.pidns.owner.mu.RLock() + defer t.tg.pidns.owner.mu.RUnlock() + switch t.exitState { + case TaskExitZombie: + return "Z (zombie)" + case TaskExitDead: + return "X (dead)" + default: + // The task goroutine can't exit before passing through + // runExitNotify, so this indicates that the task has been created, + // but the task goroutine hasn't yet started. The Linux equivalent + // is struct task_struct::state == TASK_NEW + // (kernel/fork.c:copy_process() => + // kernel/sched/core.c:sched_fork()), but the TASK_NEW bit is + // masked out by TASK_REPORT for /proc/[pid]/status, leaving only + // TASK_RUNNING. + return "R (running)" + } + case TaskGoroutineRunningSys, TaskGoroutineRunningApp: + return "R (running)" + case TaskGoroutineBlockedInterruptible: + return "S (sleeping)" + case TaskGoroutineStopped: + t.tg.signalHandlers.mu.Lock() + defer t.tg.signalHandlers.mu.Unlock() + switch t.stop.(type) { + case *groupStop: + return "T (stopped)" + case *ptraceStop: + return "t (tracing stop)" + } + fallthrough + case TaskGoroutineBlockedUninterruptible: + // This is the name Linux uses for TASK_UNINTERRUPTIBLE and + // TASK_KILLABLE (= TASK_UNINTERRUPTIBLE | TASK_WAKEKILL): + // fs/proc/array.c:task_state_array. + return "D (disk sleep)" + default: + panic(fmt.Sprintf("Invalid TaskGoroutineState: %v", s)) + } +} + +// CPUMask returns a copy of t's allowed CPU mask. +func (t *Task) CPUMask() sched.CPUSet { + t.mu.Lock() + defer t.mu.Unlock() + return t.allowedCPUMask.Copy() +} + +// SetCPUMask sets t's allowed CPU mask based on mask. It takes ownership of +// mask. +// +// Preconditions: mask.Size() == +// sched.CPUSetSize(t.Kernel().ApplicationCores()). +func (t *Task) SetCPUMask(mask sched.CPUSet) error { + if want := sched.CPUSetSize(t.k.applicationCores); mask.Size() != want { + panic(fmt.Sprintf("Invalid CPUSet %v (expected %d bytes)", mask, want)) + } + + // Remove CPUs in mask above Kernel.applicationCores. + mask.ClearAbove(t.k.applicationCores) + + // Ensure that at least 1 CPU is still allowed. + if mask.NumCPUs() == 0 { + return syserror.EINVAL + } + + if t.k.useHostCores { + // No-op; pretend the mask was immediately changed back. + return nil + } + + t.tg.pidns.owner.mu.RLock() + rootTID := t.tg.pidns.owner.Root.tids[t] + t.tg.pidns.owner.mu.RUnlock() + + t.mu.Lock() + defer t.mu.Unlock() + t.allowedCPUMask = mask + atomic.StoreInt32(&t.cpu, assignCPU(mask, rootTID)) + return nil +} + +// CPU returns the cpu id for a given task. +func (t *Task) CPU() int32 { + if t.k.useHostCores { + return int32(hostcpu.GetCPU()) + } + + return atomic.LoadInt32(&t.cpu) +} + +// assignCPU returns the virtualized CPU number for the task with global TID +// tid and allowedCPUMask allowed. +func assignCPU(allowed sched.CPUSet, tid ThreadID) (cpu int32) { + // To pretend that threads are evenly distributed to allowed CPUs, choose n + // to be less than the number of CPUs in allowed ... + n := int(tid) % int(allowed.NumCPUs()) + // ... then pick the nth CPU in allowed. + allowed.ForEachCPU(func(c uint) { + if n--; n == 0 { + cpu = int32(c) + } + }) + return cpu +} + +// Niceness returns t's niceness. +func (t *Task) Niceness() int { + t.mu.Lock() + defer t.mu.Unlock() + return t.niceness +} + +// Priority returns t's priority. +func (t *Task) Priority() int { + t.mu.Lock() + defer t.mu.Unlock() + return t.niceness + 20 +} + +// SetNiceness sets t's niceness to n. +func (t *Task) SetNiceness(n int) { + t.mu.Lock() + defer t.mu.Unlock() + t.niceness = n +} + +// NumaPolicy returns t's current numa policy. +func (t *Task) NumaPolicy() (policy int32, nodeMask uint32) { + t.mu.Lock() + defer t.mu.Unlock() + return t.numaPolicy, t.numaNodeMask +} + +// SetNumaPolicy sets t's numa policy. +func (t *Task) SetNumaPolicy(policy int32, nodeMask uint32) { + t.mu.Lock() + defer t.mu.Unlock() + t.numaPolicy = policy + t.numaNodeMask = nodeMask +} |