summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/fs/fsutil
diff options
context:
space:
mode:
Diffstat (limited to 'pkg/sentry/fs/fsutil')
-rw-r--r--pkg/sentry/fs/fsutil/BUILD115
-rw-r--r--pkg/sentry/fs/fsutil/README.md207
-rw-r--r--pkg/sentry/fs/fsutil/dirty_set_impl.go1647
-rw-r--r--pkg/sentry/fs/fsutil/dirty_set_test.go38
-rw-r--r--pkg/sentry/fs/fsutil/file_range_set_impl.go1647
-rw-r--r--pkg/sentry/fs/fsutil/frame_ref_set_impl.go1647
-rw-r--r--pkg/sentry/fs/fsutil/fsutil_impl_state_autogen.go310
-rw-r--r--pkg/sentry/fs/fsutil/fsutil_state_autogen.go383
-rw-r--r--pkg/sentry/fs/fsutil/fsutil_unsafe_state_autogen.go3
-rw-r--r--pkg/sentry/fs/fsutil/inode_cached_test.go389
10 files changed, 5637 insertions, 749 deletions
diff --git a/pkg/sentry/fs/fsutil/BUILD b/pkg/sentry/fs/fsutil/BUILD
deleted file mode 100644
index 5fb419bcd..000000000
--- a/pkg/sentry/fs/fsutil/BUILD
+++ /dev/null
@@ -1,115 +0,0 @@
-load("//tools:defs.bzl", "go_library", "go_test")
-load("//tools/go_generics:defs.bzl", "go_template_instance")
-
-package(licenses = ["notice"])
-
-go_template_instance(
- name = "dirty_set_impl",
- out = "dirty_set_impl.go",
- imports = {
- "memmap": "gvisor.dev/gvisor/pkg/sentry/memmap",
- },
- package = "fsutil",
- prefix = "Dirty",
- template = "//pkg/segment:generic_set",
- types = {
- "Key": "uint64",
- "Range": "memmap.MappableRange",
- "Value": "DirtyInfo",
- "Functions": "dirtySetFunctions",
- },
-)
-
-go_template_instance(
- name = "frame_ref_set_impl",
- out = "frame_ref_set_impl.go",
- imports = {
- "memmap": "gvisor.dev/gvisor/pkg/sentry/memmap",
- },
- package = "fsutil",
- prefix = "FrameRef",
- template = "//pkg/segment:generic_set",
- types = {
- "Key": "uint64",
- "Range": "memmap.FileRange",
- "Value": "uint64",
- "Functions": "FrameRefSetFunctions",
- },
-)
-
-go_template_instance(
- name = "file_range_set_impl",
- out = "file_range_set_impl.go",
- imports = {
- "memmap": "gvisor.dev/gvisor/pkg/sentry/memmap",
- },
- package = "fsutil",
- prefix = "FileRange",
- template = "//pkg/segment:generic_set",
- types = {
- "Key": "uint64",
- "Range": "memmap.MappableRange",
- "Value": "uint64",
- "Functions": "FileRangeSetFunctions",
- },
-)
-
-go_library(
- name = "fsutil",
- srcs = [
- "dirty_set.go",
- "dirty_set_impl.go",
- "file.go",
- "file_range_set.go",
- "file_range_set_impl.go",
- "frame_ref_set.go",
- "frame_ref_set_impl.go",
- "fsutil.go",
- "host_file_mapper.go",
- "host_file_mapper_state.go",
- "host_file_mapper_unsafe.go",
- "host_mappable.go",
- "inode.go",
- "inode_cached.go",
- ],
- visibility = ["//pkg/sentry:internal"],
- deps = [
- "//pkg/abi/linux",
- "//pkg/context",
- "//pkg/log",
- "//pkg/safemem",
- "//pkg/sentry/arch",
- "//pkg/sentry/device",
- "//pkg/sentry/fs",
- "//pkg/sentry/kernel/time",
- "//pkg/sentry/memmap",
- "//pkg/sentry/pgalloc",
- "//pkg/sentry/socket/unix/transport",
- "//pkg/sentry/usage",
- "//pkg/state",
- "//pkg/sync",
- "//pkg/syserror",
- "//pkg/usermem",
- "//pkg/waiter",
- ],
-)
-
-go_test(
- name = "fsutil_test",
- size = "small",
- srcs = [
- "dirty_set_test.go",
- "inode_cached_test.go",
- ],
- library = ":fsutil",
- deps = [
- "//pkg/context",
- "//pkg/safemem",
- "//pkg/sentry/contexttest",
- "//pkg/sentry/fs",
- "//pkg/sentry/kernel/time",
- "//pkg/sentry/memmap",
- "//pkg/syserror",
- "//pkg/usermem",
- ],
-)
diff --git a/pkg/sentry/fs/fsutil/README.md b/pkg/sentry/fs/fsutil/README.md
deleted file mode 100644
index 8be367334..000000000
--- a/pkg/sentry/fs/fsutil/README.md
+++ /dev/null
@@ -1,207 +0,0 @@
-This package provides utilities for implementing virtual filesystem objects.
-
-[TOC]
-
-## Page cache
-
-`CachingInodeOperations` implements a page cache for files that cannot use the
-host page cache. Normally these are files that store their data in a remote
-filesystem. This also applies to files that are accessed on a platform that does
-not support directly memory mapping host file descriptors (e.g. the ptrace
-platform).
-
-An `CachingInodeOperations` buffers regions of a single file into memory. It is
-owned by an `fs.Inode`, the in-memory representation of a file (all open file
-descriptors are backed by an `fs.Inode`). The `fs.Inode` provides operations for
-reading memory into an `CachingInodeOperations`, to represent the contents of
-the file in-memory, and for writing memory out, to relieve memory pressure on
-the kernel and to synchronize in-memory changes to filesystems.
-
-An `CachingInodeOperations` enables readable and/or writable memory access to
-file content. Files can be mapped shared or private, see mmap(2). When a file is
-mapped shared, changes to the file via write(2) and truncate(2) are reflected in
-the shared memory region. Conversely, when the shared memory region is modified,
-changes to the file are visible via read(2). Multiple shared mappings of the
-same file are coherent with each other. This is consistent with Linux.
-
-When a file is mapped private, updates to the mapped memory are not visible to
-other memory mappings. Updates to the mapped memory are also not reflected in
-the file content as seen by read(2). If the file is changed after a private
-mapping is created, for instance by write(2), the change to the file may or may
-not be reflected in the private mapping. This is consistent with Linux.
-
-An `CachingInodeOperations` keeps track of ranges of memory that were modified
-(or "dirtied"). When the file is explicitly synced via fsync(2), only the dirty
-ranges are written out to the filesystem. Any error returned indicates a failure
-to write all dirty memory of an `CachingInodeOperations` to the filesystem. In
-this case the filesystem may be in an inconsistent state. The same operation can
-be performed on the shared memory itself using msync(2). If neither fsync(2) nor
-msync(2) is performed, then the dirty memory is written out in accordance with
-the `CachingInodeOperations` eviction strategy (see below) and there is no
-guarantee that memory will be written out successfully in full.
-
-### Memory allocation and eviction
-
-An `CachingInodeOperations` implements the following allocation and eviction
-strategy:
-
-- Memory is allocated and brought up to date with the contents of a file when
- a region of mapped memory is accessed (or "faulted on").
-
-- Dirty memory is written out to filesystems when an fsync(2) or msync(2)
- operation is performed on a memory mapped file, for all memory mapped files
- when saved, and/or when there are no longer any memory mappings of a range
- of a file, see munmap(2). As the latter implies, in the absence of a panic
- or SIGKILL, dirty memory is written out for all memory mapped files when an
- application exits.
-
-- Memory is freed when there are no longer any memory mappings of a range of a
- file (e.g. when an application exits). This behavior is consistent with
- Linux for shared memory that has been locked via mlock(2).
-
-Notably, memory is not allocated for read(2) or write(2) operations. This means
-that reads and writes to the file are only accelerated by an
-`CachingInodeOperations` if the file being read or written has been memory
-mapped *and* if the shared memory has been accessed at the region being read or
-written. This diverges from Linux which buffers memory into a page cache on
-read(2) proactively (i.e. readahead) and delays writing it out to filesystems on
-write(2) (i.e. writeback). The absence of these optimizations is not visible to
-applications beyond less than optimal performance when repeatedly reading and/or
-writing to same region of a file. See [Future Work](#future-work) for plans to
-implement these optimizations.
-
-Additionally, memory held by `CachingInodeOperationss` is currently unbounded in
-size. An `CachingInodeOperations` does not write out dirty memory and free it
-under system memory pressure. This can cause pathological memory usage.
-
-When memory is written back, an `CachingInodeOperations` may write regions of
-shared memory that were never modified. This is due to the strategy of
-minimizing page faults (see below) and handling only a subset of memory write
-faults. In the absence of an application or sentry crash, it is guaranteed that
-if a region of shared memory was written to, it is written back to a filesystem.
-
-### Life of a shared memory mapping
-
-A file is memory mapped via mmap(2). For example, if `A` is an address, an
-application may execute:
-
-```
-mmap(A, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
-```
-
-This creates a shared mapping of fd that reflects 4k of the contents of fd
-starting at offset 0, accessible at address `A`. This in turn creates a virtual
-memory area region ("vma") which indicates that [`A`, `A`+0x1000) is now a valid
-address range for this application to access.
-
-At this point, memory has not been allocated in the file's
-`CachingInodeOperations`. It is also the case that the address range [`A`,
-`A`+0x1000) has not been mapped on the host on behalf of the application. If the
-application then tries to modify 8 bytes of the shared memory:
-
-```
-char buffer[] = "aaaaaaaa";
-memcpy(A, buffer, 8);
-```
-
-The host then sends a `SIGSEGV` to the sentry because the address range [`A`,
-`A`+8) is not mapped on the host. The `SIGSEGV` indicates that the memory was
-accessed writable. The sentry looks up the vma associated with [`A`, `A`+8),
-finds the file that was mapped and its `CachingInodeOperations`. It then calls
-`CachingInodeOperations.Translate` which allocates memory to back [`A`, `A`+8).
-It may choose to allocate more memory (i.e. do "readahead") to minimize
-subsequent faults.
-
-Memory that is allocated comes from a host tmpfs file (see
-`pgalloc.MemoryFile`). The host tmpfs file memory is brought up to date with the
-contents of the mapped file on its filesystem. The region of the host tmpfs file
-that reflects the mapped file is then mapped into the host address space of the
-application so that subsequent memory accesses do not repeatedly generate a
-`SIGSEGV`.
-
-The range that was allocated, including any extra memory allocation to minimize
-faults, is marked dirty due to the write fault. This overcounts dirty memory if
-the extra memory allocated is never modified.
-
-To make the scenario more interesting, imagine that this application spawns
-another process and maps the same file in the exact same way:
-
-```
-mmap(A, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
-```
-
-Imagine that this process then tries to modify the file again but with only 4
-bytes:
-
-```
-char buffer[] = "bbbb";
-memcpy(A, buffer, 4);
-```
-
-Since the first process has already mapped and accessed the same region of the
-file writable, `CachingInodeOperations.Translate` is called but returns the
-memory that has already been allocated rather than allocating new memory. The
-address range [`A`, `A`+0x1000) reflects the same cached view of the file as the
-first process sees. For example, reading 8 bytes from the file from either
-process via read(2) starting at offset 0 returns a consistent "bbbbaaaa".
-
-When this process no longer needs the shared memory, it may do:
-
-```
-munmap(A, 0x1000);
-```
-
-At this point, the modified memory cached by the `CachingInodeOperations` is not
-written back to the file because it is still in use by the first process that
-mapped it. When the first process also does:
-
-```
-munmap(A, 0x1000);
-```
-
-Then the last memory mapping of the file at the range [0, 0x1000) is gone. The
-file's `CachingInodeOperations` then starts writing back memory marked dirty to
-the file on its filesystem. Once writing completes, regardless of whether it was
-successful, the `CachingInodeOperations` frees the memory cached at the range
-[0, 0x1000).
-
-Subsequent read(2) or write(2) operations on the file go directly to the
-filesystem since there no longer exists memory for it in its
-`CachingInodeOperations`.
-
-## Future Work
-
-### Page cache
-
-The sentry does not yet implement the readahead and writeback optimizations for
-read(2) and write(2) respectively. To do so, on read(2) and/or write(2) the
-sentry must ensure that memory is allocated in a page cache to read or write
-into. However, the sentry cannot boundlessly allocate memory. If it did, the
-host would eventually OOM-kill the sentry+application process. This means that
-the sentry must implement a page cache memory allocation strategy that is
-bounded by a global user or container imposed limit. When this limit is
-approached, the sentry must decide from which page cache memory should be freed
-so that it can allocate more memory. If it makes a poor decision, the sentry may
-end up freeing and re-allocating memory to back regions of files that are
-frequently used, nullifying the optimization (and in some cases causing worse
-performance due to the overhead of memory allocation and general management).
-This is a form of "cache thrashing".
-
-In Linux, much research has been done to select and implement a lightweight but
-optimal page cache eviction algorithm. Linux makes use of hardware page bits to
-keep track of whether memory has been accessed. The sentry does not have direct
-access to hardware. Implementing a similarly lightweight and optimal page cache
-eviction algorithm will need to either introduce a kernel interface to obtain
-these page bits or find a suitable alternative proxy for access events.
-
-In Linux, readahead happens by default but is not always ideal. For instance,
-for files that are not read sequentially, it would be more ideal to simply read
-from only those regions of the file rather than to optimistically cache some
-number of bytes ahead of the read (up to 2MB in Linux) if the bytes cached won't
-be accessed. Linux implements the fadvise64(2) system call for applications to
-specify that a range of a file will not be accessed sequentially. The advice bit
-FADV_RANDOM turns off the readahead optimization for the given range in the
-given file. However fadvise64 is rarely used by applications so Linux implements
-a readahead backoff strategy if reads are not sequential. To ensure that
-application performance is not degraded, the sentry must implement a similar
-backoff strategy.
diff --git a/pkg/sentry/fs/fsutil/dirty_set_impl.go b/pkg/sentry/fs/fsutil/dirty_set_impl.go
new file mode 100644
index 000000000..9f1463389
--- /dev/null
+++ b/pkg/sentry/fs/fsutil/dirty_set_impl.go
@@ -0,0 +1,1647 @@
+package fsutil
+
+import (
+ __generics_imported0 "gvisor.dev/gvisor/pkg/sentry/memmap"
+)
+
+import (
+ "bytes"
+ "fmt"
+)
+
+// trackGaps is an optional parameter.
+//
+// If trackGaps is 1, the Set will track maximum gap size recursively,
+// enabling the GapIterator.{Prev,Next}LargeEnoughGap functions. In this
+// case, Key must be an unsigned integer.
+//
+// trackGaps must be 0 or 1.
+const DirtytrackGaps = 0
+
+var _ = uint8(DirtytrackGaps << 7) // Will fail if not zero or one.
+
+// dynamicGap is a type that disappears if trackGaps is 0.
+type DirtydynamicGap [DirtytrackGaps]uint64
+
+// Get returns the value of the gap.
+//
+// Precondition: trackGaps must be non-zero.
+func (d *DirtydynamicGap) Get() uint64 {
+ return d[:][0]
+}
+
+// Set sets the value of the gap.
+//
+// Precondition: trackGaps must be non-zero.
+func (d *DirtydynamicGap) Set(v uint64) {
+ d[:][0] = v
+}
+
+const (
+ // minDegree is the minimum degree of an internal node in a Set B-tree.
+ //
+ // - Any non-root node has at least minDegree-1 segments.
+ //
+ // - Any non-root internal (non-leaf) node has at least minDegree children.
+ //
+ // - The root node may have fewer than minDegree-1 segments, but it may
+ // only have 0 segments if the tree is empty.
+ //
+ // Our implementation requires minDegree >= 3. Higher values of minDegree
+ // usually improve performance, but increase memory usage for small sets.
+ DirtyminDegree = 3
+
+ DirtymaxDegree = 2 * DirtyminDegree
+)
+
+// A Set is a mapping of segments with non-overlapping Range keys. The zero
+// value for a Set is an empty set. Set values are not safely movable nor
+// copyable. Set is thread-compatible.
+//
+// +stateify savable
+type DirtySet struct {
+ root Dirtynode `state:".(*DirtySegmentDataSlices)"`
+}
+
+// IsEmpty returns true if the set contains no segments.
+func (s *DirtySet) IsEmpty() bool {
+ return s.root.nrSegments == 0
+}
+
+// IsEmptyRange returns true iff no segments in the set overlap the given
+// range. This is semantically equivalent to s.SpanRange(r) == 0, but may be
+// more efficient.
+func (s *DirtySet) IsEmptyRange(r __generics_imported0.MappableRange) bool {
+ switch {
+ case r.Length() < 0:
+ panic(fmt.Sprintf("invalid range %v", r))
+ case r.Length() == 0:
+ return true
+ }
+ _, gap := s.Find(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ return r.End <= gap.End()
+}
+
+// Span returns the total size of all segments in the set.
+func (s *DirtySet) Span() uint64 {
+ var sz uint64
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ sz += seg.Range().Length()
+ }
+ return sz
+}
+
+// SpanRange returns the total size of the intersection of segments in the set
+// with the given range.
+func (s *DirtySet) SpanRange(r __generics_imported0.MappableRange) uint64 {
+ switch {
+ case r.Length() < 0:
+ panic(fmt.Sprintf("invalid range %v", r))
+ case r.Length() == 0:
+ return 0
+ }
+ var sz uint64
+ for seg := s.LowerBoundSegment(r.Start); seg.Ok() && seg.Start() < r.End; seg = seg.NextSegment() {
+ sz += seg.Range().Intersect(r).Length()
+ }
+ return sz
+}
+
+// FirstSegment returns the first segment in the set. If the set is empty,
+// FirstSegment returns a terminal iterator.
+func (s *DirtySet) FirstSegment() DirtyIterator {
+ if s.root.nrSegments == 0 {
+ return DirtyIterator{}
+ }
+ return s.root.firstSegment()
+}
+
+// LastSegment returns the last segment in the set. If the set is empty,
+// LastSegment returns a terminal iterator.
+func (s *DirtySet) LastSegment() DirtyIterator {
+ if s.root.nrSegments == 0 {
+ return DirtyIterator{}
+ }
+ return s.root.lastSegment()
+}
+
+// FirstGap returns the first gap in the set.
+func (s *DirtySet) FirstGap() DirtyGapIterator {
+ n := &s.root
+ for n.hasChildren {
+ n = n.children[0]
+ }
+ return DirtyGapIterator{n, 0}
+}
+
+// LastGap returns the last gap in the set.
+func (s *DirtySet) LastGap() DirtyGapIterator {
+ n := &s.root
+ for n.hasChildren {
+ n = n.children[n.nrSegments]
+ }
+ return DirtyGapIterator{n, n.nrSegments}
+}
+
+// Find returns the segment or gap whose range contains the given key. If a
+// segment is found, the returned Iterator is non-terminal and the
+// returned GapIterator is terminal. Otherwise, the returned Iterator is
+// terminal and the returned GapIterator is non-terminal.
+func (s *DirtySet) Find(key uint64) (DirtyIterator, DirtyGapIterator) {
+ n := &s.root
+ for {
+
+ lower := 0
+ upper := n.nrSegments
+ for lower < upper {
+ i := lower + (upper-lower)/2
+ if r := n.keys[i]; key < r.End {
+ if key >= r.Start {
+ return DirtyIterator{n, i}, DirtyGapIterator{}
+ }
+ upper = i
+ } else {
+ lower = i + 1
+ }
+ }
+ i := lower
+ if !n.hasChildren {
+ return DirtyIterator{}, DirtyGapIterator{n, i}
+ }
+ n = n.children[i]
+ }
+}
+
+// FindSegment returns the segment whose range contains the given key. If no
+// such segment exists, FindSegment returns a terminal iterator.
+func (s *DirtySet) FindSegment(key uint64) DirtyIterator {
+ seg, _ := s.Find(key)
+ return seg
+}
+
+// LowerBoundSegment returns the segment with the lowest range that contains a
+// key greater than or equal to min. If no such segment exists,
+// LowerBoundSegment returns a terminal iterator.
+func (s *DirtySet) LowerBoundSegment(min uint64) DirtyIterator {
+ seg, gap := s.Find(min)
+ if seg.Ok() {
+ return seg
+ }
+ return gap.NextSegment()
+}
+
+// UpperBoundSegment returns the segment with the highest range that contains a
+// key less than or equal to max. If no such segment exists, UpperBoundSegment
+// returns a terminal iterator.
+func (s *DirtySet) UpperBoundSegment(max uint64) DirtyIterator {
+ seg, gap := s.Find(max)
+ if seg.Ok() {
+ return seg
+ }
+ return gap.PrevSegment()
+}
+
+// FindGap returns the gap containing the given key. If no such gap exists
+// (i.e. the set contains a segment containing that key), FindGap returns a
+// terminal iterator.
+func (s *DirtySet) FindGap(key uint64) DirtyGapIterator {
+ _, gap := s.Find(key)
+ return gap
+}
+
+// LowerBoundGap returns the gap with the lowest range that is greater than or
+// equal to min.
+func (s *DirtySet) LowerBoundGap(min uint64) DirtyGapIterator {
+ seg, gap := s.Find(min)
+ if gap.Ok() {
+ return gap
+ }
+ return seg.NextGap()
+}
+
+// UpperBoundGap returns the gap with the highest range that is less than or
+// equal to max.
+func (s *DirtySet) UpperBoundGap(max uint64) DirtyGapIterator {
+ seg, gap := s.Find(max)
+ if gap.Ok() {
+ return gap
+ }
+ return seg.PrevGap()
+}
+
+// Add inserts the given segment into the set and returns true. If the new
+// segment can be merged with adjacent segments, Add will do so. If the new
+// segment would overlap an existing segment, Add returns false. If Add
+// succeeds, all existing iterators are invalidated.
+func (s *DirtySet) Add(r __generics_imported0.MappableRange, val DirtyInfo) bool {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ gap := s.FindGap(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ if r.End > gap.End() {
+ return false
+ }
+ s.Insert(gap, r, val)
+ return true
+}
+
+// AddWithoutMerging inserts the given segment into the set and returns true.
+// If it would overlap an existing segment, AddWithoutMerging does nothing and
+// returns false. If AddWithoutMerging succeeds, all existing iterators are
+// invalidated.
+func (s *DirtySet) AddWithoutMerging(r __generics_imported0.MappableRange, val DirtyInfo) bool {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ gap := s.FindGap(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ if r.End > gap.End() {
+ return false
+ }
+ s.InsertWithoutMergingUnchecked(gap, r, val)
+ return true
+}
+
+// Insert inserts the given segment into the given gap. If the new segment can
+// be merged with adjacent segments, Insert will do so. Insert returns an
+// iterator to the segment containing the inserted value (which may have been
+// merged with other values). All existing iterators (including gap, but not
+// including the returned iterator) are invalidated.
+//
+// If the gap cannot accommodate the segment, or if r is invalid, Insert panics.
+//
+// Insert is semantically equivalent to a InsertWithoutMerging followed by a
+// Merge, but may be more efficient. Note that there is no unchecked variant of
+// Insert since Insert must retrieve and inspect gap's predecessor and
+// successor segments regardless.
+func (s *DirtySet) Insert(gap DirtyGapIterator, r __generics_imported0.MappableRange, val DirtyInfo) DirtyIterator {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ prev, next := gap.PrevSegment(), gap.NextSegment()
+ if prev.Ok() && prev.End() > r.Start {
+ panic(fmt.Sprintf("new segment %v overlaps predecessor %v", r, prev.Range()))
+ }
+ if next.Ok() && next.Start() < r.End {
+ panic(fmt.Sprintf("new segment %v overlaps successor %v", r, next.Range()))
+ }
+ if prev.Ok() && prev.End() == r.Start {
+ if mval, ok := (dirtySetFunctions{}).Merge(prev.Range(), prev.Value(), r, val); ok {
+ shrinkMaxGap := DirtytrackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get()
+ prev.SetEndUnchecked(r.End)
+ prev.SetValue(mval)
+ if shrinkMaxGap {
+ gap.node.updateMaxGapLeaf()
+ }
+ if next.Ok() && next.Start() == r.End {
+ val = mval
+ if mval, ok := (dirtySetFunctions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok {
+ prev.SetEndUnchecked(next.End())
+ prev.SetValue(mval)
+ return s.Remove(next).PrevSegment()
+ }
+ }
+ return prev
+ }
+ }
+ if next.Ok() && next.Start() == r.End {
+ if mval, ok := (dirtySetFunctions{}).Merge(r, val, next.Range(), next.Value()); ok {
+ shrinkMaxGap := DirtytrackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get()
+ next.SetStartUnchecked(r.Start)
+ next.SetValue(mval)
+ if shrinkMaxGap {
+ gap.node.updateMaxGapLeaf()
+ }
+ return next
+ }
+ }
+
+ return s.InsertWithoutMergingUnchecked(gap, r, val)
+}
+
+// InsertWithoutMerging inserts the given segment into the given gap and
+// returns an iterator to the inserted segment. All existing iterators
+// (including gap, but not including the returned iterator) are invalidated.
+//
+// If the gap cannot accommodate the segment, or if r is invalid,
+// InsertWithoutMerging panics.
+func (s *DirtySet) InsertWithoutMerging(gap DirtyGapIterator, r __generics_imported0.MappableRange, val DirtyInfo) DirtyIterator {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ if gr := gap.Range(); !gr.IsSupersetOf(r) {
+ panic(fmt.Sprintf("cannot insert segment range %v into gap range %v", r, gr))
+ }
+ return s.InsertWithoutMergingUnchecked(gap, r, val)
+}
+
+// InsertWithoutMergingUnchecked inserts the given segment into the given gap
+// and returns an iterator to the inserted segment. All existing iterators
+// (including gap, but not including the returned iterator) are invalidated.
+//
+// Preconditions:
+// * r.Start >= gap.Start().
+// * r.End <= gap.End().
+func (s *DirtySet) InsertWithoutMergingUnchecked(gap DirtyGapIterator, r __generics_imported0.MappableRange, val DirtyInfo) DirtyIterator {
+ gap = gap.node.rebalanceBeforeInsert(gap)
+ splitMaxGap := DirtytrackGaps != 0 && (gap.node.nrSegments == 0 || gap.Range().Length() == gap.node.maxGap.Get())
+ copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments])
+ copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments])
+ gap.node.keys[gap.index] = r
+ gap.node.values[gap.index] = val
+ gap.node.nrSegments++
+ if splitMaxGap {
+ gap.node.updateMaxGapLeaf()
+ }
+ return DirtyIterator{gap.node, gap.index}
+}
+
+// Remove removes the given segment and returns an iterator to the vacated gap.
+// All existing iterators (including seg, but not including the returned
+// iterator) are invalidated.
+func (s *DirtySet) Remove(seg DirtyIterator) DirtyGapIterator {
+
+ if seg.node.hasChildren {
+
+ victim := seg.PrevSegment()
+
+ seg.SetRangeUnchecked(victim.Range())
+ seg.SetValue(victim.Value())
+
+ nextAdjacentNode := seg.NextSegment().node
+ if DirtytrackGaps != 0 {
+ nextAdjacentNode.updateMaxGapLeaf()
+ }
+ return s.Remove(victim).NextGap()
+ }
+ copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments])
+ copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments])
+ dirtySetFunctions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1])
+ seg.node.nrSegments--
+ if DirtytrackGaps != 0 {
+ seg.node.updateMaxGapLeaf()
+ }
+ return seg.node.rebalanceAfterRemove(DirtyGapIterator{seg.node, seg.index})
+}
+
+// RemoveAll removes all segments from the set. All existing iterators are
+// invalidated.
+func (s *DirtySet) RemoveAll() {
+ s.root = Dirtynode{}
+}
+
+// RemoveRange removes all segments in the given range. An iterator to the
+// newly formed gap is returned, and all existing iterators are invalidated.
+func (s *DirtySet) RemoveRange(r __generics_imported0.MappableRange) DirtyGapIterator {
+ seg, gap := s.Find(r.Start)
+ if seg.Ok() {
+ seg = s.Isolate(seg, r)
+ gap = s.Remove(seg)
+ }
+ for seg = gap.NextSegment(); seg.Ok() && seg.Start() < r.End; seg = gap.NextSegment() {
+ seg = s.Isolate(seg, r)
+ gap = s.Remove(seg)
+ }
+ return gap
+}
+
+// Merge attempts to merge two neighboring segments. If successful, Merge
+// returns an iterator to the merged segment, and all existing iterators are
+// invalidated. Otherwise, Merge returns a terminal iterator.
+//
+// If first is not the predecessor of second, Merge panics.
+func (s *DirtySet) Merge(first, second DirtyIterator) DirtyIterator {
+ if first.NextSegment() != second {
+ panic(fmt.Sprintf("attempt to merge non-neighboring segments %v, %v", first.Range(), second.Range()))
+ }
+ return s.MergeUnchecked(first, second)
+}
+
+// MergeUnchecked attempts to merge two neighboring segments. If successful,
+// MergeUnchecked returns an iterator to the merged segment, and all existing
+// iterators are invalidated. Otherwise, MergeUnchecked returns a terminal
+// iterator.
+//
+// Precondition: first is the predecessor of second: first.NextSegment() ==
+// second, first == second.PrevSegment().
+func (s *DirtySet) MergeUnchecked(first, second DirtyIterator) DirtyIterator {
+ if first.End() == second.Start() {
+ if mval, ok := (dirtySetFunctions{}).Merge(first.Range(), first.Value(), second.Range(), second.Value()); ok {
+
+ first.SetEndUnchecked(second.End())
+ first.SetValue(mval)
+
+ return s.Remove(second).PrevSegment()
+ }
+ }
+ return DirtyIterator{}
+}
+
+// MergeAll attempts to merge all adjacent segments in the set. All existing
+// iterators are invalidated.
+func (s *DirtySet) MergeAll() {
+ seg := s.FirstSegment()
+ if !seg.Ok() {
+ return
+ }
+ next := seg.NextSegment()
+ for next.Ok() {
+ if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
+ seg, next = mseg, mseg.NextSegment()
+ } else {
+ seg, next = next, next.NextSegment()
+ }
+ }
+}
+
+// MergeRange attempts to merge all adjacent segments that contain a key in the
+// specific range. All existing iterators are invalidated.
+func (s *DirtySet) MergeRange(r __generics_imported0.MappableRange) {
+ seg := s.LowerBoundSegment(r.Start)
+ if !seg.Ok() {
+ return
+ }
+ next := seg.NextSegment()
+ for next.Ok() && next.Range().Start < r.End {
+ if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
+ seg, next = mseg, mseg.NextSegment()
+ } else {
+ seg, next = next, next.NextSegment()
+ }
+ }
+}
+
+// MergeAdjacent attempts to merge the segment containing r.Start with its
+// predecessor, and the segment containing r.End-1 with its successor.
+func (s *DirtySet) MergeAdjacent(r __generics_imported0.MappableRange) {
+ first := s.FindSegment(r.Start)
+ if first.Ok() {
+ if prev := first.PrevSegment(); prev.Ok() {
+ s.Merge(prev, first)
+ }
+ }
+ last := s.FindSegment(r.End - 1)
+ if last.Ok() {
+ if next := last.NextSegment(); next.Ok() {
+ s.Merge(last, next)
+ }
+ }
+}
+
+// Split splits the given segment at the given key and returns iterators to the
+// two resulting segments. All existing iterators (including seg, but not
+// including the returned iterators) are invalidated.
+//
+// If the segment cannot be split at split (because split is at the start or
+// end of the segment's range, so splitting would produce a segment with zero
+// length, or because split falls outside the segment's range altogether),
+// Split panics.
+func (s *DirtySet) Split(seg DirtyIterator, split uint64) (DirtyIterator, DirtyIterator) {
+ if !seg.Range().CanSplitAt(split) {
+ panic(fmt.Sprintf("can't split %v at %v", seg.Range(), split))
+ }
+ return s.SplitUnchecked(seg, split)
+}
+
+// SplitUnchecked splits the given segment at the given key and returns
+// iterators to the two resulting segments. All existing iterators (including
+// seg, but not including the returned iterators) are invalidated.
+//
+// Preconditions: seg.Start() < key < seg.End().
+func (s *DirtySet) SplitUnchecked(seg DirtyIterator, split uint64) (DirtyIterator, DirtyIterator) {
+ val1, val2 := (dirtySetFunctions{}).Split(seg.Range(), seg.Value(), split)
+ end2 := seg.End()
+ seg.SetEndUnchecked(split)
+ seg.SetValue(val1)
+ seg2 := s.InsertWithoutMergingUnchecked(seg.NextGap(), __generics_imported0.MappableRange{split, end2}, val2)
+
+ return seg2.PrevSegment(), seg2
+}
+
+// SplitAt splits the segment straddling split, if one exists. SplitAt returns
+// true if a segment was split and false otherwise. If SplitAt splits a
+// segment, all existing iterators are invalidated.
+func (s *DirtySet) SplitAt(split uint64) bool {
+ if seg := s.FindSegment(split); seg.Ok() && seg.Range().CanSplitAt(split) {
+ s.SplitUnchecked(seg, split)
+ return true
+ }
+ return false
+}
+
+// Isolate ensures that the given segment's range does not escape r by
+// splitting at r.Start and r.End if necessary, and returns an updated iterator
+// to the bounded segment. All existing iterators (including seg, but not
+// including the returned iterators) are invalidated.
+func (s *DirtySet) Isolate(seg DirtyIterator, r __generics_imported0.MappableRange) DirtyIterator {
+ if seg.Range().CanSplitAt(r.Start) {
+ _, seg = s.SplitUnchecked(seg, r.Start)
+ }
+ if seg.Range().CanSplitAt(r.End) {
+ seg, _ = s.SplitUnchecked(seg, r.End)
+ }
+ return seg
+}
+
+// ApplyContiguous applies a function to a contiguous range of segments,
+// splitting if necessary. The function is applied until the first gap is
+// encountered, at which point the gap is returned. If the function is applied
+// across the entire range, a terminal gap is returned. All existing iterators
+// are invalidated.
+//
+// N.B. The Iterator must not be invalidated by the function.
+func (s *DirtySet) ApplyContiguous(r __generics_imported0.MappableRange, fn func(seg DirtyIterator)) DirtyGapIterator {
+ seg, gap := s.Find(r.Start)
+ if !seg.Ok() {
+ return gap
+ }
+ for {
+ seg = s.Isolate(seg, r)
+ fn(seg)
+ if seg.End() >= r.End {
+ return DirtyGapIterator{}
+ }
+ gap = seg.NextGap()
+ if !gap.IsEmpty() {
+ return gap
+ }
+ seg = gap.NextSegment()
+ if !seg.Ok() {
+
+ return DirtyGapIterator{}
+ }
+ }
+}
+
+// +stateify savable
+type Dirtynode struct {
+ // An internal binary tree node looks like:
+ //
+ // K
+ // / \
+ // Cl Cr
+ //
+ // where all keys in the subtree rooted by Cl (the left subtree) are less
+ // than K (the key of the parent node), and all keys in the subtree rooted
+ // by Cr (the right subtree) are greater than K.
+ //
+ // An internal B-tree node's indexes work out to look like:
+ //
+ // K0 K1 K2 ... Kn-1
+ // / \/ \/ \ ... / \
+ // C0 C1 C2 C3 ... Cn-1 Cn
+ //
+ // where n is nrSegments.
+ nrSegments int
+
+ // parent is a pointer to this node's parent. If this node is root, parent
+ // is nil.
+ parent *Dirtynode
+
+ // parentIndex is the index of this node in parent.children.
+ parentIndex int
+
+ // Flag for internal nodes that is technically redundant with "children[0]
+ // != nil", but is stored in the first cache line. "hasChildren" rather
+ // than "isLeaf" because false must be the correct value for an empty root.
+ hasChildren bool
+
+ // The longest gap within this node. If the node is a leaf, it's simply the
+ // maximum gap among all the (nrSegments+1) gaps formed by its nrSegments keys
+ // including the 0th and nrSegments-th gap possibly shared with its upper-level
+ // nodes; if it's a non-leaf node, it's the max of all children's maxGap.
+ maxGap DirtydynamicGap
+
+ // Nodes store keys and values in separate arrays to maximize locality in
+ // the common case (scanning keys for lookup).
+ keys [DirtymaxDegree - 1]__generics_imported0.MappableRange
+ values [DirtymaxDegree - 1]DirtyInfo
+ children [DirtymaxDegree]*Dirtynode
+}
+
+// firstSegment returns the first segment in the subtree rooted by n.
+//
+// Preconditions: n.nrSegments != 0.
+func (n *Dirtynode) firstSegment() DirtyIterator {
+ for n.hasChildren {
+ n = n.children[0]
+ }
+ return DirtyIterator{n, 0}
+}
+
+// lastSegment returns the last segment in the subtree rooted by n.
+//
+// Preconditions: n.nrSegments != 0.
+func (n *Dirtynode) lastSegment() DirtyIterator {
+ for n.hasChildren {
+ n = n.children[n.nrSegments]
+ }
+ return DirtyIterator{n, n.nrSegments - 1}
+}
+
+func (n *Dirtynode) prevSibling() *Dirtynode {
+ if n.parent == nil || n.parentIndex == 0 {
+ return nil
+ }
+ return n.parent.children[n.parentIndex-1]
+}
+
+func (n *Dirtynode) nextSibling() *Dirtynode {
+ if n.parent == nil || n.parentIndex == n.parent.nrSegments {
+ return nil
+ }
+ return n.parent.children[n.parentIndex+1]
+}
+
+// rebalanceBeforeInsert splits n and its ancestors if they are full, as
+// required for insertion, and returns an updated iterator to the position
+// represented by gap.
+func (n *Dirtynode) rebalanceBeforeInsert(gap DirtyGapIterator) DirtyGapIterator {
+ if n.nrSegments < DirtymaxDegree-1 {
+ return gap
+ }
+ if n.parent != nil {
+ gap = n.parent.rebalanceBeforeInsert(gap)
+ }
+ if n.parent == nil {
+
+ left := &Dirtynode{
+ nrSegments: DirtyminDegree - 1,
+ parent: n,
+ parentIndex: 0,
+ hasChildren: n.hasChildren,
+ }
+ right := &Dirtynode{
+ nrSegments: DirtyminDegree - 1,
+ parent: n,
+ parentIndex: 1,
+ hasChildren: n.hasChildren,
+ }
+ copy(left.keys[:DirtyminDegree-1], n.keys[:DirtyminDegree-1])
+ copy(left.values[:DirtyminDegree-1], n.values[:DirtyminDegree-1])
+ copy(right.keys[:DirtyminDegree-1], n.keys[DirtyminDegree:])
+ copy(right.values[:DirtyminDegree-1], n.values[DirtyminDegree:])
+ n.keys[0], n.values[0] = n.keys[DirtyminDegree-1], n.values[DirtyminDegree-1]
+ DirtyzeroValueSlice(n.values[1:])
+ if n.hasChildren {
+ copy(left.children[:DirtyminDegree], n.children[:DirtyminDegree])
+ copy(right.children[:DirtyminDegree], n.children[DirtyminDegree:])
+ DirtyzeroNodeSlice(n.children[2:])
+ for i := 0; i < DirtyminDegree; i++ {
+ left.children[i].parent = left
+ left.children[i].parentIndex = i
+ right.children[i].parent = right
+ right.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments = 1
+ n.hasChildren = true
+ n.children[0] = left
+ n.children[1] = right
+
+ if DirtytrackGaps != 0 {
+ left.updateMaxGapLocal()
+ right.updateMaxGapLocal()
+ }
+ if gap.node != n {
+ return gap
+ }
+ if gap.index < DirtyminDegree {
+ return DirtyGapIterator{left, gap.index}
+ }
+ return DirtyGapIterator{right, gap.index - DirtyminDegree}
+ }
+
+ copy(n.parent.keys[n.parentIndex+1:], n.parent.keys[n.parentIndex:n.parent.nrSegments])
+ copy(n.parent.values[n.parentIndex+1:], n.parent.values[n.parentIndex:n.parent.nrSegments])
+ n.parent.keys[n.parentIndex], n.parent.values[n.parentIndex] = n.keys[DirtyminDegree-1], n.values[DirtyminDegree-1]
+ copy(n.parent.children[n.parentIndex+2:], n.parent.children[n.parentIndex+1:n.parent.nrSegments+1])
+ for i := n.parentIndex + 2; i < n.parent.nrSegments+2; i++ {
+ n.parent.children[i].parentIndex = i
+ }
+ sibling := &Dirtynode{
+ nrSegments: DirtyminDegree - 1,
+ parent: n.parent,
+ parentIndex: n.parentIndex + 1,
+ hasChildren: n.hasChildren,
+ }
+ n.parent.children[n.parentIndex+1] = sibling
+ n.parent.nrSegments++
+ copy(sibling.keys[:DirtyminDegree-1], n.keys[DirtyminDegree:])
+ copy(sibling.values[:DirtyminDegree-1], n.values[DirtyminDegree:])
+ DirtyzeroValueSlice(n.values[DirtyminDegree-1:])
+ if n.hasChildren {
+ copy(sibling.children[:DirtyminDegree], n.children[DirtyminDegree:])
+ DirtyzeroNodeSlice(n.children[DirtyminDegree:])
+ for i := 0; i < DirtyminDegree; i++ {
+ sibling.children[i].parent = sibling
+ sibling.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments = DirtyminDegree - 1
+
+ if DirtytrackGaps != 0 {
+ n.updateMaxGapLocal()
+ sibling.updateMaxGapLocal()
+ }
+
+ if gap.node != n {
+ return gap
+ }
+ if gap.index < DirtyminDegree {
+ return gap
+ }
+ return DirtyGapIterator{sibling, gap.index - DirtyminDegree}
+}
+
+// rebalanceAfterRemove "unsplits" n and its ancestors if they are deficient
+// (contain fewer segments than required by B-tree invariants), as required for
+// removal, and returns an updated iterator to the position represented by gap.
+//
+// Precondition: n is the only node in the tree that may currently violate a
+// B-tree invariant.
+func (n *Dirtynode) rebalanceAfterRemove(gap DirtyGapIterator) DirtyGapIterator {
+ for {
+ if n.nrSegments >= DirtyminDegree-1 {
+ return gap
+ }
+ if n.parent == nil {
+
+ return gap
+ }
+
+ if sibling := n.prevSibling(); sibling != nil && sibling.nrSegments >= DirtyminDegree {
+ copy(n.keys[1:], n.keys[:n.nrSegments])
+ copy(n.values[1:], n.values[:n.nrSegments])
+ n.keys[0] = n.parent.keys[n.parentIndex-1]
+ n.values[0] = n.parent.values[n.parentIndex-1]
+ n.parent.keys[n.parentIndex-1] = sibling.keys[sibling.nrSegments-1]
+ n.parent.values[n.parentIndex-1] = sibling.values[sibling.nrSegments-1]
+ dirtySetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
+ if n.hasChildren {
+ copy(n.children[1:], n.children[:n.nrSegments+1])
+ n.children[0] = sibling.children[sibling.nrSegments]
+ sibling.children[sibling.nrSegments] = nil
+ n.children[0].parent = n
+ n.children[0].parentIndex = 0
+ for i := 1; i < n.nrSegments+2; i++ {
+ n.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments++
+ sibling.nrSegments--
+
+ if DirtytrackGaps != 0 {
+ n.updateMaxGapLocal()
+ sibling.updateMaxGapLocal()
+ }
+ if gap.node == sibling && gap.index == sibling.nrSegments {
+ return DirtyGapIterator{n, 0}
+ }
+ if gap.node == n {
+ return DirtyGapIterator{n, gap.index + 1}
+ }
+ return gap
+ }
+ if sibling := n.nextSibling(); sibling != nil && sibling.nrSegments >= DirtyminDegree {
+ n.keys[n.nrSegments] = n.parent.keys[n.parentIndex]
+ n.values[n.nrSegments] = n.parent.values[n.parentIndex]
+ n.parent.keys[n.parentIndex] = sibling.keys[0]
+ n.parent.values[n.parentIndex] = sibling.values[0]
+ copy(sibling.keys[:sibling.nrSegments-1], sibling.keys[1:])
+ copy(sibling.values[:sibling.nrSegments-1], sibling.values[1:])
+ dirtySetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
+ if n.hasChildren {
+ n.children[n.nrSegments+1] = sibling.children[0]
+ copy(sibling.children[:sibling.nrSegments], sibling.children[1:])
+ sibling.children[sibling.nrSegments] = nil
+ n.children[n.nrSegments+1].parent = n
+ n.children[n.nrSegments+1].parentIndex = n.nrSegments + 1
+ for i := 0; i < sibling.nrSegments; i++ {
+ sibling.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments++
+ sibling.nrSegments--
+
+ if DirtytrackGaps != 0 {
+ n.updateMaxGapLocal()
+ sibling.updateMaxGapLocal()
+ }
+ if gap.node == sibling {
+ if gap.index == 0 {
+ return DirtyGapIterator{n, n.nrSegments}
+ }
+ return DirtyGapIterator{sibling, gap.index - 1}
+ }
+ return gap
+ }
+
+ p := n.parent
+ if p.nrSegments == 1 {
+
+ left, right := p.children[0], p.children[1]
+ p.nrSegments = left.nrSegments + right.nrSegments + 1
+ p.hasChildren = left.hasChildren
+ p.keys[left.nrSegments] = p.keys[0]
+ p.values[left.nrSegments] = p.values[0]
+ copy(p.keys[:left.nrSegments], left.keys[:left.nrSegments])
+ copy(p.values[:left.nrSegments], left.values[:left.nrSegments])
+ copy(p.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
+ copy(p.values[left.nrSegments+1:], right.values[:right.nrSegments])
+ if left.hasChildren {
+ copy(p.children[:left.nrSegments+1], left.children[:left.nrSegments+1])
+ copy(p.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
+ for i := 0; i < p.nrSegments+1; i++ {
+ p.children[i].parent = p
+ p.children[i].parentIndex = i
+ }
+ } else {
+ p.children[0] = nil
+ p.children[1] = nil
+ }
+
+ if gap.node == left {
+ return DirtyGapIterator{p, gap.index}
+ }
+ if gap.node == right {
+ return DirtyGapIterator{p, gap.index + left.nrSegments + 1}
+ }
+ return gap
+ }
+ // Merge n and either sibling, along with the segment separating the
+ // two, into whichever of the two nodes comes first. This is the
+ // reverse of the non-root splitting case in
+ // node.rebalanceBeforeInsert.
+ var left, right *Dirtynode
+ if n.parentIndex > 0 {
+ left = n.prevSibling()
+ right = n
+ } else {
+ left = n
+ right = n.nextSibling()
+ }
+
+ if gap.node == right {
+ gap = DirtyGapIterator{left, gap.index + left.nrSegments + 1}
+ }
+ left.keys[left.nrSegments] = p.keys[left.parentIndex]
+ left.values[left.nrSegments] = p.values[left.parentIndex]
+ copy(left.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
+ copy(left.values[left.nrSegments+1:], right.values[:right.nrSegments])
+ if left.hasChildren {
+ copy(left.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
+ for i := left.nrSegments + 1; i < left.nrSegments+right.nrSegments+2; i++ {
+ left.children[i].parent = left
+ left.children[i].parentIndex = i
+ }
+ }
+ left.nrSegments += right.nrSegments + 1
+ copy(p.keys[left.parentIndex:], p.keys[left.parentIndex+1:p.nrSegments])
+ copy(p.values[left.parentIndex:], p.values[left.parentIndex+1:p.nrSegments])
+ dirtySetFunctions{}.ClearValue(&p.values[p.nrSegments-1])
+ copy(p.children[left.parentIndex+1:], p.children[left.parentIndex+2:p.nrSegments+1])
+ for i := 0; i < p.nrSegments; i++ {
+ p.children[i].parentIndex = i
+ }
+ p.children[p.nrSegments] = nil
+ p.nrSegments--
+
+ if DirtytrackGaps != 0 {
+ left.updateMaxGapLocal()
+ }
+
+ n = p
+ }
+}
+
+// updateMaxGapLeaf updates maxGap bottom-up from the calling leaf until no
+// necessary update.
+//
+// Preconditions: n must be a leaf node, trackGaps must be 1.
+func (n *Dirtynode) updateMaxGapLeaf() {
+ if n.hasChildren {
+ panic(fmt.Sprintf("updateMaxGapLeaf should always be called on leaf node: %v", n))
+ }
+ max := n.calculateMaxGapLeaf()
+ if max == n.maxGap.Get() {
+
+ return
+ }
+ oldMax := n.maxGap.Get()
+ n.maxGap.Set(max)
+ if max > oldMax {
+
+ for p := n.parent; p != nil; p = p.parent {
+ if p.maxGap.Get() >= max {
+
+ break
+ }
+
+ p.maxGap.Set(max)
+ }
+ return
+ }
+
+ for p := n.parent; p != nil; p = p.parent {
+ if p.maxGap.Get() > oldMax {
+
+ break
+ }
+
+ parentNewMax := p.calculateMaxGapInternal()
+ if p.maxGap.Get() == parentNewMax {
+
+ break
+ }
+
+ p.maxGap.Set(parentNewMax)
+ }
+}
+
+// updateMaxGapLocal updates maxGap of the calling node solely with no
+// propagation to ancestor nodes.
+//
+// Precondition: trackGaps must be 1.
+func (n *Dirtynode) updateMaxGapLocal() {
+ if !n.hasChildren {
+
+ n.maxGap.Set(n.calculateMaxGapLeaf())
+ } else {
+
+ n.maxGap.Set(n.calculateMaxGapInternal())
+ }
+}
+
+// calculateMaxGapLeaf iterates the gaps within a leaf node and calculate the
+// max.
+//
+// Preconditions: n must be a leaf node.
+func (n *Dirtynode) calculateMaxGapLeaf() uint64 {
+ max := DirtyGapIterator{n, 0}.Range().Length()
+ for i := 1; i <= n.nrSegments; i++ {
+ if current := (DirtyGapIterator{n, i}).Range().Length(); current > max {
+ max = current
+ }
+ }
+ return max
+}
+
+// calculateMaxGapInternal iterates children's maxGap within an internal node n
+// and calculate the max.
+//
+// Preconditions: n must be a non-leaf node.
+func (n *Dirtynode) calculateMaxGapInternal() uint64 {
+ max := n.children[0].maxGap.Get()
+ for i := 1; i <= n.nrSegments; i++ {
+ if current := n.children[i].maxGap.Get(); current > max {
+ max = current
+ }
+ }
+ return max
+}
+
+// searchFirstLargeEnoughGap returns the first gap having at least minSize length
+// in the subtree rooted by n. If not found, return a terminal gap iterator.
+func (n *Dirtynode) searchFirstLargeEnoughGap(minSize uint64) DirtyGapIterator {
+ if n.maxGap.Get() < minSize {
+ return DirtyGapIterator{}
+ }
+ if n.hasChildren {
+ for i := 0; i <= n.nrSegments; i++ {
+ if largeEnoughGap := n.children[i].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() {
+ return largeEnoughGap
+ }
+ }
+ } else {
+ for i := 0; i <= n.nrSegments; i++ {
+ currentGap := DirtyGapIterator{n, i}
+ if currentGap.Range().Length() >= minSize {
+ return currentGap
+ }
+ }
+ }
+ panic(fmt.Sprintf("invalid maxGap in %v", n))
+}
+
+// searchLastLargeEnoughGap returns the last gap having at least minSize length
+// in the subtree rooted by n. If not found, return a terminal gap iterator.
+func (n *Dirtynode) searchLastLargeEnoughGap(minSize uint64) DirtyGapIterator {
+ if n.maxGap.Get() < minSize {
+ return DirtyGapIterator{}
+ }
+ if n.hasChildren {
+ for i := n.nrSegments; i >= 0; i-- {
+ if largeEnoughGap := n.children[i].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() {
+ return largeEnoughGap
+ }
+ }
+ } else {
+ for i := n.nrSegments; i >= 0; i-- {
+ currentGap := DirtyGapIterator{n, i}
+ if currentGap.Range().Length() >= minSize {
+ return currentGap
+ }
+ }
+ }
+ panic(fmt.Sprintf("invalid maxGap in %v", n))
+}
+
+// A Iterator is conceptually one of:
+//
+// - A pointer to a segment in a set; or
+//
+// - A terminal iterator, which is a sentinel indicating that the end of
+// iteration has been reached.
+//
+// Iterators are copyable values and are meaningfully equality-comparable. The
+// zero value of Iterator is a terminal iterator.
+//
+// Unless otherwise specified, any mutation of a set invalidates all existing
+// iterators into the set.
+type DirtyIterator struct {
+ // node is the node containing the iterated segment. If the iterator is
+ // terminal, node is nil.
+ node *Dirtynode
+
+ // index is the index of the segment in node.keys/values.
+ index int
+}
+
+// Ok returns true if the iterator is not terminal. All other methods are only
+// valid for non-terminal iterators.
+func (seg DirtyIterator) Ok() bool {
+ return seg.node != nil
+}
+
+// Range returns the iterated segment's range key.
+func (seg DirtyIterator) Range() __generics_imported0.MappableRange {
+ return seg.node.keys[seg.index]
+}
+
+// Start is equivalent to Range().Start, but should be preferred if only the
+// start of the range is needed.
+func (seg DirtyIterator) Start() uint64 {
+ return seg.node.keys[seg.index].Start
+}
+
+// End is equivalent to Range().End, but should be preferred if only the end of
+// the range is needed.
+func (seg DirtyIterator) End() uint64 {
+ return seg.node.keys[seg.index].End
+}
+
+// SetRangeUnchecked mutates the iterated segment's range key. This operation
+// does not invalidate any iterators.
+//
+// Preconditions:
+// * r.Length() > 0.
+// * The new range must not overlap an existing one:
+// * If seg.NextSegment().Ok(), then r.end <= seg.NextSegment().Start().
+// * If seg.PrevSegment().Ok(), then r.start >= seg.PrevSegment().End().
+func (seg DirtyIterator) SetRangeUnchecked(r __generics_imported0.MappableRange) {
+ seg.node.keys[seg.index] = r
+}
+
+// SetRange mutates the iterated segment's range key. If the new range would
+// cause the iterated segment to overlap another segment, or if the new range
+// is invalid, SetRange panics. This operation does not invalidate any
+// iterators.
+func (seg DirtyIterator) SetRange(r __generics_imported0.MappableRange) {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ if prev := seg.PrevSegment(); prev.Ok() && r.Start < prev.End() {
+ panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, prev.Range()))
+ }
+ if next := seg.NextSegment(); next.Ok() && r.End > next.Start() {
+ panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, next.Range()))
+ }
+ seg.SetRangeUnchecked(r)
+}
+
+// SetStartUnchecked mutates the iterated segment's start. This operation does
+// not invalidate any iterators.
+//
+// Preconditions: The new start must be valid:
+// * start < seg.End()
+// * If seg.PrevSegment().Ok(), then start >= seg.PrevSegment().End().
+func (seg DirtyIterator) SetStartUnchecked(start uint64) {
+ seg.node.keys[seg.index].Start = start
+}
+
+// SetStart mutates the iterated segment's start. If the new start value would
+// cause the iterated segment to overlap another segment, or would result in an
+// invalid range, SetStart panics. This operation does not invalidate any
+// iterators.
+func (seg DirtyIterator) SetStart(start uint64) {
+ if start >= seg.End() {
+ panic(fmt.Sprintf("new start %v would invalidate segment range %v", start, seg.Range()))
+ }
+ if prev := seg.PrevSegment(); prev.Ok() && start < prev.End() {
+ panic(fmt.Sprintf("new start %v would cause segment range %v to overlap segment range %v", start, seg.Range(), prev.Range()))
+ }
+ seg.SetStartUnchecked(start)
+}
+
+// SetEndUnchecked mutates the iterated segment's end. This operation does not
+// invalidate any iterators.
+//
+// Preconditions: The new end must be valid:
+// * end > seg.Start().
+// * If seg.NextSegment().Ok(), then end <= seg.NextSegment().Start().
+func (seg DirtyIterator) SetEndUnchecked(end uint64) {
+ seg.node.keys[seg.index].End = end
+}
+
+// SetEnd mutates the iterated segment's end. If the new end value would cause
+// the iterated segment to overlap another segment, or would result in an
+// invalid range, SetEnd panics. This operation does not invalidate any
+// iterators.
+func (seg DirtyIterator) SetEnd(end uint64) {
+ if end <= seg.Start() {
+ panic(fmt.Sprintf("new end %v would invalidate segment range %v", end, seg.Range()))
+ }
+ if next := seg.NextSegment(); next.Ok() && end > next.Start() {
+ panic(fmt.Sprintf("new end %v would cause segment range %v to overlap segment range %v", end, seg.Range(), next.Range()))
+ }
+ seg.SetEndUnchecked(end)
+}
+
+// Value returns a copy of the iterated segment's value.
+func (seg DirtyIterator) Value() DirtyInfo {
+ return seg.node.values[seg.index]
+}
+
+// ValuePtr returns a pointer to the iterated segment's value. The pointer is
+// invalidated if the iterator is invalidated. This operation does not
+// invalidate any iterators.
+func (seg DirtyIterator) ValuePtr() *DirtyInfo {
+ return &seg.node.values[seg.index]
+}
+
+// SetValue mutates the iterated segment's value. This operation does not
+// invalidate any iterators.
+func (seg DirtyIterator) SetValue(val DirtyInfo) {
+ seg.node.values[seg.index] = val
+}
+
+// PrevSegment returns the iterated segment's predecessor. If there is no
+// preceding segment, PrevSegment returns a terminal iterator.
+func (seg DirtyIterator) PrevSegment() DirtyIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index].lastSegment()
+ }
+ if seg.index > 0 {
+ return DirtyIterator{seg.node, seg.index - 1}
+ }
+ if seg.node.parent == nil {
+ return DirtyIterator{}
+ }
+ return DirtysegmentBeforePosition(seg.node.parent, seg.node.parentIndex)
+}
+
+// NextSegment returns the iterated segment's successor. If there is no
+// succeeding segment, NextSegment returns a terminal iterator.
+func (seg DirtyIterator) NextSegment() DirtyIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index+1].firstSegment()
+ }
+ if seg.index < seg.node.nrSegments-1 {
+ return DirtyIterator{seg.node, seg.index + 1}
+ }
+ if seg.node.parent == nil {
+ return DirtyIterator{}
+ }
+ return DirtysegmentAfterPosition(seg.node.parent, seg.node.parentIndex)
+}
+
+// PrevGap returns the gap immediately before the iterated segment.
+func (seg DirtyIterator) PrevGap() DirtyGapIterator {
+ if seg.node.hasChildren {
+
+ return seg.node.children[seg.index].lastSegment().NextGap()
+ }
+ return DirtyGapIterator{seg.node, seg.index}
+}
+
+// NextGap returns the gap immediately after the iterated segment.
+func (seg DirtyIterator) NextGap() DirtyGapIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index+1].firstSegment().PrevGap()
+ }
+ return DirtyGapIterator{seg.node, seg.index + 1}
+}
+
+// PrevNonEmpty returns the iterated segment's predecessor if it is adjacent,
+// or the gap before the iterated segment otherwise. If seg.Start() ==
+// Functions.MinKey(), PrevNonEmpty will return two terminal iterators.
+// Otherwise, exactly one of the iterators returned by PrevNonEmpty will be
+// non-terminal.
+func (seg DirtyIterator) PrevNonEmpty() (DirtyIterator, DirtyGapIterator) {
+ gap := seg.PrevGap()
+ if gap.Range().Length() != 0 {
+ return DirtyIterator{}, gap
+ }
+ return gap.PrevSegment(), DirtyGapIterator{}
+}
+
+// NextNonEmpty returns the iterated segment's successor if it is adjacent, or
+// the gap after the iterated segment otherwise. If seg.End() ==
+// Functions.MaxKey(), NextNonEmpty will return two terminal iterators.
+// Otherwise, exactly one of the iterators returned by NextNonEmpty will be
+// non-terminal.
+func (seg DirtyIterator) NextNonEmpty() (DirtyIterator, DirtyGapIterator) {
+ gap := seg.NextGap()
+ if gap.Range().Length() != 0 {
+ return DirtyIterator{}, gap
+ }
+ return gap.NextSegment(), DirtyGapIterator{}
+}
+
+// A GapIterator is conceptually one of:
+//
+// - A pointer to a position between two segments, before the first segment, or
+// after the last segment in a set, called a *gap*; or
+//
+// - A terminal iterator, which is a sentinel indicating that the end of
+// iteration has been reached.
+//
+// Note that the gap between two adjacent segments exists (iterators to it are
+// non-terminal), but has a length of zero. GapIterator.IsEmpty returns true
+// for such gaps. An empty set contains a single gap, spanning the entire range
+// of the set's keys.
+//
+// GapIterators are copyable values and are meaningfully equality-comparable.
+// The zero value of GapIterator is a terminal iterator.
+//
+// Unless otherwise specified, any mutation of a set invalidates all existing
+// iterators into the set.
+type DirtyGapIterator struct {
+ // The representation of a GapIterator is identical to that of an Iterator,
+ // except that index corresponds to positions between segments in the same
+ // way as for node.children (see comment for node.nrSegments).
+ node *Dirtynode
+ index int
+}
+
+// Ok returns true if the iterator is not terminal. All other methods are only
+// valid for non-terminal iterators.
+func (gap DirtyGapIterator) Ok() bool {
+ return gap.node != nil
+}
+
+// Range returns the range spanned by the iterated gap.
+func (gap DirtyGapIterator) Range() __generics_imported0.MappableRange {
+ return __generics_imported0.MappableRange{gap.Start(), gap.End()}
+}
+
+// Start is equivalent to Range().Start, but should be preferred if only the
+// start of the range is needed.
+func (gap DirtyGapIterator) Start() uint64 {
+ if ps := gap.PrevSegment(); ps.Ok() {
+ return ps.End()
+ }
+ return dirtySetFunctions{}.MinKey()
+}
+
+// End is equivalent to Range().End, but should be preferred if only the end of
+// the range is needed.
+func (gap DirtyGapIterator) End() uint64 {
+ if ns := gap.NextSegment(); ns.Ok() {
+ return ns.Start()
+ }
+ return dirtySetFunctions{}.MaxKey()
+}
+
+// IsEmpty returns true if the iterated gap is empty (that is, the "gap" is
+// between two adjacent segments.)
+func (gap DirtyGapIterator) IsEmpty() bool {
+ return gap.Range().Length() == 0
+}
+
+// PrevSegment returns the segment immediately before the iterated gap. If no
+// such segment exists, PrevSegment returns a terminal iterator.
+func (gap DirtyGapIterator) PrevSegment() DirtyIterator {
+ return DirtysegmentBeforePosition(gap.node, gap.index)
+}
+
+// NextSegment returns the segment immediately after the iterated gap. If no
+// such segment exists, NextSegment returns a terminal iterator.
+func (gap DirtyGapIterator) NextSegment() DirtyIterator {
+ return DirtysegmentAfterPosition(gap.node, gap.index)
+}
+
+// PrevGap returns the iterated gap's predecessor. If no such gap exists,
+// PrevGap returns a terminal iterator.
+func (gap DirtyGapIterator) PrevGap() DirtyGapIterator {
+ seg := gap.PrevSegment()
+ if !seg.Ok() {
+ return DirtyGapIterator{}
+ }
+ return seg.PrevGap()
+}
+
+// NextGap returns the iterated gap's successor. If no such gap exists, NextGap
+// returns a terminal iterator.
+func (gap DirtyGapIterator) NextGap() DirtyGapIterator {
+ seg := gap.NextSegment()
+ if !seg.Ok() {
+ return DirtyGapIterator{}
+ }
+ return seg.NextGap()
+}
+
+// NextLargeEnoughGap returns the iterated gap's first next gap with larger
+// length than minSize. If not found, return a terminal gap iterator (does NOT
+// include this gap itself).
+//
+// Precondition: trackGaps must be 1.
+func (gap DirtyGapIterator) NextLargeEnoughGap(minSize uint64) DirtyGapIterator {
+ if DirtytrackGaps != 1 {
+ panic("set is not tracking gaps")
+ }
+ if gap.node != nil && gap.node.hasChildren && gap.index == gap.node.nrSegments {
+
+ gap.node = gap.NextSegment().node
+ gap.index = 0
+ return gap.nextLargeEnoughGapHelper(minSize)
+ }
+ return gap.nextLargeEnoughGapHelper(minSize)
+}
+
+// nextLargeEnoughGapHelper is the helper function used by NextLargeEnoughGap
+// to do the real recursions.
+//
+// Preconditions: gap is NOT the trailing gap of a non-leaf node.
+func (gap DirtyGapIterator) nextLargeEnoughGapHelper(minSize uint64) DirtyGapIterator {
+
+ for gap.node != nil &&
+ (gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == gap.node.nrSegments)) {
+ gap.node, gap.index = gap.node.parent, gap.node.parentIndex
+ }
+
+ if gap.node == nil {
+ return DirtyGapIterator{}
+ }
+
+ gap.index++
+ for gap.index <= gap.node.nrSegments {
+ if gap.node.hasChildren {
+ if largeEnoughGap := gap.node.children[gap.index].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() {
+ return largeEnoughGap
+ }
+ } else {
+ if gap.Range().Length() >= minSize {
+ return gap
+ }
+ }
+ gap.index++
+ }
+ gap.node, gap.index = gap.node.parent, gap.node.parentIndex
+ if gap.node != nil && gap.index == gap.node.nrSegments {
+
+ gap.node, gap.index = gap.node.parent, gap.node.parentIndex
+ }
+ return gap.nextLargeEnoughGapHelper(minSize)
+}
+
+// PrevLargeEnoughGap returns the iterated gap's first prev gap with larger or
+// equal length than minSize. If not found, return a terminal gap iterator
+// (does NOT include this gap itself).
+//
+// Precondition: trackGaps must be 1.
+func (gap DirtyGapIterator) PrevLargeEnoughGap(minSize uint64) DirtyGapIterator {
+ if DirtytrackGaps != 1 {
+ panic("set is not tracking gaps")
+ }
+ if gap.node != nil && gap.node.hasChildren && gap.index == 0 {
+
+ gap.node = gap.PrevSegment().node
+ gap.index = gap.node.nrSegments
+ return gap.prevLargeEnoughGapHelper(minSize)
+ }
+ return gap.prevLargeEnoughGapHelper(minSize)
+}
+
+// prevLargeEnoughGapHelper is the helper function used by PrevLargeEnoughGap
+// to do the real recursions.
+//
+// Preconditions: gap is NOT the first gap of a non-leaf node.
+func (gap DirtyGapIterator) prevLargeEnoughGapHelper(minSize uint64) DirtyGapIterator {
+
+ for gap.node != nil &&
+ (gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == 0)) {
+ gap.node, gap.index = gap.node.parent, gap.node.parentIndex
+ }
+
+ if gap.node == nil {
+ return DirtyGapIterator{}
+ }
+
+ gap.index--
+ for gap.index >= 0 {
+ if gap.node.hasChildren {
+ if largeEnoughGap := gap.node.children[gap.index].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() {
+ return largeEnoughGap
+ }
+ } else {
+ if gap.Range().Length() >= minSize {
+ return gap
+ }
+ }
+ gap.index--
+ }
+ gap.node, gap.index = gap.node.parent, gap.node.parentIndex
+ if gap.node != nil && gap.index == 0 {
+
+ gap.node, gap.index = gap.node.parent, gap.node.parentIndex
+ }
+ return gap.prevLargeEnoughGapHelper(minSize)
+}
+
+// segmentBeforePosition returns the predecessor segment of the position given
+// by n.children[i], which may or may not contain a child. If no such segment
+// exists, segmentBeforePosition returns a terminal iterator.
+func DirtysegmentBeforePosition(n *Dirtynode, i int) DirtyIterator {
+ for i == 0 {
+ if n.parent == nil {
+ return DirtyIterator{}
+ }
+ n, i = n.parent, n.parentIndex
+ }
+ return DirtyIterator{n, i - 1}
+}
+
+// segmentAfterPosition returns the successor segment of the position given by
+// n.children[i], which may or may not contain a child. If no such segment
+// exists, segmentAfterPosition returns a terminal iterator.
+func DirtysegmentAfterPosition(n *Dirtynode, i int) DirtyIterator {
+ for i == n.nrSegments {
+ if n.parent == nil {
+ return DirtyIterator{}
+ }
+ n, i = n.parent, n.parentIndex
+ }
+ return DirtyIterator{n, i}
+}
+
+func DirtyzeroValueSlice(slice []DirtyInfo) {
+
+ for i := range slice {
+ dirtySetFunctions{}.ClearValue(&slice[i])
+ }
+}
+
+func DirtyzeroNodeSlice(slice []*Dirtynode) {
+ for i := range slice {
+ slice[i] = nil
+ }
+}
+
+// String stringifies a Set for debugging.
+func (s *DirtySet) String() string {
+ return s.root.String()
+}
+
+// String stringifies a node (and all of its children) for debugging.
+func (n *Dirtynode) String() string {
+ var buf bytes.Buffer
+ n.writeDebugString(&buf, "")
+ return buf.String()
+}
+
+func (n *Dirtynode) writeDebugString(buf *bytes.Buffer, prefix string) {
+ if n.hasChildren != (n.nrSegments > 0 && n.children[0] != nil) {
+ buf.WriteString(prefix)
+ buf.WriteString(fmt.Sprintf("WARNING: inconsistent value of hasChildren: got %v, want %v\n", n.hasChildren, !n.hasChildren))
+ }
+ for i := 0; i < n.nrSegments; i++ {
+ if child := n.children[i]; child != nil {
+ cprefix := fmt.Sprintf("%s- % 3d ", prefix, i)
+ if child.parent != n || child.parentIndex != i {
+ buf.WriteString(cprefix)
+ buf.WriteString(fmt.Sprintf("WARNING: inconsistent linkage to parent: got (%p, %d), want (%p, %d)\n", child.parent, child.parentIndex, n, i))
+ }
+ child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i))
+ }
+ buf.WriteString(prefix)
+ if n.hasChildren {
+ if DirtytrackGaps != 0 {
+ buf.WriteString(fmt.Sprintf("- % 3d: %v => %v, maxGap: %d\n", i, n.keys[i], n.values[i], n.maxGap.Get()))
+ } else {
+ buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i]))
+ }
+ } else {
+ buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i]))
+ }
+ }
+ if child := n.children[n.nrSegments]; child != nil {
+ child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments))
+ }
+}
+
+// SegmentDataSlices represents segments from a set as slices of start, end, and
+// values. SegmentDataSlices is primarily used as an intermediate representation
+// for save/restore and the layout here is optimized for that.
+//
+// +stateify savable
+type DirtySegmentDataSlices struct {
+ Start []uint64
+ End []uint64
+ Values []DirtyInfo
+}
+
+// ExportSortedSlice returns a copy of all segments in the given set, in ascending
+// key order.
+func (s *DirtySet) ExportSortedSlices() *DirtySegmentDataSlices {
+ var sds DirtySegmentDataSlices
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ sds.Start = append(sds.Start, seg.Start())
+ sds.End = append(sds.End, seg.End())
+ sds.Values = append(sds.Values, seg.Value())
+ }
+ sds.Start = sds.Start[:len(sds.Start):len(sds.Start)]
+ sds.End = sds.End[:len(sds.End):len(sds.End)]
+ sds.Values = sds.Values[:len(sds.Values):len(sds.Values)]
+ return &sds
+}
+
+// ImportSortedSlice initializes the given set from the given slice.
+//
+// Preconditions:
+// * s must be empty.
+// * sds must represent a valid set (the segments in sds must have valid
+// lengths that do not overlap).
+// * The segments in sds must be sorted in ascending key order.
+func (s *DirtySet) ImportSortedSlices(sds *DirtySegmentDataSlices) error {
+ if !s.IsEmpty() {
+ return fmt.Errorf("cannot import into non-empty set %v", s)
+ }
+ gap := s.FirstGap()
+ for i := range sds.Start {
+ r := __generics_imported0.MappableRange{sds.Start[i], sds.End[i]}
+ if !gap.Range().IsSupersetOf(r) {
+ return fmt.Errorf("segment overlaps a preceding segment or is incorrectly sorted: [%d, %d) => %v", sds.Start[i], sds.End[i], sds.Values[i])
+ }
+ gap = s.InsertWithoutMerging(gap, r, sds.Values[i]).NextGap()
+ }
+ return nil
+}
+
+// segmentTestCheck returns an error if s is incorrectly sorted, does not
+// contain exactly expectedSegments segments, or contains a segment which
+// fails the passed check.
+//
+// This should be used only for testing, and has been added to this package for
+// templating convenience.
+func (s *DirtySet) segmentTestCheck(expectedSegments int, segFunc func(int, __generics_imported0.MappableRange, DirtyInfo) error) error {
+ havePrev := false
+ prev := uint64(0)
+ nrSegments := 0
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ next := seg.Start()
+ if havePrev && prev >= next {
+ return fmt.Errorf("incorrect order: key %d (segment %d) >= key %d (segment %d)", prev, nrSegments-1, next, nrSegments)
+ }
+ if segFunc != nil {
+ if err := segFunc(nrSegments, seg.Range(), seg.Value()); err != nil {
+ return err
+ }
+ }
+ prev = next
+ havePrev = true
+ nrSegments++
+ }
+ if nrSegments != expectedSegments {
+ return fmt.Errorf("incorrect number of segments: got %d, wanted %d", nrSegments, expectedSegments)
+ }
+ return nil
+}
+
+// countSegments counts the number of segments in the set.
+//
+// Similar to Check, this should only be used for testing.
+func (s *DirtySet) countSegments() (segments int) {
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ segments++
+ }
+ return segments
+}
+func (s *DirtySet) saveRoot() *DirtySegmentDataSlices {
+ return s.ExportSortedSlices()
+}
+
+func (s *DirtySet) loadRoot(sds *DirtySegmentDataSlices) {
+ if err := s.ImportSortedSlices(sds); err != nil {
+ panic(err)
+ }
+}
diff --git a/pkg/sentry/fs/fsutil/dirty_set_test.go b/pkg/sentry/fs/fsutil/dirty_set_test.go
deleted file mode 100644
index e3579c23c..000000000
--- a/pkg/sentry/fs/fsutil/dirty_set_test.go
+++ /dev/null
@@ -1,38 +0,0 @@
-// Copyright 2018 The gVisor Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package fsutil
-
-import (
- "reflect"
- "testing"
-
- "gvisor.dev/gvisor/pkg/sentry/memmap"
- "gvisor.dev/gvisor/pkg/usermem"
-)
-
-func TestDirtySet(t *testing.T) {
- var set DirtySet
- set.MarkDirty(memmap.MappableRange{0, 2 * usermem.PageSize})
- set.KeepDirty(memmap.MappableRange{usermem.PageSize, 2 * usermem.PageSize})
- set.MarkClean(memmap.MappableRange{0, 2 * usermem.PageSize})
- want := &DirtySegmentDataSlices{
- Start: []uint64{usermem.PageSize},
- End: []uint64{2 * usermem.PageSize},
- Values: []DirtyInfo{{Keep: true}},
- }
- if got := set.ExportSortedSlices(); !reflect.DeepEqual(got, want) {
- t.Errorf("set:\n\tgot %v,\n\twant %v", got, want)
- }
-}
diff --git a/pkg/sentry/fs/fsutil/file_range_set_impl.go b/pkg/sentry/fs/fsutil/file_range_set_impl.go
new file mode 100644
index 000000000..374ed79b7
--- /dev/null
+++ b/pkg/sentry/fs/fsutil/file_range_set_impl.go
@@ -0,0 +1,1647 @@
+package fsutil
+
+import (
+ __generics_imported0 "gvisor.dev/gvisor/pkg/sentry/memmap"
+)
+
+import (
+ "bytes"
+ "fmt"
+)
+
+// trackGaps is an optional parameter.
+//
+// If trackGaps is 1, the Set will track maximum gap size recursively,
+// enabling the GapIterator.{Prev,Next}LargeEnoughGap functions. In this
+// case, Key must be an unsigned integer.
+//
+// trackGaps must be 0 or 1.
+const FileRangetrackGaps = 0
+
+var _ = uint8(FileRangetrackGaps << 7) // Will fail if not zero or one.
+
+// dynamicGap is a type that disappears if trackGaps is 0.
+type FileRangedynamicGap [FileRangetrackGaps]uint64
+
+// Get returns the value of the gap.
+//
+// Precondition: trackGaps must be non-zero.
+func (d *FileRangedynamicGap) Get() uint64 {
+ return d[:][0]
+}
+
+// Set sets the value of the gap.
+//
+// Precondition: trackGaps must be non-zero.
+func (d *FileRangedynamicGap) Set(v uint64) {
+ d[:][0] = v
+}
+
+const (
+ // minDegree is the minimum degree of an internal node in a Set B-tree.
+ //
+ // - Any non-root node has at least minDegree-1 segments.
+ //
+ // - Any non-root internal (non-leaf) node has at least minDegree children.
+ //
+ // - The root node may have fewer than minDegree-1 segments, but it may
+ // only have 0 segments if the tree is empty.
+ //
+ // Our implementation requires minDegree >= 3. Higher values of minDegree
+ // usually improve performance, but increase memory usage for small sets.
+ FileRangeminDegree = 3
+
+ FileRangemaxDegree = 2 * FileRangeminDegree
+)
+
+// A Set is a mapping of segments with non-overlapping Range keys. The zero
+// value for a Set is an empty set. Set values are not safely movable nor
+// copyable. Set is thread-compatible.
+//
+// +stateify savable
+type FileRangeSet struct {
+ root FileRangenode `state:".(*FileRangeSegmentDataSlices)"`
+}
+
+// IsEmpty returns true if the set contains no segments.
+func (s *FileRangeSet) IsEmpty() bool {
+ return s.root.nrSegments == 0
+}
+
+// IsEmptyRange returns true iff no segments in the set overlap the given
+// range. This is semantically equivalent to s.SpanRange(r) == 0, but may be
+// more efficient.
+func (s *FileRangeSet) IsEmptyRange(r __generics_imported0.MappableRange) bool {
+ switch {
+ case r.Length() < 0:
+ panic(fmt.Sprintf("invalid range %v", r))
+ case r.Length() == 0:
+ return true
+ }
+ _, gap := s.Find(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ return r.End <= gap.End()
+}
+
+// Span returns the total size of all segments in the set.
+func (s *FileRangeSet) Span() uint64 {
+ var sz uint64
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ sz += seg.Range().Length()
+ }
+ return sz
+}
+
+// SpanRange returns the total size of the intersection of segments in the set
+// with the given range.
+func (s *FileRangeSet) SpanRange(r __generics_imported0.MappableRange) uint64 {
+ switch {
+ case r.Length() < 0:
+ panic(fmt.Sprintf("invalid range %v", r))
+ case r.Length() == 0:
+ return 0
+ }
+ var sz uint64
+ for seg := s.LowerBoundSegment(r.Start); seg.Ok() && seg.Start() < r.End; seg = seg.NextSegment() {
+ sz += seg.Range().Intersect(r).Length()
+ }
+ return sz
+}
+
+// FirstSegment returns the first segment in the set. If the set is empty,
+// FirstSegment returns a terminal iterator.
+func (s *FileRangeSet) FirstSegment() FileRangeIterator {
+ if s.root.nrSegments == 0 {
+ return FileRangeIterator{}
+ }
+ return s.root.firstSegment()
+}
+
+// LastSegment returns the last segment in the set. If the set is empty,
+// LastSegment returns a terminal iterator.
+func (s *FileRangeSet) LastSegment() FileRangeIterator {
+ if s.root.nrSegments == 0 {
+ return FileRangeIterator{}
+ }
+ return s.root.lastSegment()
+}
+
+// FirstGap returns the first gap in the set.
+func (s *FileRangeSet) FirstGap() FileRangeGapIterator {
+ n := &s.root
+ for n.hasChildren {
+ n = n.children[0]
+ }
+ return FileRangeGapIterator{n, 0}
+}
+
+// LastGap returns the last gap in the set.
+func (s *FileRangeSet) LastGap() FileRangeGapIterator {
+ n := &s.root
+ for n.hasChildren {
+ n = n.children[n.nrSegments]
+ }
+ return FileRangeGapIterator{n, n.nrSegments}
+}
+
+// Find returns the segment or gap whose range contains the given key. If a
+// segment is found, the returned Iterator is non-terminal and the
+// returned GapIterator is terminal. Otherwise, the returned Iterator is
+// terminal and the returned GapIterator is non-terminal.
+func (s *FileRangeSet) Find(key uint64) (FileRangeIterator, FileRangeGapIterator) {
+ n := &s.root
+ for {
+
+ lower := 0
+ upper := n.nrSegments
+ for lower < upper {
+ i := lower + (upper-lower)/2
+ if r := n.keys[i]; key < r.End {
+ if key >= r.Start {
+ return FileRangeIterator{n, i}, FileRangeGapIterator{}
+ }
+ upper = i
+ } else {
+ lower = i + 1
+ }
+ }
+ i := lower
+ if !n.hasChildren {
+ return FileRangeIterator{}, FileRangeGapIterator{n, i}
+ }
+ n = n.children[i]
+ }
+}
+
+// FindSegment returns the segment whose range contains the given key. If no
+// such segment exists, FindSegment returns a terminal iterator.
+func (s *FileRangeSet) FindSegment(key uint64) FileRangeIterator {
+ seg, _ := s.Find(key)
+ return seg
+}
+
+// LowerBoundSegment returns the segment with the lowest range that contains a
+// key greater than or equal to min. If no such segment exists,
+// LowerBoundSegment returns a terminal iterator.
+func (s *FileRangeSet) LowerBoundSegment(min uint64) FileRangeIterator {
+ seg, gap := s.Find(min)
+ if seg.Ok() {
+ return seg
+ }
+ return gap.NextSegment()
+}
+
+// UpperBoundSegment returns the segment with the highest range that contains a
+// key less than or equal to max. If no such segment exists, UpperBoundSegment
+// returns a terminal iterator.
+func (s *FileRangeSet) UpperBoundSegment(max uint64) FileRangeIterator {
+ seg, gap := s.Find(max)
+ if seg.Ok() {
+ return seg
+ }
+ return gap.PrevSegment()
+}
+
+// FindGap returns the gap containing the given key. If no such gap exists
+// (i.e. the set contains a segment containing that key), FindGap returns a
+// terminal iterator.
+func (s *FileRangeSet) FindGap(key uint64) FileRangeGapIterator {
+ _, gap := s.Find(key)
+ return gap
+}
+
+// LowerBoundGap returns the gap with the lowest range that is greater than or
+// equal to min.
+func (s *FileRangeSet) LowerBoundGap(min uint64) FileRangeGapIterator {
+ seg, gap := s.Find(min)
+ if gap.Ok() {
+ return gap
+ }
+ return seg.NextGap()
+}
+
+// UpperBoundGap returns the gap with the highest range that is less than or
+// equal to max.
+func (s *FileRangeSet) UpperBoundGap(max uint64) FileRangeGapIterator {
+ seg, gap := s.Find(max)
+ if gap.Ok() {
+ return gap
+ }
+ return seg.PrevGap()
+}
+
+// Add inserts the given segment into the set and returns true. If the new
+// segment can be merged with adjacent segments, Add will do so. If the new
+// segment would overlap an existing segment, Add returns false. If Add
+// succeeds, all existing iterators are invalidated.
+func (s *FileRangeSet) Add(r __generics_imported0.MappableRange, val uint64) bool {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ gap := s.FindGap(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ if r.End > gap.End() {
+ return false
+ }
+ s.Insert(gap, r, val)
+ return true
+}
+
+// AddWithoutMerging inserts the given segment into the set and returns true.
+// If it would overlap an existing segment, AddWithoutMerging does nothing and
+// returns false. If AddWithoutMerging succeeds, all existing iterators are
+// invalidated.
+func (s *FileRangeSet) AddWithoutMerging(r __generics_imported0.MappableRange, val uint64) bool {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ gap := s.FindGap(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ if r.End > gap.End() {
+ return false
+ }
+ s.InsertWithoutMergingUnchecked(gap, r, val)
+ return true
+}
+
+// Insert inserts the given segment into the given gap. If the new segment can
+// be merged with adjacent segments, Insert will do so. Insert returns an
+// iterator to the segment containing the inserted value (which may have been
+// merged with other values). All existing iterators (including gap, but not
+// including the returned iterator) are invalidated.
+//
+// If the gap cannot accommodate the segment, or if r is invalid, Insert panics.
+//
+// Insert is semantically equivalent to a InsertWithoutMerging followed by a
+// Merge, but may be more efficient. Note that there is no unchecked variant of
+// Insert since Insert must retrieve and inspect gap's predecessor and
+// successor segments regardless.
+func (s *FileRangeSet) Insert(gap FileRangeGapIterator, r __generics_imported0.MappableRange, val uint64) FileRangeIterator {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ prev, next := gap.PrevSegment(), gap.NextSegment()
+ if prev.Ok() && prev.End() > r.Start {
+ panic(fmt.Sprintf("new segment %v overlaps predecessor %v", r, prev.Range()))
+ }
+ if next.Ok() && next.Start() < r.End {
+ panic(fmt.Sprintf("new segment %v overlaps successor %v", r, next.Range()))
+ }
+ if prev.Ok() && prev.End() == r.Start {
+ if mval, ok := (FileRangeSetFunctions{}).Merge(prev.Range(), prev.Value(), r, val); ok {
+ shrinkMaxGap := FileRangetrackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get()
+ prev.SetEndUnchecked(r.End)
+ prev.SetValue(mval)
+ if shrinkMaxGap {
+ gap.node.updateMaxGapLeaf()
+ }
+ if next.Ok() && next.Start() == r.End {
+ val = mval
+ if mval, ok := (FileRangeSetFunctions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok {
+ prev.SetEndUnchecked(next.End())
+ prev.SetValue(mval)
+ return s.Remove(next).PrevSegment()
+ }
+ }
+ return prev
+ }
+ }
+ if next.Ok() && next.Start() == r.End {
+ if mval, ok := (FileRangeSetFunctions{}).Merge(r, val, next.Range(), next.Value()); ok {
+ shrinkMaxGap := FileRangetrackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get()
+ next.SetStartUnchecked(r.Start)
+ next.SetValue(mval)
+ if shrinkMaxGap {
+ gap.node.updateMaxGapLeaf()
+ }
+ return next
+ }
+ }
+
+ return s.InsertWithoutMergingUnchecked(gap, r, val)
+}
+
+// InsertWithoutMerging inserts the given segment into the given gap and
+// returns an iterator to the inserted segment. All existing iterators
+// (including gap, but not including the returned iterator) are invalidated.
+//
+// If the gap cannot accommodate the segment, or if r is invalid,
+// InsertWithoutMerging panics.
+func (s *FileRangeSet) InsertWithoutMerging(gap FileRangeGapIterator, r __generics_imported0.MappableRange, val uint64) FileRangeIterator {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ if gr := gap.Range(); !gr.IsSupersetOf(r) {
+ panic(fmt.Sprintf("cannot insert segment range %v into gap range %v", r, gr))
+ }
+ return s.InsertWithoutMergingUnchecked(gap, r, val)
+}
+
+// InsertWithoutMergingUnchecked inserts the given segment into the given gap
+// and returns an iterator to the inserted segment. All existing iterators
+// (including gap, but not including the returned iterator) are invalidated.
+//
+// Preconditions:
+// * r.Start >= gap.Start().
+// * r.End <= gap.End().
+func (s *FileRangeSet) InsertWithoutMergingUnchecked(gap FileRangeGapIterator, r __generics_imported0.MappableRange, val uint64) FileRangeIterator {
+ gap = gap.node.rebalanceBeforeInsert(gap)
+ splitMaxGap := FileRangetrackGaps != 0 && (gap.node.nrSegments == 0 || gap.Range().Length() == gap.node.maxGap.Get())
+ copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments])
+ copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments])
+ gap.node.keys[gap.index] = r
+ gap.node.values[gap.index] = val
+ gap.node.nrSegments++
+ if splitMaxGap {
+ gap.node.updateMaxGapLeaf()
+ }
+ return FileRangeIterator{gap.node, gap.index}
+}
+
+// Remove removes the given segment and returns an iterator to the vacated gap.
+// All existing iterators (including seg, but not including the returned
+// iterator) are invalidated.
+func (s *FileRangeSet) Remove(seg FileRangeIterator) FileRangeGapIterator {
+
+ if seg.node.hasChildren {
+
+ victim := seg.PrevSegment()
+
+ seg.SetRangeUnchecked(victim.Range())
+ seg.SetValue(victim.Value())
+
+ nextAdjacentNode := seg.NextSegment().node
+ if FileRangetrackGaps != 0 {
+ nextAdjacentNode.updateMaxGapLeaf()
+ }
+ return s.Remove(victim).NextGap()
+ }
+ copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments])
+ copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments])
+ FileRangeSetFunctions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1])
+ seg.node.nrSegments--
+ if FileRangetrackGaps != 0 {
+ seg.node.updateMaxGapLeaf()
+ }
+ return seg.node.rebalanceAfterRemove(FileRangeGapIterator{seg.node, seg.index})
+}
+
+// RemoveAll removes all segments from the set. All existing iterators are
+// invalidated.
+func (s *FileRangeSet) RemoveAll() {
+ s.root = FileRangenode{}
+}
+
+// RemoveRange removes all segments in the given range. An iterator to the
+// newly formed gap is returned, and all existing iterators are invalidated.
+func (s *FileRangeSet) RemoveRange(r __generics_imported0.MappableRange) FileRangeGapIterator {
+ seg, gap := s.Find(r.Start)
+ if seg.Ok() {
+ seg = s.Isolate(seg, r)
+ gap = s.Remove(seg)
+ }
+ for seg = gap.NextSegment(); seg.Ok() && seg.Start() < r.End; seg = gap.NextSegment() {
+ seg = s.Isolate(seg, r)
+ gap = s.Remove(seg)
+ }
+ return gap
+}
+
+// Merge attempts to merge two neighboring segments. If successful, Merge
+// returns an iterator to the merged segment, and all existing iterators are
+// invalidated. Otherwise, Merge returns a terminal iterator.
+//
+// If first is not the predecessor of second, Merge panics.
+func (s *FileRangeSet) Merge(first, second FileRangeIterator) FileRangeIterator {
+ if first.NextSegment() != second {
+ panic(fmt.Sprintf("attempt to merge non-neighboring segments %v, %v", first.Range(), second.Range()))
+ }
+ return s.MergeUnchecked(first, second)
+}
+
+// MergeUnchecked attempts to merge two neighboring segments. If successful,
+// MergeUnchecked returns an iterator to the merged segment, and all existing
+// iterators are invalidated. Otherwise, MergeUnchecked returns a terminal
+// iterator.
+//
+// Precondition: first is the predecessor of second: first.NextSegment() ==
+// second, first == second.PrevSegment().
+func (s *FileRangeSet) MergeUnchecked(first, second FileRangeIterator) FileRangeIterator {
+ if first.End() == second.Start() {
+ if mval, ok := (FileRangeSetFunctions{}).Merge(first.Range(), first.Value(), second.Range(), second.Value()); ok {
+
+ first.SetEndUnchecked(second.End())
+ first.SetValue(mval)
+
+ return s.Remove(second).PrevSegment()
+ }
+ }
+ return FileRangeIterator{}
+}
+
+// MergeAll attempts to merge all adjacent segments in the set. All existing
+// iterators are invalidated.
+func (s *FileRangeSet) MergeAll() {
+ seg := s.FirstSegment()
+ if !seg.Ok() {
+ return
+ }
+ next := seg.NextSegment()
+ for next.Ok() {
+ if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
+ seg, next = mseg, mseg.NextSegment()
+ } else {
+ seg, next = next, next.NextSegment()
+ }
+ }
+}
+
+// MergeRange attempts to merge all adjacent segments that contain a key in the
+// specific range. All existing iterators are invalidated.
+func (s *FileRangeSet) MergeRange(r __generics_imported0.MappableRange) {
+ seg := s.LowerBoundSegment(r.Start)
+ if !seg.Ok() {
+ return
+ }
+ next := seg.NextSegment()
+ for next.Ok() && next.Range().Start < r.End {
+ if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
+ seg, next = mseg, mseg.NextSegment()
+ } else {
+ seg, next = next, next.NextSegment()
+ }
+ }
+}
+
+// MergeAdjacent attempts to merge the segment containing r.Start with its
+// predecessor, and the segment containing r.End-1 with its successor.
+func (s *FileRangeSet) MergeAdjacent(r __generics_imported0.MappableRange) {
+ first := s.FindSegment(r.Start)
+ if first.Ok() {
+ if prev := first.PrevSegment(); prev.Ok() {
+ s.Merge(prev, first)
+ }
+ }
+ last := s.FindSegment(r.End - 1)
+ if last.Ok() {
+ if next := last.NextSegment(); next.Ok() {
+ s.Merge(last, next)
+ }
+ }
+}
+
+// Split splits the given segment at the given key and returns iterators to the
+// two resulting segments. All existing iterators (including seg, but not
+// including the returned iterators) are invalidated.
+//
+// If the segment cannot be split at split (because split is at the start or
+// end of the segment's range, so splitting would produce a segment with zero
+// length, or because split falls outside the segment's range altogether),
+// Split panics.
+func (s *FileRangeSet) Split(seg FileRangeIterator, split uint64) (FileRangeIterator, FileRangeIterator) {
+ if !seg.Range().CanSplitAt(split) {
+ panic(fmt.Sprintf("can't split %v at %v", seg.Range(), split))
+ }
+ return s.SplitUnchecked(seg, split)
+}
+
+// SplitUnchecked splits the given segment at the given key and returns
+// iterators to the two resulting segments. All existing iterators (including
+// seg, but not including the returned iterators) are invalidated.
+//
+// Preconditions: seg.Start() < key < seg.End().
+func (s *FileRangeSet) SplitUnchecked(seg FileRangeIterator, split uint64) (FileRangeIterator, FileRangeIterator) {
+ val1, val2 := (FileRangeSetFunctions{}).Split(seg.Range(), seg.Value(), split)
+ end2 := seg.End()
+ seg.SetEndUnchecked(split)
+ seg.SetValue(val1)
+ seg2 := s.InsertWithoutMergingUnchecked(seg.NextGap(), __generics_imported0.MappableRange{split, end2}, val2)
+
+ return seg2.PrevSegment(), seg2
+}
+
+// SplitAt splits the segment straddling split, if one exists. SplitAt returns
+// true if a segment was split and false otherwise. If SplitAt splits a
+// segment, all existing iterators are invalidated.
+func (s *FileRangeSet) SplitAt(split uint64) bool {
+ if seg := s.FindSegment(split); seg.Ok() && seg.Range().CanSplitAt(split) {
+ s.SplitUnchecked(seg, split)
+ return true
+ }
+ return false
+}
+
+// Isolate ensures that the given segment's range does not escape r by
+// splitting at r.Start and r.End if necessary, and returns an updated iterator
+// to the bounded segment. All existing iterators (including seg, but not
+// including the returned iterators) are invalidated.
+func (s *FileRangeSet) Isolate(seg FileRangeIterator, r __generics_imported0.MappableRange) FileRangeIterator {
+ if seg.Range().CanSplitAt(r.Start) {
+ _, seg = s.SplitUnchecked(seg, r.Start)
+ }
+ if seg.Range().CanSplitAt(r.End) {
+ seg, _ = s.SplitUnchecked(seg, r.End)
+ }
+ return seg
+}
+
+// ApplyContiguous applies a function to a contiguous range of segments,
+// splitting if necessary. The function is applied until the first gap is
+// encountered, at which point the gap is returned. If the function is applied
+// across the entire range, a terminal gap is returned. All existing iterators
+// are invalidated.
+//
+// N.B. The Iterator must not be invalidated by the function.
+func (s *FileRangeSet) ApplyContiguous(r __generics_imported0.MappableRange, fn func(seg FileRangeIterator)) FileRangeGapIterator {
+ seg, gap := s.Find(r.Start)
+ if !seg.Ok() {
+ return gap
+ }
+ for {
+ seg = s.Isolate(seg, r)
+ fn(seg)
+ if seg.End() >= r.End {
+ return FileRangeGapIterator{}
+ }
+ gap = seg.NextGap()
+ if !gap.IsEmpty() {
+ return gap
+ }
+ seg = gap.NextSegment()
+ if !seg.Ok() {
+
+ return FileRangeGapIterator{}
+ }
+ }
+}
+
+// +stateify savable
+type FileRangenode struct {
+ // An internal binary tree node looks like:
+ //
+ // K
+ // / \
+ // Cl Cr
+ //
+ // where all keys in the subtree rooted by Cl (the left subtree) are less
+ // than K (the key of the parent node), and all keys in the subtree rooted
+ // by Cr (the right subtree) are greater than K.
+ //
+ // An internal B-tree node's indexes work out to look like:
+ //
+ // K0 K1 K2 ... Kn-1
+ // / \/ \/ \ ... / \
+ // C0 C1 C2 C3 ... Cn-1 Cn
+ //
+ // where n is nrSegments.
+ nrSegments int
+
+ // parent is a pointer to this node's parent. If this node is root, parent
+ // is nil.
+ parent *FileRangenode
+
+ // parentIndex is the index of this node in parent.children.
+ parentIndex int
+
+ // Flag for internal nodes that is technically redundant with "children[0]
+ // != nil", but is stored in the first cache line. "hasChildren" rather
+ // than "isLeaf" because false must be the correct value for an empty root.
+ hasChildren bool
+
+ // The longest gap within this node. If the node is a leaf, it's simply the
+ // maximum gap among all the (nrSegments+1) gaps formed by its nrSegments keys
+ // including the 0th and nrSegments-th gap possibly shared with its upper-level
+ // nodes; if it's a non-leaf node, it's the max of all children's maxGap.
+ maxGap FileRangedynamicGap
+
+ // Nodes store keys and values in separate arrays to maximize locality in
+ // the common case (scanning keys for lookup).
+ keys [FileRangemaxDegree - 1]__generics_imported0.MappableRange
+ values [FileRangemaxDegree - 1]uint64
+ children [FileRangemaxDegree]*FileRangenode
+}
+
+// firstSegment returns the first segment in the subtree rooted by n.
+//
+// Preconditions: n.nrSegments != 0.
+func (n *FileRangenode) firstSegment() FileRangeIterator {
+ for n.hasChildren {
+ n = n.children[0]
+ }
+ return FileRangeIterator{n, 0}
+}
+
+// lastSegment returns the last segment in the subtree rooted by n.
+//
+// Preconditions: n.nrSegments != 0.
+func (n *FileRangenode) lastSegment() FileRangeIterator {
+ for n.hasChildren {
+ n = n.children[n.nrSegments]
+ }
+ return FileRangeIterator{n, n.nrSegments - 1}
+}
+
+func (n *FileRangenode) prevSibling() *FileRangenode {
+ if n.parent == nil || n.parentIndex == 0 {
+ return nil
+ }
+ return n.parent.children[n.parentIndex-1]
+}
+
+func (n *FileRangenode) nextSibling() *FileRangenode {
+ if n.parent == nil || n.parentIndex == n.parent.nrSegments {
+ return nil
+ }
+ return n.parent.children[n.parentIndex+1]
+}
+
+// rebalanceBeforeInsert splits n and its ancestors if they are full, as
+// required for insertion, and returns an updated iterator to the position
+// represented by gap.
+func (n *FileRangenode) rebalanceBeforeInsert(gap FileRangeGapIterator) FileRangeGapIterator {
+ if n.nrSegments < FileRangemaxDegree-1 {
+ return gap
+ }
+ if n.parent != nil {
+ gap = n.parent.rebalanceBeforeInsert(gap)
+ }
+ if n.parent == nil {
+
+ left := &FileRangenode{
+ nrSegments: FileRangeminDegree - 1,
+ parent: n,
+ parentIndex: 0,
+ hasChildren: n.hasChildren,
+ }
+ right := &FileRangenode{
+ nrSegments: FileRangeminDegree - 1,
+ parent: n,
+ parentIndex: 1,
+ hasChildren: n.hasChildren,
+ }
+ copy(left.keys[:FileRangeminDegree-1], n.keys[:FileRangeminDegree-1])
+ copy(left.values[:FileRangeminDegree-1], n.values[:FileRangeminDegree-1])
+ copy(right.keys[:FileRangeminDegree-1], n.keys[FileRangeminDegree:])
+ copy(right.values[:FileRangeminDegree-1], n.values[FileRangeminDegree:])
+ n.keys[0], n.values[0] = n.keys[FileRangeminDegree-1], n.values[FileRangeminDegree-1]
+ FileRangezeroValueSlice(n.values[1:])
+ if n.hasChildren {
+ copy(left.children[:FileRangeminDegree], n.children[:FileRangeminDegree])
+ copy(right.children[:FileRangeminDegree], n.children[FileRangeminDegree:])
+ FileRangezeroNodeSlice(n.children[2:])
+ for i := 0; i < FileRangeminDegree; i++ {
+ left.children[i].parent = left
+ left.children[i].parentIndex = i
+ right.children[i].parent = right
+ right.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments = 1
+ n.hasChildren = true
+ n.children[0] = left
+ n.children[1] = right
+
+ if FileRangetrackGaps != 0 {
+ left.updateMaxGapLocal()
+ right.updateMaxGapLocal()
+ }
+ if gap.node != n {
+ return gap
+ }
+ if gap.index < FileRangeminDegree {
+ return FileRangeGapIterator{left, gap.index}
+ }
+ return FileRangeGapIterator{right, gap.index - FileRangeminDegree}
+ }
+
+ copy(n.parent.keys[n.parentIndex+1:], n.parent.keys[n.parentIndex:n.parent.nrSegments])
+ copy(n.parent.values[n.parentIndex+1:], n.parent.values[n.parentIndex:n.parent.nrSegments])
+ n.parent.keys[n.parentIndex], n.parent.values[n.parentIndex] = n.keys[FileRangeminDegree-1], n.values[FileRangeminDegree-1]
+ copy(n.parent.children[n.parentIndex+2:], n.parent.children[n.parentIndex+1:n.parent.nrSegments+1])
+ for i := n.parentIndex + 2; i < n.parent.nrSegments+2; i++ {
+ n.parent.children[i].parentIndex = i
+ }
+ sibling := &FileRangenode{
+ nrSegments: FileRangeminDegree - 1,
+ parent: n.parent,
+ parentIndex: n.parentIndex + 1,
+ hasChildren: n.hasChildren,
+ }
+ n.parent.children[n.parentIndex+1] = sibling
+ n.parent.nrSegments++
+ copy(sibling.keys[:FileRangeminDegree-1], n.keys[FileRangeminDegree:])
+ copy(sibling.values[:FileRangeminDegree-1], n.values[FileRangeminDegree:])
+ FileRangezeroValueSlice(n.values[FileRangeminDegree-1:])
+ if n.hasChildren {
+ copy(sibling.children[:FileRangeminDegree], n.children[FileRangeminDegree:])
+ FileRangezeroNodeSlice(n.children[FileRangeminDegree:])
+ for i := 0; i < FileRangeminDegree; i++ {
+ sibling.children[i].parent = sibling
+ sibling.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments = FileRangeminDegree - 1
+
+ if FileRangetrackGaps != 0 {
+ n.updateMaxGapLocal()
+ sibling.updateMaxGapLocal()
+ }
+
+ if gap.node != n {
+ return gap
+ }
+ if gap.index < FileRangeminDegree {
+ return gap
+ }
+ return FileRangeGapIterator{sibling, gap.index - FileRangeminDegree}
+}
+
+// rebalanceAfterRemove "unsplits" n and its ancestors if they are deficient
+// (contain fewer segments than required by B-tree invariants), as required for
+// removal, and returns an updated iterator to the position represented by gap.
+//
+// Precondition: n is the only node in the tree that may currently violate a
+// B-tree invariant.
+func (n *FileRangenode) rebalanceAfterRemove(gap FileRangeGapIterator) FileRangeGapIterator {
+ for {
+ if n.nrSegments >= FileRangeminDegree-1 {
+ return gap
+ }
+ if n.parent == nil {
+
+ return gap
+ }
+
+ if sibling := n.prevSibling(); sibling != nil && sibling.nrSegments >= FileRangeminDegree {
+ copy(n.keys[1:], n.keys[:n.nrSegments])
+ copy(n.values[1:], n.values[:n.nrSegments])
+ n.keys[0] = n.parent.keys[n.parentIndex-1]
+ n.values[0] = n.parent.values[n.parentIndex-1]
+ n.parent.keys[n.parentIndex-1] = sibling.keys[sibling.nrSegments-1]
+ n.parent.values[n.parentIndex-1] = sibling.values[sibling.nrSegments-1]
+ FileRangeSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
+ if n.hasChildren {
+ copy(n.children[1:], n.children[:n.nrSegments+1])
+ n.children[0] = sibling.children[sibling.nrSegments]
+ sibling.children[sibling.nrSegments] = nil
+ n.children[0].parent = n
+ n.children[0].parentIndex = 0
+ for i := 1; i < n.nrSegments+2; i++ {
+ n.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments++
+ sibling.nrSegments--
+
+ if FileRangetrackGaps != 0 {
+ n.updateMaxGapLocal()
+ sibling.updateMaxGapLocal()
+ }
+ if gap.node == sibling && gap.index == sibling.nrSegments {
+ return FileRangeGapIterator{n, 0}
+ }
+ if gap.node == n {
+ return FileRangeGapIterator{n, gap.index + 1}
+ }
+ return gap
+ }
+ if sibling := n.nextSibling(); sibling != nil && sibling.nrSegments >= FileRangeminDegree {
+ n.keys[n.nrSegments] = n.parent.keys[n.parentIndex]
+ n.values[n.nrSegments] = n.parent.values[n.parentIndex]
+ n.parent.keys[n.parentIndex] = sibling.keys[0]
+ n.parent.values[n.parentIndex] = sibling.values[0]
+ copy(sibling.keys[:sibling.nrSegments-1], sibling.keys[1:])
+ copy(sibling.values[:sibling.nrSegments-1], sibling.values[1:])
+ FileRangeSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
+ if n.hasChildren {
+ n.children[n.nrSegments+1] = sibling.children[0]
+ copy(sibling.children[:sibling.nrSegments], sibling.children[1:])
+ sibling.children[sibling.nrSegments] = nil
+ n.children[n.nrSegments+1].parent = n
+ n.children[n.nrSegments+1].parentIndex = n.nrSegments + 1
+ for i := 0; i < sibling.nrSegments; i++ {
+ sibling.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments++
+ sibling.nrSegments--
+
+ if FileRangetrackGaps != 0 {
+ n.updateMaxGapLocal()
+ sibling.updateMaxGapLocal()
+ }
+ if gap.node == sibling {
+ if gap.index == 0 {
+ return FileRangeGapIterator{n, n.nrSegments}
+ }
+ return FileRangeGapIterator{sibling, gap.index - 1}
+ }
+ return gap
+ }
+
+ p := n.parent
+ if p.nrSegments == 1 {
+
+ left, right := p.children[0], p.children[1]
+ p.nrSegments = left.nrSegments + right.nrSegments + 1
+ p.hasChildren = left.hasChildren
+ p.keys[left.nrSegments] = p.keys[0]
+ p.values[left.nrSegments] = p.values[0]
+ copy(p.keys[:left.nrSegments], left.keys[:left.nrSegments])
+ copy(p.values[:left.nrSegments], left.values[:left.nrSegments])
+ copy(p.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
+ copy(p.values[left.nrSegments+1:], right.values[:right.nrSegments])
+ if left.hasChildren {
+ copy(p.children[:left.nrSegments+1], left.children[:left.nrSegments+1])
+ copy(p.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
+ for i := 0; i < p.nrSegments+1; i++ {
+ p.children[i].parent = p
+ p.children[i].parentIndex = i
+ }
+ } else {
+ p.children[0] = nil
+ p.children[1] = nil
+ }
+
+ if gap.node == left {
+ return FileRangeGapIterator{p, gap.index}
+ }
+ if gap.node == right {
+ return FileRangeGapIterator{p, gap.index + left.nrSegments + 1}
+ }
+ return gap
+ }
+ // Merge n and either sibling, along with the segment separating the
+ // two, into whichever of the two nodes comes first. This is the
+ // reverse of the non-root splitting case in
+ // node.rebalanceBeforeInsert.
+ var left, right *FileRangenode
+ if n.parentIndex > 0 {
+ left = n.prevSibling()
+ right = n
+ } else {
+ left = n
+ right = n.nextSibling()
+ }
+
+ if gap.node == right {
+ gap = FileRangeGapIterator{left, gap.index + left.nrSegments + 1}
+ }
+ left.keys[left.nrSegments] = p.keys[left.parentIndex]
+ left.values[left.nrSegments] = p.values[left.parentIndex]
+ copy(left.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
+ copy(left.values[left.nrSegments+1:], right.values[:right.nrSegments])
+ if left.hasChildren {
+ copy(left.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
+ for i := left.nrSegments + 1; i < left.nrSegments+right.nrSegments+2; i++ {
+ left.children[i].parent = left
+ left.children[i].parentIndex = i
+ }
+ }
+ left.nrSegments += right.nrSegments + 1
+ copy(p.keys[left.parentIndex:], p.keys[left.parentIndex+1:p.nrSegments])
+ copy(p.values[left.parentIndex:], p.values[left.parentIndex+1:p.nrSegments])
+ FileRangeSetFunctions{}.ClearValue(&p.values[p.nrSegments-1])
+ copy(p.children[left.parentIndex+1:], p.children[left.parentIndex+2:p.nrSegments+1])
+ for i := 0; i < p.nrSegments; i++ {
+ p.children[i].parentIndex = i
+ }
+ p.children[p.nrSegments] = nil
+ p.nrSegments--
+
+ if FileRangetrackGaps != 0 {
+ left.updateMaxGapLocal()
+ }
+
+ n = p
+ }
+}
+
+// updateMaxGapLeaf updates maxGap bottom-up from the calling leaf until no
+// necessary update.
+//
+// Preconditions: n must be a leaf node, trackGaps must be 1.
+func (n *FileRangenode) updateMaxGapLeaf() {
+ if n.hasChildren {
+ panic(fmt.Sprintf("updateMaxGapLeaf should always be called on leaf node: %v", n))
+ }
+ max := n.calculateMaxGapLeaf()
+ if max == n.maxGap.Get() {
+
+ return
+ }
+ oldMax := n.maxGap.Get()
+ n.maxGap.Set(max)
+ if max > oldMax {
+
+ for p := n.parent; p != nil; p = p.parent {
+ if p.maxGap.Get() >= max {
+
+ break
+ }
+
+ p.maxGap.Set(max)
+ }
+ return
+ }
+
+ for p := n.parent; p != nil; p = p.parent {
+ if p.maxGap.Get() > oldMax {
+
+ break
+ }
+
+ parentNewMax := p.calculateMaxGapInternal()
+ if p.maxGap.Get() == parentNewMax {
+
+ break
+ }
+
+ p.maxGap.Set(parentNewMax)
+ }
+}
+
+// updateMaxGapLocal updates maxGap of the calling node solely with no
+// propagation to ancestor nodes.
+//
+// Precondition: trackGaps must be 1.
+func (n *FileRangenode) updateMaxGapLocal() {
+ if !n.hasChildren {
+
+ n.maxGap.Set(n.calculateMaxGapLeaf())
+ } else {
+
+ n.maxGap.Set(n.calculateMaxGapInternal())
+ }
+}
+
+// calculateMaxGapLeaf iterates the gaps within a leaf node and calculate the
+// max.
+//
+// Preconditions: n must be a leaf node.
+func (n *FileRangenode) calculateMaxGapLeaf() uint64 {
+ max := FileRangeGapIterator{n, 0}.Range().Length()
+ for i := 1; i <= n.nrSegments; i++ {
+ if current := (FileRangeGapIterator{n, i}).Range().Length(); current > max {
+ max = current
+ }
+ }
+ return max
+}
+
+// calculateMaxGapInternal iterates children's maxGap within an internal node n
+// and calculate the max.
+//
+// Preconditions: n must be a non-leaf node.
+func (n *FileRangenode) calculateMaxGapInternal() uint64 {
+ max := n.children[0].maxGap.Get()
+ for i := 1; i <= n.nrSegments; i++ {
+ if current := n.children[i].maxGap.Get(); current > max {
+ max = current
+ }
+ }
+ return max
+}
+
+// searchFirstLargeEnoughGap returns the first gap having at least minSize length
+// in the subtree rooted by n. If not found, return a terminal gap iterator.
+func (n *FileRangenode) searchFirstLargeEnoughGap(minSize uint64) FileRangeGapIterator {
+ if n.maxGap.Get() < minSize {
+ return FileRangeGapIterator{}
+ }
+ if n.hasChildren {
+ for i := 0; i <= n.nrSegments; i++ {
+ if largeEnoughGap := n.children[i].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() {
+ return largeEnoughGap
+ }
+ }
+ } else {
+ for i := 0; i <= n.nrSegments; i++ {
+ currentGap := FileRangeGapIterator{n, i}
+ if currentGap.Range().Length() >= minSize {
+ return currentGap
+ }
+ }
+ }
+ panic(fmt.Sprintf("invalid maxGap in %v", n))
+}
+
+// searchLastLargeEnoughGap returns the last gap having at least minSize length
+// in the subtree rooted by n. If not found, return a terminal gap iterator.
+func (n *FileRangenode) searchLastLargeEnoughGap(minSize uint64) FileRangeGapIterator {
+ if n.maxGap.Get() < minSize {
+ return FileRangeGapIterator{}
+ }
+ if n.hasChildren {
+ for i := n.nrSegments; i >= 0; i-- {
+ if largeEnoughGap := n.children[i].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() {
+ return largeEnoughGap
+ }
+ }
+ } else {
+ for i := n.nrSegments; i >= 0; i-- {
+ currentGap := FileRangeGapIterator{n, i}
+ if currentGap.Range().Length() >= minSize {
+ return currentGap
+ }
+ }
+ }
+ panic(fmt.Sprintf("invalid maxGap in %v", n))
+}
+
+// A Iterator is conceptually one of:
+//
+// - A pointer to a segment in a set; or
+//
+// - A terminal iterator, which is a sentinel indicating that the end of
+// iteration has been reached.
+//
+// Iterators are copyable values and are meaningfully equality-comparable. The
+// zero value of Iterator is a terminal iterator.
+//
+// Unless otherwise specified, any mutation of a set invalidates all existing
+// iterators into the set.
+type FileRangeIterator struct {
+ // node is the node containing the iterated segment. If the iterator is
+ // terminal, node is nil.
+ node *FileRangenode
+
+ // index is the index of the segment in node.keys/values.
+ index int
+}
+
+// Ok returns true if the iterator is not terminal. All other methods are only
+// valid for non-terminal iterators.
+func (seg FileRangeIterator) Ok() bool {
+ return seg.node != nil
+}
+
+// Range returns the iterated segment's range key.
+func (seg FileRangeIterator) Range() __generics_imported0.MappableRange {
+ return seg.node.keys[seg.index]
+}
+
+// Start is equivalent to Range().Start, but should be preferred if only the
+// start of the range is needed.
+func (seg FileRangeIterator) Start() uint64 {
+ return seg.node.keys[seg.index].Start
+}
+
+// End is equivalent to Range().End, but should be preferred if only the end of
+// the range is needed.
+func (seg FileRangeIterator) End() uint64 {
+ return seg.node.keys[seg.index].End
+}
+
+// SetRangeUnchecked mutates the iterated segment's range key. This operation
+// does not invalidate any iterators.
+//
+// Preconditions:
+// * r.Length() > 0.
+// * The new range must not overlap an existing one:
+// * If seg.NextSegment().Ok(), then r.end <= seg.NextSegment().Start().
+// * If seg.PrevSegment().Ok(), then r.start >= seg.PrevSegment().End().
+func (seg FileRangeIterator) SetRangeUnchecked(r __generics_imported0.MappableRange) {
+ seg.node.keys[seg.index] = r
+}
+
+// SetRange mutates the iterated segment's range key. If the new range would
+// cause the iterated segment to overlap another segment, or if the new range
+// is invalid, SetRange panics. This operation does not invalidate any
+// iterators.
+func (seg FileRangeIterator) SetRange(r __generics_imported0.MappableRange) {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ if prev := seg.PrevSegment(); prev.Ok() && r.Start < prev.End() {
+ panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, prev.Range()))
+ }
+ if next := seg.NextSegment(); next.Ok() && r.End > next.Start() {
+ panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, next.Range()))
+ }
+ seg.SetRangeUnchecked(r)
+}
+
+// SetStartUnchecked mutates the iterated segment's start. This operation does
+// not invalidate any iterators.
+//
+// Preconditions: The new start must be valid:
+// * start < seg.End()
+// * If seg.PrevSegment().Ok(), then start >= seg.PrevSegment().End().
+func (seg FileRangeIterator) SetStartUnchecked(start uint64) {
+ seg.node.keys[seg.index].Start = start
+}
+
+// SetStart mutates the iterated segment's start. If the new start value would
+// cause the iterated segment to overlap another segment, or would result in an
+// invalid range, SetStart panics. This operation does not invalidate any
+// iterators.
+func (seg FileRangeIterator) SetStart(start uint64) {
+ if start >= seg.End() {
+ panic(fmt.Sprintf("new start %v would invalidate segment range %v", start, seg.Range()))
+ }
+ if prev := seg.PrevSegment(); prev.Ok() && start < prev.End() {
+ panic(fmt.Sprintf("new start %v would cause segment range %v to overlap segment range %v", start, seg.Range(), prev.Range()))
+ }
+ seg.SetStartUnchecked(start)
+}
+
+// SetEndUnchecked mutates the iterated segment's end. This operation does not
+// invalidate any iterators.
+//
+// Preconditions: The new end must be valid:
+// * end > seg.Start().
+// * If seg.NextSegment().Ok(), then end <= seg.NextSegment().Start().
+func (seg FileRangeIterator) SetEndUnchecked(end uint64) {
+ seg.node.keys[seg.index].End = end
+}
+
+// SetEnd mutates the iterated segment's end. If the new end value would cause
+// the iterated segment to overlap another segment, or would result in an
+// invalid range, SetEnd panics. This operation does not invalidate any
+// iterators.
+func (seg FileRangeIterator) SetEnd(end uint64) {
+ if end <= seg.Start() {
+ panic(fmt.Sprintf("new end %v would invalidate segment range %v", end, seg.Range()))
+ }
+ if next := seg.NextSegment(); next.Ok() && end > next.Start() {
+ panic(fmt.Sprintf("new end %v would cause segment range %v to overlap segment range %v", end, seg.Range(), next.Range()))
+ }
+ seg.SetEndUnchecked(end)
+}
+
+// Value returns a copy of the iterated segment's value.
+func (seg FileRangeIterator) Value() uint64 {
+ return seg.node.values[seg.index]
+}
+
+// ValuePtr returns a pointer to the iterated segment's value. The pointer is
+// invalidated if the iterator is invalidated. This operation does not
+// invalidate any iterators.
+func (seg FileRangeIterator) ValuePtr() *uint64 {
+ return &seg.node.values[seg.index]
+}
+
+// SetValue mutates the iterated segment's value. This operation does not
+// invalidate any iterators.
+func (seg FileRangeIterator) SetValue(val uint64) {
+ seg.node.values[seg.index] = val
+}
+
+// PrevSegment returns the iterated segment's predecessor. If there is no
+// preceding segment, PrevSegment returns a terminal iterator.
+func (seg FileRangeIterator) PrevSegment() FileRangeIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index].lastSegment()
+ }
+ if seg.index > 0 {
+ return FileRangeIterator{seg.node, seg.index - 1}
+ }
+ if seg.node.parent == nil {
+ return FileRangeIterator{}
+ }
+ return FileRangesegmentBeforePosition(seg.node.parent, seg.node.parentIndex)
+}
+
+// NextSegment returns the iterated segment's successor. If there is no
+// succeeding segment, NextSegment returns a terminal iterator.
+func (seg FileRangeIterator) NextSegment() FileRangeIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index+1].firstSegment()
+ }
+ if seg.index < seg.node.nrSegments-1 {
+ return FileRangeIterator{seg.node, seg.index + 1}
+ }
+ if seg.node.parent == nil {
+ return FileRangeIterator{}
+ }
+ return FileRangesegmentAfterPosition(seg.node.parent, seg.node.parentIndex)
+}
+
+// PrevGap returns the gap immediately before the iterated segment.
+func (seg FileRangeIterator) PrevGap() FileRangeGapIterator {
+ if seg.node.hasChildren {
+
+ return seg.node.children[seg.index].lastSegment().NextGap()
+ }
+ return FileRangeGapIterator{seg.node, seg.index}
+}
+
+// NextGap returns the gap immediately after the iterated segment.
+func (seg FileRangeIterator) NextGap() FileRangeGapIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index+1].firstSegment().PrevGap()
+ }
+ return FileRangeGapIterator{seg.node, seg.index + 1}
+}
+
+// PrevNonEmpty returns the iterated segment's predecessor if it is adjacent,
+// or the gap before the iterated segment otherwise. If seg.Start() ==
+// Functions.MinKey(), PrevNonEmpty will return two terminal iterators.
+// Otherwise, exactly one of the iterators returned by PrevNonEmpty will be
+// non-terminal.
+func (seg FileRangeIterator) PrevNonEmpty() (FileRangeIterator, FileRangeGapIterator) {
+ gap := seg.PrevGap()
+ if gap.Range().Length() != 0 {
+ return FileRangeIterator{}, gap
+ }
+ return gap.PrevSegment(), FileRangeGapIterator{}
+}
+
+// NextNonEmpty returns the iterated segment's successor if it is adjacent, or
+// the gap after the iterated segment otherwise. If seg.End() ==
+// Functions.MaxKey(), NextNonEmpty will return two terminal iterators.
+// Otherwise, exactly one of the iterators returned by NextNonEmpty will be
+// non-terminal.
+func (seg FileRangeIterator) NextNonEmpty() (FileRangeIterator, FileRangeGapIterator) {
+ gap := seg.NextGap()
+ if gap.Range().Length() != 0 {
+ return FileRangeIterator{}, gap
+ }
+ return gap.NextSegment(), FileRangeGapIterator{}
+}
+
+// A GapIterator is conceptually one of:
+//
+// - A pointer to a position between two segments, before the first segment, or
+// after the last segment in a set, called a *gap*; or
+//
+// - A terminal iterator, which is a sentinel indicating that the end of
+// iteration has been reached.
+//
+// Note that the gap between two adjacent segments exists (iterators to it are
+// non-terminal), but has a length of zero. GapIterator.IsEmpty returns true
+// for such gaps. An empty set contains a single gap, spanning the entire range
+// of the set's keys.
+//
+// GapIterators are copyable values and are meaningfully equality-comparable.
+// The zero value of GapIterator is a terminal iterator.
+//
+// Unless otherwise specified, any mutation of a set invalidates all existing
+// iterators into the set.
+type FileRangeGapIterator struct {
+ // The representation of a GapIterator is identical to that of an Iterator,
+ // except that index corresponds to positions between segments in the same
+ // way as for node.children (see comment for node.nrSegments).
+ node *FileRangenode
+ index int
+}
+
+// Ok returns true if the iterator is not terminal. All other methods are only
+// valid for non-terminal iterators.
+func (gap FileRangeGapIterator) Ok() bool {
+ return gap.node != nil
+}
+
+// Range returns the range spanned by the iterated gap.
+func (gap FileRangeGapIterator) Range() __generics_imported0.MappableRange {
+ return __generics_imported0.MappableRange{gap.Start(), gap.End()}
+}
+
+// Start is equivalent to Range().Start, but should be preferred if only the
+// start of the range is needed.
+func (gap FileRangeGapIterator) Start() uint64 {
+ if ps := gap.PrevSegment(); ps.Ok() {
+ return ps.End()
+ }
+ return FileRangeSetFunctions{}.MinKey()
+}
+
+// End is equivalent to Range().End, but should be preferred if only the end of
+// the range is needed.
+func (gap FileRangeGapIterator) End() uint64 {
+ if ns := gap.NextSegment(); ns.Ok() {
+ return ns.Start()
+ }
+ return FileRangeSetFunctions{}.MaxKey()
+}
+
+// IsEmpty returns true if the iterated gap is empty (that is, the "gap" is
+// between two adjacent segments.)
+func (gap FileRangeGapIterator) IsEmpty() bool {
+ return gap.Range().Length() == 0
+}
+
+// PrevSegment returns the segment immediately before the iterated gap. If no
+// such segment exists, PrevSegment returns a terminal iterator.
+func (gap FileRangeGapIterator) PrevSegment() FileRangeIterator {
+ return FileRangesegmentBeforePosition(gap.node, gap.index)
+}
+
+// NextSegment returns the segment immediately after the iterated gap. If no
+// such segment exists, NextSegment returns a terminal iterator.
+func (gap FileRangeGapIterator) NextSegment() FileRangeIterator {
+ return FileRangesegmentAfterPosition(gap.node, gap.index)
+}
+
+// PrevGap returns the iterated gap's predecessor. If no such gap exists,
+// PrevGap returns a terminal iterator.
+func (gap FileRangeGapIterator) PrevGap() FileRangeGapIterator {
+ seg := gap.PrevSegment()
+ if !seg.Ok() {
+ return FileRangeGapIterator{}
+ }
+ return seg.PrevGap()
+}
+
+// NextGap returns the iterated gap's successor. If no such gap exists, NextGap
+// returns a terminal iterator.
+func (gap FileRangeGapIterator) NextGap() FileRangeGapIterator {
+ seg := gap.NextSegment()
+ if !seg.Ok() {
+ return FileRangeGapIterator{}
+ }
+ return seg.NextGap()
+}
+
+// NextLargeEnoughGap returns the iterated gap's first next gap with larger
+// length than minSize. If not found, return a terminal gap iterator (does NOT
+// include this gap itself).
+//
+// Precondition: trackGaps must be 1.
+func (gap FileRangeGapIterator) NextLargeEnoughGap(minSize uint64) FileRangeGapIterator {
+ if FileRangetrackGaps != 1 {
+ panic("set is not tracking gaps")
+ }
+ if gap.node != nil && gap.node.hasChildren && gap.index == gap.node.nrSegments {
+
+ gap.node = gap.NextSegment().node
+ gap.index = 0
+ return gap.nextLargeEnoughGapHelper(minSize)
+ }
+ return gap.nextLargeEnoughGapHelper(minSize)
+}
+
+// nextLargeEnoughGapHelper is the helper function used by NextLargeEnoughGap
+// to do the real recursions.
+//
+// Preconditions: gap is NOT the trailing gap of a non-leaf node.
+func (gap FileRangeGapIterator) nextLargeEnoughGapHelper(minSize uint64) FileRangeGapIterator {
+
+ for gap.node != nil &&
+ (gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == gap.node.nrSegments)) {
+ gap.node, gap.index = gap.node.parent, gap.node.parentIndex
+ }
+
+ if gap.node == nil {
+ return FileRangeGapIterator{}
+ }
+
+ gap.index++
+ for gap.index <= gap.node.nrSegments {
+ if gap.node.hasChildren {
+ if largeEnoughGap := gap.node.children[gap.index].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() {
+ return largeEnoughGap
+ }
+ } else {
+ if gap.Range().Length() >= minSize {
+ return gap
+ }
+ }
+ gap.index++
+ }
+ gap.node, gap.index = gap.node.parent, gap.node.parentIndex
+ if gap.node != nil && gap.index == gap.node.nrSegments {
+
+ gap.node, gap.index = gap.node.parent, gap.node.parentIndex
+ }
+ return gap.nextLargeEnoughGapHelper(minSize)
+}
+
+// PrevLargeEnoughGap returns the iterated gap's first prev gap with larger or
+// equal length than minSize. If not found, return a terminal gap iterator
+// (does NOT include this gap itself).
+//
+// Precondition: trackGaps must be 1.
+func (gap FileRangeGapIterator) PrevLargeEnoughGap(minSize uint64) FileRangeGapIterator {
+ if FileRangetrackGaps != 1 {
+ panic("set is not tracking gaps")
+ }
+ if gap.node != nil && gap.node.hasChildren && gap.index == 0 {
+
+ gap.node = gap.PrevSegment().node
+ gap.index = gap.node.nrSegments
+ return gap.prevLargeEnoughGapHelper(minSize)
+ }
+ return gap.prevLargeEnoughGapHelper(minSize)
+}
+
+// prevLargeEnoughGapHelper is the helper function used by PrevLargeEnoughGap
+// to do the real recursions.
+//
+// Preconditions: gap is NOT the first gap of a non-leaf node.
+func (gap FileRangeGapIterator) prevLargeEnoughGapHelper(minSize uint64) FileRangeGapIterator {
+
+ for gap.node != nil &&
+ (gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == 0)) {
+ gap.node, gap.index = gap.node.parent, gap.node.parentIndex
+ }
+
+ if gap.node == nil {
+ return FileRangeGapIterator{}
+ }
+
+ gap.index--
+ for gap.index >= 0 {
+ if gap.node.hasChildren {
+ if largeEnoughGap := gap.node.children[gap.index].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() {
+ return largeEnoughGap
+ }
+ } else {
+ if gap.Range().Length() >= minSize {
+ return gap
+ }
+ }
+ gap.index--
+ }
+ gap.node, gap.index = gap.node.parent, gap.node.parentIndex
+ if gap.node != nil && gap.index == 0 {
+
+ gap.node, gap.index = gap.node.parent, gap.node.parentIndex
+ }
+ return gap.prevLargeEnoughGapHelper(minSize)
+}
+
+// segmentBeforePosition returns the predecessor segment of the position given
+// by n.children[i], which may or may not contain a child. If no such segment
+// exists, segmentBeforePosition returns a terminal iterator.
+func FileRangesegmentBeforePosition(n *FileRangenode, i int) FileRangeIterator {
+ for i == 0 {
+ if n.parent == nil {
+ return FileRangeIterator{}
+ }
+ n, i = n.parent, n.parentIndex
+ }
+ return FileRangeIterator{n, i - 1}
+}
+
+// segmentAfterPosition returns the successor segment of the position given by
+// n.children[i], which may or may not contain a child. If no such segment
+// exists, segmentAfterPosition returns a terminal iterator.
+func FileRangesegmentAfterPosition(n *FileRangenode, i int) FileRangeIterator {
+ for i == n.nrSegments {
+ if n.parent == nil {
+ return FileRangeIterator{}
+ }
+ n, i = n.parent, n.parentIndex
+ }
+ return FileRangeIterator{n, i}
+}
+
+func FileRangezeroValueSlice(slice []uint64) {
+
+ for i := range slice {
+ FileRangeSetFunctions{}.ClearValue(&slice[i])
+ }
+}
+
+func FileRangezeroNodeSlice(slice []*FileRangenode) {
+ for i := range slice {
+ slice[i] = nil
+ }
+}
+
+// String stringifies a Set for debugging.
+func (s *FileRangeSet) String() string {
+ return s.root.String()
+}
+
+// String stringifies a node (and all of its children) for debugging.
+func (n *FileRangenode) String() string {
+ var buf bytes.Buffer
+ n.writeDebugString(&buf, "")
+ return buf.String()
+}
+
+func (n *FileRangenode) writeDebugString(buf *bytes.Buffer, prefix string) {
+ if n.hasChildren != (n.nrSegments > 0 && n.children[0] != nil) {
+ buf.WriteString(prefix)
+ buf.WriteString(fmt.Sprintf("WARNING: inconsistent value of hasChildren: got %v, want %v\n", n.hasChildren, !n.hasChildren))
+ }
+ for i := 0; i < n.nrSegments; i++ {
+ if child := n.children[i]; child != nil {
+ cprefix := fmt.Sprintf("%s- % 3d ", prefix, i)
+ if child.parent != n || child.parentIndex != i {
+ buf.WriteString(cprefix)
+ buf.WriteString(fmt.Sprintf("WARNING: inconsistent linkage to parent: got (%p, %d), want (%p, %d)\n", child.parent, child.parentIndex, n, i))
+ }
+ child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i))
+ }
+ buf.WriteString(prefix)
+ if n.hasChildren {
+ if FileRangetrackGaps != 0 {
+ buf.WriteString(fmt.Sprintf("- % 3d: %v => %v, maxGap: %d\n", i, n.keys[i], n.values[i], n.maxGap.Get()))
+ } else {
+ buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i]))
+ }
+ } else {
+ buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i]))
+ }
+ }
+ if child := n.children[n.nrSegments]; child != nil {
+ child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments))
+ }
+}
+
+// SegmentDataSlices represents segments from a set as slices of start, end, and
+// values. SegmentDataSlices is primarily used as an intermediate representation
+// for save/restore and the layout here is optimized for that.
+//
+// +stateify savable
+type FileRangeSegmentDataSlices struct {
+ Start []uint64
+ End []uint64
+ Values []uint64
+}
+
+// ExportSortedSlice returns a copy of all segments in the given set, in ascending
+// key order.
+func (s *FileRangeSet) ExportSortedSlices() *FileRangeSegmentDataSlices {
+ var sds FileRangeSegmentDataSlices
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ sds.Start = append(sds.Start, seg.Start())
+ sds.End = append(sds.End, seg.End())
+ sds.Values = append(sds.Values, seg.Value())
+ }
+ sds.Start = sds.Start[:len(sds.Start):len(sds.Start)]
+ sds.End = sds.End[:len(sds.End):len(sds.End)]
+ sds.Values = sds.Values[:len(sds.Values):len(sds.Values)]
+ return &sds
+}
+
+// ImportSortedSlice initializes the given set from the given slice.
+//
+// Preconditions:
+// * s must be empty.
+// * sds must represent a valid set (the segments in sds must have valid
+// lengths that do not overlap).
+// * The segments in sds must be sorted in ascending key order.
+func (s *FileRangeSet) ImportSortedSlices(sds *FileRangeSegmentDataSlices) error {
+ if !s.IsEmpty() {
+ return fmt.Errorf("cannot import into non-empty set %v", s)
+ }
+ gap := s.FirstGap()
+ for i := range sds.Start {
+ r := __generics_imported0.MappableRange{sds.Start[i], sds.End[i]}
+ if !gap.Range().IsSupersetOf(r) {
+ return fmt.Errorf("segment overlaps a preceding segment or is incorrectly sorted: [%d, %d) => %v", sds.Start[i], sds.End[i], sds.Values[i])
+ }
+ gap = s.InsertWithoutMerging(gap, r, sds.Values[i]).NextGap()
+ }
+ return nil
+}
+
+// segmentTestCheck returns an error if s is incorrectly sorted, does not
+// contain exactly expectedSegments segments, or contains a segment which
+// fails the passed check.
+//
+// This should be used only for testing, and has been added to this package for
+// templating convenience.
+func (s *FileRangeSet) segmentTestCheck(expectedSegments int, segFunc func(int, __generics_imported0.MappableRange, uint64) error) error {
+ havePrev := false
+ prev := uint64(0)
+ nrSegments := 0
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ next := seg.Start()
+ if havePrev && prev >= next {
+ return fmt.Errorf("incorrect order: key %d (segment %d) >= key %d (segment %d)", prev, nrSegments-1, next, nrSegments)
+ }
+ if segFunc != nil {
+ if err := segFunc(nrSegments, seg.Range(), seg.Value()); err != nil {
+ return err
+ }
+ }
+ prev = next
+ havePrev = true
+ nrSegments++
+ }
+ if nrSegments != expectedSegments {
+ return fmt.Errorf("incorrect number of segments: got %d, wanted %d", nrSegments, expectedSegments)
+ }
+ return nil
+}
+
+// countSegments counts the number of segments in the set.
+//
+// Similar to Check, this should only be used for testing.
+func (s *FileRangeSet) countSegments() (segments int) {
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ segments++
+ }
+ return segments
+}
+func (s *FileRangeSet) saveRoot() *FileRangeSegmentDataSlices {
+ return s.ExportSortedSlices()
+}
+
+func (s *FileRangeSet) loadRoot(sds *FileRangeSegmentDataSlices) {
+ if err := s.ImportSortedSlices(sds); err != nil {
+ panic(err)
+ }
+}
diff --git a/pkg/sentry/fs/fsutil/frame_ref_set_impl.go b/pkg/sentry/fs/fsutil/frame_ref_set_impl.go
new file mode 100644
index 000000000..619246875
--- /dev/null
+++ b/pkg/sentry/fs/fsutil/frame_ref_set_impl.go
@@ -0,0 +1,1647 @@
+package fsutil
+
+import (
+ __generics_imported0 "gvisor.dev/gvisor/pkg/sentry/memmap"
+)
+
+import (
+ "bytes"
+ "fmt"
+)
+
+// trackGaps is an optional parameter.
+//
+// If trackGaps is 1, the Set will track maximum gap size recursively,
+// enabling the GapIterator.{Prev,Next}LargeEnoughGap functions. In this
+// case, Key must be an unsigned integer.
+//
+// trackGaps must be 0 or 1.
+const FrameReftrackGaps = 0
+
+var _ = uint8(FrameReftrackGaps << 7) // Will fail if not zero or one.
+
+// dynamicGap is a type that disappears if trackGaps is 0.
+type FrameRefdynamicGap [FrameReftrackGaps]uint64
+
+// Get returns the value of the gap.
+//
+// Precondition: trackGaps must be non-zero.
+func (d *FrameRefdynamicGap) Get() uint64 {
+ return d[:][0]
+}
+
+// Set sets the value of the gap.
+//
+// Precondition: trackGaps must be non-zero.
+func (d *FrameRefdynamicGap) Set(v uint64) {
+ d[:][0] = v
+}
+
+const (
+ // minDegree is the minimum degree of an internal node in a Set B-tree.
+ //
+ // - Any non-root node has at least minDegree-1 segments.
+ //
+ // - Any non-root internal (non-leaf) node has at least minDegree children.
+ //
+ // - The root node may have fewer than minDegree-1 segments, but it may
+ // only have 0 segments if the tree is empty.
+ //
+ // Our implementation requires minDegree >= 3. Higher values of minDegree
+ // usually improve performance, but increase memory usage for small sets.
+ FrameRefminDegree = 3
+
+ FrameRefmaxDegree = 2 * FrameRefminDegree
+)
+
+// A Set is a mapping of segments with non-overlapping Range keys. The zero
+// value for a Set is an empty set. Set values are not safely movable nor
+// copyable. Set is thread-compatible.
+//
+// +stateify savable
+type FrameRefSet struct {
+ root FrameRefnode `state:".(*FrameRefSegmentDataSlices)"`
+}
+
+// IsEmpty returns true if the set contains no segments.
+func (s *FrameRefSet) IsEmpty() bool {
+ return s.root.nrSegments == 0
+}
+
+// IsEmptyRange returns true iff no segments in the set overlap the given
+// range. This is semantically equivalent to s.SpanRange(r) == 0, but may be
+// more efficient.
+func (s *FrameRefSet) IsEmptyRange(r __generics_imported0.FileRange) bool {
+ switch {
+ case r.Length() < 0:
+ panic(fmt.Sprintf("invalid range %v", r))
+ case r.Length() == 0:
+ return true
+ }
+ _, gap := s.Find(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ return r.End <= gap.End()
+}
+
+// Span returns the total size of all segments in the set.
+func (s *FrameRefSet) Span() uint64 {
+ var sz uint64
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ sz += seg.Range().Length()
+ }
+ return sz
+}
+
+// SpanRange returns the total size of the intersection of segments in the set
+// with the given range.
+func (s *FrameRefSet) SpanRange(r __generics_imported0.FileRange) uint64 {
+ switch {
+ case r.Length() < 0:
+ panic(fmt.Sprintf("invalid range %v", r))
+ case r.Length() == 0:
+ return 0
+ }
+ var sz uint64
+ for seg := s.LowerBoundSegment(r.Start); seg.Ok() && seg.Start() < r.End; seg = seg.NextSegment() {
+ sz += seg.Range().Intersect(r).Length()
+ }
+ return sz
+}
+
+// FirstSegment returns the first segment in the set. If the set is empty,
+// FirstSegment returns a terminal iterator.
+func (s *FrameRefSet) FirstSegment() FrameRefIterator {
+ if s.root.nrSegments == 0 {
+ return FrameRefIterator{}
+ }
+ return s.root.firstSegment()
+}
+
+// LastSegment returns the last segment in the set. If the set is empty,
+// LastSegment returns a terminal iterator.
+func (s *FrameRefSet) LastSegment() FrameRefIterator {
+ if s.root.nrSegments == 0 {
+ return FrameRefIterator{}
+ }
+ return s.root.lastSegment()
+}
+
+// FirstGap returns the first gap in the set.
+func (s *FrameRefSet) FirstGap() FrameRefGapIterator {
+ n := &s.root
+ for n.hasChildren {
+ n = n.children[0]
+ }
+ return FrameRefGapIterator{n, 0}
+}
+
+// LastGap returns the last gap in the set.
+func (s *FrameRefSet) LastGap() FrameRefGapIterator {
+ n := &s.root
+ for n.hasChildren {
+ n = n.children[n.nrSegments]
+ }
+ return FrameRefGapIterator{n, n.nrSegments}
+}
+
+// Find returns the segment or gap whose range contains the given key. If a
+// segment is found, the returned Iterator is non-terminal and the
+// returned GapIterator is terminal. Otherwise, the returned Iterator is
+// terminal and the returned GapIterator is non-terminal.
+func (s *FrameRefSet) Find(key uint64) (FrameRefIterator, FrameRefGapIterator) {
+ n := &s.root
+ for {
+
+ lower := 0
+ upper := n.nrSegments
+ for lower < upper {
+ i := lower + (upper-lower)/2
+ if r := n.keys[i]; key < r.End {
+ if key >= r.Start {
+ return FrameRefIterator{n, i}, FrameRefGapIterator{}
+ }
+ upper = i
+ } else {
+ lower = i + 1
+ }
+ }
+ i := lower
+ if !n.hasChildren {
+ return FrameRefIterator{}, FrameRefGapIterator{n, i}
+ }
+ n = n.children[i]
+ }
+}
+
+// FindSegment returns the segment whose range contains the given key. If no
+// such segment exists, FindSegment returns a terminal iterator.
+func (s *FrameRefSet) FindSegment(key uint64) FrameRefIterator {
+ seg, _ := s.Find(key)
+ return seg
+}
+
+// LowerBoundSegment returns the segment with the lowest range that contains a
+// key greater than or equal to min. If no such segment exists,
+// LowerBoundSegment returns a terminal iterator.
+func (s *FrameRefSet) LowerBoundSegment(min uint64) FrameRefIterator {
+ seg, gap := s.Find(min)
+ if seg.Ok() {
+ return seg
+ }
+ return gap.NextSegment()
+}
+
+// UpperBoundSegment returns the segment with the highest range that contains a
+// key less than or equal to max. If no such segment exists, UpperBoundSegment
+// returns a terminal iterator.
+func (s *FrameRefSet) UpperBoundSegment(max uint64) FrameRefIterator {
+ seg, gap := s.Find(max)
+ if seg.Ok() {
+ return seg
+ }
+ return gap.PrevSegment()
+}
+
+// FindGap returns the gap containing the given key. If no such gap exists
+// (i.e. the set contains a segment containing that key), FindGap returns a
+// terminal iterator.
+func (s *FrameRefSet) FindGap(key uint64) FrameRefGapIterator {
+ _, gap := s.Find(key)
+ return gap
+}
+
+// LowerBoundGap returns the gap with the lowest range that is greater than or
+// equal to min.
+func (s *FrameRefSet) LowerBoundGap(min uint64) FrameRefGapIterator {
+ seg, gap := s.Find(min)
+ if gap.Ok() {
+ return gap
+ }
+ return seg.NextGap()
+}
+
+// UpperBoundGap returns the gap with the highest range that is less than or
+// equal to max.
+func (s *FrameRefSet) UpperBoundGap(max uint64) FrameRefGapIterator {
+ seg, gap := s.Find(max)
+ if gap.Ok() {
+ return gap
+ }
+ return seg.PrevGap()
+}
+
+// Add inserts the given segment into the set and returns true. If the new
+// segment can be merged with adjacent segments, Add will do so. If the new
+// segment would overlap an existing segment, Add returns false. If Add
+// succeeds, all existing iterators are invalidated.
+func (s *FrameRefSet) Add(r __generics_imported0.FileRange, val uint64) bool {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ gap := s.FindGap(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ if r.End > gap.End() {
+ return false
+ }
+ s.Insert(gap, r, val)
+ return true
+}
+
+// AddWithoutMerging inserts the given segment into the set and returns true.
+// If it would overlap an existing segment, AddWithoutMerging does nothing and
+// returns false. If AddWithoutMerging succeeds, all existing iterators are
+// invalidated.
+func (s *FrameRefSet) AddWithoutMerging(r __generics_imported0.FileRange, val uint64) bool {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ gap := s.FindGap(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ if r.End > gap.End() {
+ return false
+ }
+ s.InsertWithoutMergingUnchecked(gap, r, val)
+ return true
+}
+
+// Insert inserts the given segment into the given gap. If the new segment can
+// be merged with adjacent segments, Insert will do so. Insert returns an
+// iterator to the segment containing the inserted value (which may have been
+// merged with other values). All existing iterators (including gap, but not
+// including the returned iterator) are invalidated.
+//
+// If the gap cannot accommodate the segment, or if r is invalid, Insert panics.
+//
+// Insert is semantically equivalent to a InsertWithoutMerging followed by a
+// Merge, but may be more efficient. Note that there is no unchecked variant of
+// Insert since Insert must retrieve and inspect gap's predecessor and
+// successor segments regardless.
+func (s *FrameRefSet) Insert(gap FrameRefGapIterator, r __generics_imported0.FileRange, val uint64) FrameRefIterator {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ prev, next := gap.PrevSegment(), gap.NextSegment()
+ if prev.Ok() && prev.End() > r.Start {
+ panic(fmt.Sprintf("new segment %v overlaps predecessor %v", r, prev.Range()))
+ }
+ if next.Ok() && next.Start() < r.End {
+ panic(fmt.Sprintf("new segment %v overlaps successor %v", r, next.Range()))
+ }
+ if prev.Ok() && prev.End() == r.Start {
+ if mval, ok := (FrameRefSetFunctions{}).Merge(prev.Range(), prev.Value(), r, val); ok {
+ shrinkMaxGap := FrameReftrackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get()
+ prev.SetEndUnchecked(r.End)
+ prev.SetValue(mval)
+ if shrinkMaxGap {
+ gap.node.updateMaxGapLeaf()
+ }
+ if next.Ok() && next.Start() == r.End {
+ val = mval
+ if mval, ok := (FrameRefSetFunctions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok {
+ prev.SetEndUnchecked(next.End())
+ prev.SetValue(mval)
+ return s.Remove(next).PrevSegment()
+ }
+ }
+ return prev
+ }
+ }
+ if next.Ok() && next.Start() == r.End {
+ if mval, ok := (FrameRefSetFunctions{}).Merge(r, val, next.Range(), next.Value()); ok {
+ shrinkMaxGap := FrameReftrackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get()
+ next.SetStartUnchecked(r.Start)
+ next.SetValue(mval)
+ if shrinkMaxGap {
+ gap.node.updateMaxGapLeaf()
+ }
+ return next
+ }
+ }
+
+ return s.InsertWithoutMergingUnchecked(gap, r, val)
+}
+
+// InsertWithoutMerging inserts the given segment into the given gap and
+// returns an iterator to the inserted segment. All existing iterators
+// (including gap, but not including the returned iterator) are invalidated.
+//
+// If the gap cannot accommodate the segment, or if r is invalid,
+// InsertWithoutMerging panics.
+func (s *FrameRefSet) InsertWithoutMerging(gap FrameRefGapIterator, r __generics_imported0.FileRange, val uint64) FrameRefIterator {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ if gr := gap.Range(); !gr.IsSupersetOf(r) {
+ panic(fmt.Sprintf("cannot insert segment range %v into gap range %v", r, gr))
+ }
+ return s.InsertWithoutMergingUnchecked(gap, r, val)
+}
+
+// InsertWithoutMergingUnchecked inserts the given segment into the given gap
+// and returns an iterator to the inserted segment. All existing iterators
+// (including gap, but not including the returned iterator) are invalidated.
+//
+// Preconditions:
+// * r.Start >= gap.Start().
+// * r.End <= gap.End().
+func (s *FrameRefSet) InsertWithoutMergingUnchecked(gap FrameRefGapIterator, r __generics_imported0.FileRange, val uint64) FrameRefIterator {
+ gap = gap.node.rebalanceBeforeInsert(gap)
+ splitMaxGap := FrameReftrackGaps != 0 && (gap.node.nrSegments == 0 || gap.Range().Length() == gap.node.maxGap.Get())
+ copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments])
+ copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments])
+ gap.node.keys[gap.index] = r
+ gap.node.values[gap.index] = val
+ gap.node.nrSegments++
+ if splitMaxGap {
+ gap.node.updateMaxGapLeaf()
+ }
+ return FrameRefIterator{gap.node, gap.index}
+}
+
+// Remove removes the given segment and returns an iterator to the vacated gap.
+// All existing iterators (including seg, but not including the returned
+// iterator) are invalidated.
+func (s *FrameRefSet) Remove(seg FrameRefIterator) FrameRefGapIterator {
+
+ if seg.node.hasChildren {
+
+ victim := seg.PrevSegment()
+
+ seg.SetRangeUnchecked(victim.Range())
+ seg.SetValue(victim.Value())
+
+ nextAdjacentNode := seg.NextSegment().node
+ if FrameReftrackGaps != 0 {
+ nextAdjacentNode.updateMaxGapLeaf()
+ }
+ return s.Remove(victim).NextGap()
+ }
+ copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments])
+ copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments])
+ FrameRefSetFunctions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1])
+ seg.node.nrSegments--
+ if FrameReftrackGaps != 0 {
+ seg.node.updateMaxGapLeaf()
+ }
+ return seg.node.rebalanceAfterRemove(FrameRefGapIterator{seg.node, seg.index})
+}
+
+// RemoveAll removes all segments from the set. All existing iterators are
+// invalidated.
+func (s *FrameRefSet) RemoveAll() {
+ s.root = FrameRefnode{}
+}
+
+// RemoveRange removes all segments in the given range. An iterator to the
+// newly formed gap is returned, and all existing iterators are invalidated.
+func (s *FrameRefSet) RemoveRange(r __generics_imported0.FileRange) FrameRefGapIterator {
+ seg, gap := s.Find(r.Start)
+ if seg.Ok() {
+ seg = s.Isolate(seg, r)
+ gap = s.Remove(seg)
+ }
+ for seg = gap.NextSegment(); seg.Ok() && seg.Start() < r.End; seg = gap.NextSegment() {
+ seg = s.Isolate(seg, r)
+ gap = s.Remove(seg)
+ }
+ return gap
+}
+
+// Merge attempts to merge two neighboring segments. If successful, Merge
+// returns an iterator to the merged segment, and all existing iterators are
+// invalidated. Otherwise, Merge returns a terminal iterator.
+//
+// If first is not the predecessor of second, Merge panics.
+func (s *FrameRefSet) Merge(first, second FrameRefIterator) FrameRefIterator {
+ if first.NextSegment() != second {
+ panic(fmt.Sprintf("attempt to merge non-neighboring segments %v, %v", first.Range(), second.Range()))
+ }
+ return s.MergeUnchecked(first, second)
+}
+
+// MergeUnchecked attempts to merge two neighboring segments. If successful,
+// MergeUnchecked returns an iterator to the merged segment, and all existing
+// iterators are invalidated. Otherwise, MergeUnchecked returns a terminal
+// iterator.
+//
+// Precondition: first is the predecessor of second: first.NextSegment() ==
+// second, first == second.PrevSegment().
+func (s *FrameRefSet) MergeUnchecked(first, second FrameRefIterator) FrameRefIterator {
+ if first.End() == second.Start() {
+ if mval, ok := (FrameRefSetFunctions{}).Merge(first.Range(), first.Value(), second.Range(), second.Value()); ok {
+
+ first.SetEndUnchecked(second.End())
+ first.SetValue(mval)
+
+ return s.Remove(second).PrevSegment()
+ }
+ }
+ return FrameRefIterator{}
+}
+
+// MergeAll attempts to merge all adjacent segments in the set. All existing
+// iterators are invalidated.
+func (s *FrameRefSet) MergeAll() {
+ seg := s.FirstSegment()
+ if !seg.Ok() {
+ return
+ }
+ next := seg.NextSegment()
+ for next.Ok() {
+ if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
+ seg, next = mseg, mseg.NextSegment()
+ } else {
+ seg, next = next, next.NextSegment()
+ }
+ }
+}
+
+// MergeRange attempts to merge all adjacent segments that contain a key in the
+// specific range. All existing iterators are invalidated.
+func (s *FrameRefSet) MergeRange(r __generics_imported0.FileRange) {
+ seg := s.LowerBoundSegment(r.Start)
+ if !seg.Ok() {
+ return
+ }
+ next := seg.NextSegment()
+ for next.Ok() && next.Range().Start < r.End {
+ if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
+ seg, next = mseg, mseg.NextSegment()
+ } else {
+ seg, next = next, next.NextSegment()
+ }
+ }
+}
+
+// MergeAdjacent attempts to merge the segment containing r.Start with its
+// predecessor, and the segment containing r.End-1 with its successor.
+func (s *FrameRefSet) MergeAdjacent(r __generics_imported0.FileRange) {
+ first := s.FindSegment(r.Start)
+ if first.Ok() {
+ if prev := first.PrevSegment(); prev.Ok() {
+ s.Merge(prev, first)
+ }
+ }
+ last := s.FindSegment(r.End - 1)
+ if last.Ok() {
+ if next := last.NextSegment(); next.Ok() {
+ s.Merge(last, next)
+ }
+ }
+}
+
+// Split splits the given segment at the given key and returns iterators to the
+// two resulting segments. All existing iterators (including seg, but not
+// including the returned iterators) are invalidated.
+//
+// If the segment cannot be split at split (because split is at the start or
+// end of the segment's range, so splitting would produce a segment with zero
+// length, or because split falls outside the segment's range altogether),
+// Split panics.
+func (s *FrameRefSet) Split(seg FrameRefIterator, split uint64) (FrameRefIterator, FrameRefIterator) {
+ if !seg.Range().CanSplitAt(split) {
+ panic(fmt.Sprintf("can't split %v at %v", seg.Range(), split))
+ }
+ return s.SplitUnchecked(seg, split)
+}
+
+// SplitUnchecked splits the given segment at the given key and returns
+// iterators to the two resulting segments. All existing iterators (including
+// seg, but not including the returned iterators) are invalidated.
+//
+// Preconditions: seg.Start() < key < seg.End().
+func (s *FrameRefSet) SplitUnchecked(seg FrameRefIterator, split uint64) (FrameRefIterator, FrameRefIterator) {
+ val1, val2 := (FrameRefSetFunctions{}).Split(seg.Range(), seg.Value(), split)
+ end2 := seg.End()
+ seg.SetEndUnchecked(split)
+ seg.SetValue(val1)
+ seg2 := s.InsertWithoutMergingUnchecked(seg.NextGap(), __generics_imported0.FileRange{split, end2}, val2)
+
+ return seg2.PrevSegment(), seg2
+}
+
+// SplitAt splits the segment straddling split, if one exists. SplitAt returns
+// true if a segment was split and false otherwise. If SplitAt splits a
+// segment, all existing iterators are invalidated.
+func (s *FrameRefSet) SplitAt(split uint64) bool {
+ if seg := s.FindSegment(split); seg.Ok() && seg.Range().CanSplitAt(split) {
+ s.SplitUnchecked(seg, split)
+ return true
+ }
+ return false
+}
+
+// Isolate ensures that the given segment's range does not escape r by
+// splitting at r.Start and r.End if necessary, and returns an updated iterator
+// to the bounded segment. All existing iterators (including seg, but not
+// including the returned iterators) are invalidated.
+func (s *FrameRefSet) Isolate(seg FrameRefIterator, r __generics_imported0.FileRange) FrameRefIterator {
+ if seg.Range().CanSplitAt(r.Start) {
+ _, seg = s.SplitUnchecked(seg, r.Start)
+ }
+ if seg.Range().CanSplitAt(r.End) {
+ seg, _ = s.SplitUnchecked(seg, r.End)
+ }
+ return seg
+}
+
+// ApplyContiguous applies a function to a contiguous range of segments,
+// splitting if necessary. The function is applied until the first gap is
+// encountered, at which point the gap is returned. If the function is applied
+// across the entire range, a terminal gap is returned. All existing iterators
+// are invalidated.
+//
+// N.B. The Iterator must not be invalidated by the function.
+func (s *FrameRefSet) ApplyContiguous(r __generics_imported0.FileRange, fn func(seg FrameRefIterator)) FrameRefGapIterator {
+ seg, gap := s.Find(r.Start)
+ if !seg.Ok() {
+ return gap
+ }
+ for {
+ seg = s.Isolate(seg, r)
+ fn(seg)
+ if seg.End() >= r.End {
+ return FrameRefGapIterator{}
+ }
+ gap = seg.NextGap()
+ if !gap.IsEmpty() {
+ return gap
+ }
+ seg = gap.NextSegment()
+ if !seg.Ok() {
+
+ return FrameRefGapIterator{}
+ }
+ }
+}
+
+// +stateify savable
+type FrameRefnode struct {
+ // An internal binary tree node looks like:
+ //
+ // K
+ // / \
+ // Cl Cr
+ //
+ // where all keys in the subtree rooted by Cl (the left subtree) are less
+ // than K (the key of the parent node), and all keys in the subtree rooted
+ // by Cr (the right subtree) are greater than K.
+ //
+ // An internal B-tree node's indexes work out to look like:
+ //
+ // K0 K1 K2 ... Kn-1
+ // / \/ \/ \ ... / \
+ // C0 C1 C2 C3 ... Cn-1 Cn
+ //
+ // where n is nrSegments.
+ nrSegments int
+
+ // parent is a pointer to this node's parent. If this node is root, parent
+ // is nil.
+ parent *FrameRefnode
+
+ // parentIndex is the index of this node in parent.children.
+ parentIndex int
+
+ // Flag for internal nodes that is technically redundant with "children[0]
+ // != nil", but is stored in the first cache line. "hasChildren" rather
+ // than "isLeaf" because false must be the correct value for an empty root.
+ hasChildren bool
+
+ // The longest gap within this node. If the node is a leaf, it's simply the
+ // maximum gap among all the (nrSegments+1) gaps formed by its nrSegments keys
+ // including the 0th and nrSegments-th gap possibly shared with its upper-level
+ // nodes; if it's a non-leaf node, it's the max of all children's maxGap.
+ maxGap FrameRefdynamicGap
+
+ // Nodes store keys and values in separate arrays to maximize locality in
+ // the common case (scanning keys for lookup).
+ keys [FrameRefmaxDegree - 1]__generics_imported0.FileRange
+ values [FrameRefmaxDegree - 1]uint64
+ children [FrameRefmaxDegree]*FrameRefnode
+}
+
+// firstSegment returns the first segment in the subtree rooted by n.
+//
+// Preconditions: n.nrSegments != 0.
+func (n *FrameRefnode) firstSegment() FrameRefIterator {
+ for n.hasChildren {
+ n = n.children[0]
+ }
+ return FrameRefIterator{n, 0}
+}
+
+// lastSegment returns the last segment in the subtree rooted by n.
+//
+// Preconditions: n.nrSegments != 0.
+func (n *FrameRefnode) lastSegment() FrameRefIterator {
+ for n.hasChildren {
+ n = n.children[n.nrSegments]
+ }
+ return FrameRefIterator{n, n.nrSegments - 1}
+}
+
+func (n *FrameRefnode) prevSibling() *FrameRefnode {
+ if n.parent == nil || n.parentIndex == 0 {
+ return nil
+ }
+ return n.parent.children[n.parentIndex-1]
+}
+
+func (n *FrameRefnode) nextSibling() *FrameRefnode {
+ if n.parent == nil || n.parentIndex == n.parent.nrSegments {
+ return nil
+ }
+ return n.parent.children[n.parentIndex+1]
+}
+
+// rebalanceBeforeInsert splits n and its ancestors if they are full, as
+// required for insertion, and returns an updated iterator to the position
+// represented by gap.
+func (n *FrameRefnode) rebalanceBeforeInsert(gap FrameRefGapIterator) FrameRefGapIterator {
+ if n.nrSegments < FrameRefmaxDegree-1 {
+ return gap
+ }
+ if n.parent != nil {
+ gap = n.parent.rebalanceBeforeInsert(gap)
+ }
+ if n.parent == nil {
+
+ left := &FrameRefnode{
+ nrSegments: FrameRefminDegree - 1,
+ parent: n,
+ parentIndex: 0,
+ hasChildren: n.hasChildren,
+ }
+ right := &FrameRefnode{
+ nrSegments: FrameRefminDegree - 1,
+ parent: n,
+ parentIndex: 1,
+ hasChildren: n.hasChildren,
+ }
+ copy(left.keys[:FrameRefminDegree-1], n.keys[:FrameRefminDegree-1])
+ copy(left.values[:FrameRefminDegree-1], n.values[:FrameRefminDegree-1])
+ copy(right.keys[:FrameRefminDegree-1], n.keys[FrameRefminDegree:])
+ copy(right.values[:FrameRefminDegree-1], n.values[FrameRefminDegree:])
+ n.keys[0], n.values[0] = n.keys[FrameRefminDegree-1], n.values[FrameRefminDegree-1]
+ FrameRefzeroValueSlice(n.values[1:])
+ if n.hasChildren {
+ copy(left.children[:FrameRefminDegree], n.children[:FrameRefminDegree])
+ copy(right.children[:FrameRefminDegree], n.children[FrameRefminDegree:])
+ FrameRefzeroNodeSlice(n.children[2:])
+ for i := 0; i < FrameRefminDegree; i++ {
+ left.children[i].parent = left
+ left.children[i].parentIndex = i
+ right.children[i].parent = right
+ right.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments = 1
+ n.hasChildren = true
+ n.children[0] = left
+ n.children[1] = right
+
+ if FrameReftrackGaps != 0 {
+ left.updateMaxGapLocal()
+ right.updateMaxGapLocal()
+ }
+ if gap.node != n {
+ return gap
+ }
+ if gap.index < FrameRefminDegree {
+ return FrameRefGapIterator{left, gap.index}
+ }
+ return FrameRefGapIterator{right, gap.index - FrameRefminDegree}
+ }
+
+ copy(n.parent.keys[n.parentIndex+1:], n.parent.keys[n.parentIndex:n.parent.nrSegments])
+ copy(n.parent.values[n.parentIndex+1:], n.parent.values[n.parentIndex:n.parent.nrSegments])
+ n.parent.keys[n.parentIndex], n.parent.values[n.parentIndex] = n.keys[FrameRefminDegree-1], n.values[FrameRefminDegree-1]
+ copy(n.parent.children[n.parentIndex+2:], n.parent.children[n.parentIndex+1:n.parent.nrSegments+1])
+ for i := n.parentIndex + 2; i < n.parent.nrSegments+2; i++ {
+ n.parent.children[i].parentIndex = i
+ }
+ sibling := &FrameRefnode{
+ nrSegments: FrameRefminDegree - 1,
+ parent: n.parent,
+ parentIndex: n.parentIndex + 1,
+ hasChildren: n.hasChildren,
+ }
+ n.parent.children[n.parentIndex+1] = sibling
+ n.parent.nrSegments++
+ copy(sibling.keys[:FrameRefminDegree-1], n.keys[FrameRefminDegree:])
+ copy(sibling.values[:FrameRefminDegree-1], n.values[FrameRefminDegree:])
+ FrameRefzeroValueSlice(n.values[FrameRefminDegree-1:])
+ if n.hasChildren {
+ copy(sibling.children[:FrameRefminDegree], n.children[FrameRefminDegree:])
+ FrameRefzeroNodeSlice(n.children[FrameRefminDegree:])
+ for i := 0; i < FrameRefminDegree; i++ {
+ sibling.children[i].parent = sibling
+ sibling.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments = FrameRefminDegree - 1
+
+ if FrameReftrackGaps != 0 {
+ n.updateMaxGapLocal()
+ sibling.updateMaxGapLocal()
+ }
+
+ if gap.node != n {
+ return gap
+ }
+ if gap.index < FrameRefminDegree {
+ return gap
+ }
+ return FrameRefGapIterator{sibling, gap.index - FrameRefminDegree}
+}
+
+// rebalanceAfterRemove "unsplits" n and its ancestors if they are deficient
+// (contain fewer segments than required by B-tree invariants), as required for
+// removal, and returns an updated iterator to the position represented by gap.
+//
+// Precondition: n is the only node in the tree that may currently violate a
+// B-tree invariant.
+func (n *FrameRefnode) rebalanceAfterRemove(gap FrameRefGapIterator) FrameRefGapIterator {
+ for {
+ if n.nrSegments >= FrameRefminDegree-1 {
+ return gap
+ }
+ if n.parent == nil {
+
+ return gap
+ }
+
+ if sibling := n.prevSibling(); sibling != nil && sibling.nrSegments >= FrameRefminDegree {
+ copy(n.keys[1:], n.keys[:n.nrSegments])
+ copy(n.values[1:], n.values[:n.nrSegments])
+ n.keys[0] = n.parent.keys[n.parentIndex-1]
+ n.values[0] = n.parent.values[n.parentIndex-1]
+ n.parent.keys[n.parentIndex-1] = sibling.keys[sibling.nrSegments-1]
+ n.parent.values[n.parentIndex-1] = sibling.values[sibling.nrSegments-1]
+ FrameRefSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
+ if n.hasChildren {
+ copy(n.children[1:], n.children[:n.nrSegments+1])
+ n.children[0] = sibling.children[sibling.nrSegments]
+ sibling.children[sibling.nrSegments] = nil
+ n.children[0].parent = n
+ n.children[0].parentIndex = 0
+ for i := 1; i < n.nrSegments+2; i++ {
+ n.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments++
+ sibling.nrSegments--
+
+ if FrameReftrackGaps != 0 {
+ n.updateMaxGapLocal()
+ sibling.updateMaxGapLocal()
+ }
+ if gap.node == sibling && gap.index == sibling.nrSegments {
+ return FrameRefGapIterator{n, 0}
+ }
+ if gap.node == n {
+ return FrameRefGapIterator{n, gap.index + 1}
+ }
+ return gap
+ }
+ if sibling := n.nextSibling(); sibling != nil && sibling.nrSegments >= FrameRefminDegree {
+ n.keys[n.nrSegments] = n.parent.keys[n.parentIndex]
+ n.values[n.nrSegments] = n.parent.values[n.parentIndex]
+ n.parent.keys[n.parentIndex] = sibling.keys[0]
+ n.parent.values[n.parentIndex] = sibling.values[0]
+ copy(sibling.keys[:sibling.nrSegments-1], sibling.keys[1:])
+ copy(sibling.values[:sibling.nrSegments-1], sibling.values[1:])
+ FrameRefSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
+ if n.hasChildren {
+ n.children[n.nrSegments+1] = sibling.children[0]
+ copy(sibling.children[:sibling.nrSegments], sibling.children[1:])
+ sibling.children[sibling.nrSegments] = nil
+ n.children[n.nrSegments+1].parent = n
+ n.children[n.nrSegments+1].parentIndex = n.nrSegments + 1
+ for i := 0; i < sibling.nrSegments; i++ {
+ sibling.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments++
+ sibling.nrSegments--
+
+ if FrameReftrackGaps != 0 {
+ n.updateMaxGapLocal()
+ sibling.updateMaxGapLocal()
+ }
+ if gap.node == sibling {
+ if gap.index == 0 {
+ return FrameRefGapIterator{n, n.nrSegments}
+ }
+ return FrameRefGapIterator{sibling, gap.index - 1}
+ }
+ return gap
+ }
+
+ p := n.parent
+ if p.nrSegments == 1 {
+
+ left, right := p.children[0], p.children[1]
+ p.nrSegments = left.nrSegments + right.nrSegments + 1
+ p.hasChildren = left.hasChildren
+ p.keys[left.nrSegments] = p.keys[0]
+ p.values[left.nrSegments] = p.values[0]
+ copy(p.keys[:left.nrSegments], left.keys[:left.nrSegments])
+ copy(p.values[:left.nrSegments], left.values[:left.nrSegments])
+ copy(p.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
+ copy(p.values[left.nrSegments+1:], right.values[:right.nrSegments])
+ if left.hasChildren {
+ copy(p.children[:left.nrSegments+1], left.children[:left.nrSegments+1])
+ copy(p.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
+ for i := 0; i < p.nrSegments+1; i++ {
+ p.children[i].parent = p
+ p.children[i].parentIndex = i
+ }
+ } else {
+ p.children[0] = nil
+ p.children[1] = nil
+ }
+
+ if gap.node == left {
+ return FrameRefGapIterator{p, gap.index}
+ }
+ if gap.node == right {
+ return FrameRefGapIterator{p, gap.index + left.nrSegments + 1}
+ }
+ return gap
+ }
+ // Merge n and either sibling, along with the segment separating the
+ // two, into whichever of the two nodes comes first. This is the
+ // reverse of the non-root splitting case in
+ // node.rebalanceBeforeInsert.
+ var left, right *FrameRefnode
+ if n.parentIndex > 0 {
+ left = n.prevSibling()
+ right = n
+ } else {
+ left = n
+ right = n.nextSibling()
+ }
+
+ if gap.node == right {
+ gap = FrameRefGapIterator{left, gap.index + left.nrSegments + 1}
+ }
+ left.keys[left.nrSegments] = p.keys[left.parentIndex]
+ left.values[left.nrSegments] = p.values[left.parentIndex]
+ copy(left.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
+ copy(left.values[left.nrSegments+1:], right.values[:right.nrSegments])
+ if left.hasChildren {
+ copy(left.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
+ for i := left.nrSegments + 1; i < left.nrSegments+right.nrSegments+2; i++ {
+ left.children[i].parent = left
+ left.children[i].parentIndex = i
+ }
+ }
+ left.nrSegments += right.nrSegments + 1
+ copy(p.keys[left.parentIndex:], p.keys[left.parentIndex+1:p.nrSegments])
+ copy(p.values[left.parentIndex:], p.values[left.parentIndex+1:p.nrSegments])
+ FrameRefSetFunctions{}.ClearValue(&p.values[p.nrSegments-1])
+ copy(p.children[left.parentIndex+1:], p.children[left.parentIndex+2:p.nrSegments+1])
+ for i := 0; i < p.nrSegments; i++ {
+ p.children[i].parentIndex = i
+ }
+ p.children[p.nrSegments] = nil
+ p.nrSegments--
+
+ if FrameReftrackGaps != 0 {
+ left.updateMaxGapLocal()
+ }
+
+ n = p
+ }
+}
+
+// updateMaxGapLeaf updates maxGap bottom-up from the calling leaf until no
+// necessary update.
+//
+// Preconditions: n must be a leaf node, trackGaps must be 1.
+func (n *FrameRefnode) updateMaxGapLeaf() {
+ if n.hasChildren {
+ panic(fmt.Sprintf("updateMaxGapLeaf should always be called on leaf node: %v", n))
+ }
+ max := n.calculateMaxGapLeaf()
+ if max == n.maxGap.Get() {
+
+ return
+ }
+ oldMax := n.maxGap.Get()
+ n.maxGap.Set(max)
+ if max > oldMax {
+
+ for p := n.parent; p != nil; p = p.parent {
+ if p.maxGap.Get() >= max {
+
+ break
+ }
+
+ p.maxGap.Set(max)
+ }
+ return
+ }
+
+ for p := n.parent; p != nil; p = p.parent {
+ if p.maxGap.Get() > oldMax {
+
+ break
+ }
+
+ parentNewMax := p.calculateMaxGapInternal()
+ if p.maxGap.Get() == parentNewMax {
+
+ break
+ }
+
+ p.maxGap.Set(parentNewMax)
+ }
+}
+
+// updateMaxGapLocal updates maxGap of the calling node solely with no
+// propagation to ancestor nodes.
+//
+// Precondition: trackGaps must be 1.
+func (n *FrameRefnode) updateMaxGapLocal() {
+ if !n.hasChildren {
+
+ n.maxGap.Set(n.calculateMaxGapLeaf())
+ } else {
+
+ n.maxGap.Set(n.calculateMaxGapInternal())
+ }
+}
+
+// calculateMaxGapLeaf iterates the gaps within a leaf node and calculate the
+// max.
+//
+// Preconditions: n must be a leaf node.
+func (n *FrameRefnode) calculateMaxGapLeaf() uint64 {
+ max := FrameRefGapIterator{n, 0}.Range().Length()
+ for i := 1; i <= n.nrSegments; i++ {
+ if current := (FrameRefGapIterator{n, i}).Range().Length(); current > max {
+ max = current
+ }
+ }
+ return max
+}
+
+// calculateMaxGapInternal iterates children's maxGap within an internal node n
+// and calculate the max.
+//
+// Preconditions: n must be a non-leaf node.
+func (n *FrameRefnode) calculateMaxGapInternal() uint64 {
+ max := n.children[0].maxGap.Get()
+ for i := 1; i <= n.nrSegments; i++ {
+ if current := n.children[i].maxGap.Get(); current > max {
+ max = current
+ }
+ }
+ return max
+}
+
+// searchFirstLargeEnoughGap returns the first gap having at least minSize length
+// in the subtree rooted by n. If not found, return a terminal gap iterator.
+func (n *FrameRefnode) searchFirstLargeEnoughGap(minSize uint64) FrameRefGapIterator {
+ if n.maxGap.Get() < minSize {
+ return FrameRefGapIterator{}
+ }
+ if n.hasChildren {
+ for i := 0; i <= n.nrSegments; i++ {
+ if largeEnoughGap := n.children[i].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() {
+ return largeEnoughGap
+ }
+ }
+ } else {
+ for i := 0; i <= n.nrSegments; i++ {
+ currentGap := FrameRefGapIterator{n, i}
+ if currentGap.Range().Length() >= minSize {
+ return currentGap
+ }
+ }
+ }
+ panic(fmt.Sprintf("invalid maxGap in %v", n))
+}
+
+// searchLastLargeEnoughGap returns the last gap having at least minSize length
+// in the subtree rooted by n. If not found, return a terminal gap iterator.
+func (n *FrameRefnode) searchLastLargeEnoughGap(minSize uint64) FrameRefGapIterator {
+ if n.maxGap.Get() < minSize {
+ return FrameRefGapIterator{}
+ }
+ if n.hasChildren {
+ for i := n.nrSegments; i >= 0; i-- {
+ if largeEnoughGap := n.children[i].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() {
+ return largeEnoughGap
+ }
+ }
+ } else {
+ for i := n.nrSegments; i >= 0; i-- {
+ currentGap := FrameRefGapIterator{n, i}
+ if currentGap.Range().Length() >= minSize {
+ return currentGap
+ }
+ }
+ }
+ panic(fmt.Sprintf("invalid maxGap in %v", n))
+}
+
+// A Iterator is conceptually one of:
+//
+// - A pointer to a segment in a set; or
+//
+// - A terminal iterator, which is a sentinel indicating that the end of
+// iteration has been reached.
+//
+// Iterators are copyable values and are meaningfully equality-comparable. The
+// zero value of Iterator is a terminal iterator.
+//
+// Unless otherwise specified, any mutation of a set invalidates all existing
+// iterators into the set.
+type FrameRefIterator struct {
+ // node is the node containing the iterated segment. If the iterator is
+ // terminal, node is nil.
+ node *FrameRefnode
+
+ // index is the index of the segment in node.keys/values.
+ index int
+}
+
+// Ok returns true if the iterator is not terminal. All other methods are only
+// valid for non-terminal iterators.
+func (seg FrameRefIterator) Ok() bool {
+ return seg.node != nil
+}
+
+// Range returns the iterated segment's range key.
+func (seg FrameRefIterator) Range() __generics_imported0.FileRange {
+ return seg.node.keys[seg.index]
+}
+
+// Start is equivalent to Range().Start, but should be preferred if only the
+// start of the range is needed.
+func (seg FrameRefIterator) Start() uint64 {
+ return seg.node.keys[seg.index].Start
+}
+
+// End is equivalent to Range().End, but should be preferred if only the end of
+// the range is needed.
+func (seg FrameRefIterator) End() uint64 {
+ return seg.node.keys[seg.index].End
+}
+
+// SetRangeUnchecked mutates the iterated segment's range key. This operation
+// does not invalidate any iterators.
+//
+// Preconditions:
+// * r.Length() > 0.
+// * The new range must not overlap an existing one:
+// * If seg.NextSegment().Ok(), then r.end <= seg.NextSegment().Start().
+// * If seg.PrevSegment().Ok(), then r.start >= seg.PrevSegment().End().
+func (seg FrameRefIterator) SetRangeUnchecked(r __generics_imported0.FileRange) {
+ seg.node.keys[seg.index] = r
+}
+
+// SetRange mutates the iterated segment's range key. If the new range would
+// cause the iterated segment to overlap another segment, or if the new range
+// is invalid, SetRange panics. This operation does not invalidate any
+// iterators.
+func (seg FrameRefIterator) SetRange(r __generics_imported0.FileRange) {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ if prev := seg.PrevSegment(); prev.Ok() && r.Start < prev.End() {
+ panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, prev.Range()))
+ }
+ if next := seg.NextSegment(); next.Ok() && r.End > next.Start() {
+ panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, next.Range()))
+ }
+ seg.SetRangeUnchecked(r)
+}
+
+// SetStartUnchecked mutates the iterated segment's start. This operation does
+// not invalidate any iterators.
+//
+// Preconditions: The new start must be valid:
+// * start < seg.End()
+// * If seg.PrevSegment().Ok(), then start >= seg.PrevSegment().End().
+func (seg FrameRefIterator) SetStartUnchecked(start uint64) {
+ seg.node.keys[seg.index].Start = start
+}
+
+// SetStart mutates the iterated segment's start. If the new start value would
+// cause the iterated segment to overlap another segment, or would result in an
+// invalid range, SetStart panics. This operation does not invalidate any
+// iterators.
+func (seg FrameRefIterator) SetStart(start uint64) {
+ if start >= seg.End() {
+ panic(fmt.Sprintf("new start %v would invalidate segment range %v", start, seg.Range()))
+ }
+ if prev := seg.PrevSegment(); prev.Ok() && start < prev.End() {
+ panic(fmt.Sprintf("new start %v would cause segment range %v to overlap segment range %v", start, seg.Range(), prev.Range()))
+ }
+ seg.SetStartUnchecked(start)
+}
+
+// SetEndUnchecked mutates the iterated segment's end. This operation does not
+// invalidate any iterators.
+//
+// Preconditions: The new end must be valid:
+// * end > seg.Start().
+// * If seg.NextSegment().Ok(), then end <= seg.NextSegment().Start().
+func (seg FrameRefIterator) SetEndUnchecked(end uint64) {
+ seg.node.keys[seg.index].End = end
+}
+
+// SetEnd mutates the iterated segment's end. If the new end value would cause
+// the iterated segment to overlap another segment, or would result in an
+// invalid range, SetEnd panics. This operation does not invalidate any
+// iterators.
+func (seg FrameRefIterator) SetEnd(end uint64) {
+ if end <= seg.Start() {
+ panic(fmt.Sprintf("new end %v would invalidate segment range %v", end, seg.Range()))
+ }
+ if next := seg.NextSegment(); next.Ok() && end > next.Start() {
+ panic(fmt.Sprintf("new end %v would cause segment range %v to overlap segment range %v", end, seg.Range(), next.Range()))
+ }
+ seg.SetEndUnchecked(end)
+}
+
+// Value returns a copy of the iterated segment's value.
+func (seg FrameRefIterator) Value() uint64 {
+ return seg.node.values[seg.index]
+}
+
+// ValuePtr returns a pointer to the iterated segment's value. The pointer is
+// invalidated if the iterator is invalidated. This operation does not
+// invalidate any iterators.
+func (seg FrameRefIterator) ValuePtr() *uint64 {
+ return &seg.node.values[seg.index]
+}
+
+// SetValue mutates the iterated segment's value. This operation does not
+// invalidate any iterators.
+func (seg FrameRefIterator) SetValue(val uint64) {
+ seg.node.values[seg.index] = val
+}
+
+// PrevSegment returns the iterated segment's predecessor. If there is no
+// preceding segment, PrevSegment returns a terminal iterator.
+func (seg FrameRefIterator) PrevSegment() FrameRefIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index].lastSegment()
+ }
+ if seg.index > 0 {
+ return FrameRefIterator{seg.node, seg.index - 1}
+ }
+ if seg.node.parent == nil {
+ return FrameRefIterator{}
+ }
+ return FrameRefsegmentBeforePosition(seg.node.parent, seg.node.parentIndex)
+}
+
+// NextSegment returns the iterated segment's successor. If there is no
+// succeeding segment, NextSegment returns a terminal iterator.
+func (seg FrameRefIterator) NextSegment() FrameRefIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index+1].firstSegment()
+ }
+ if seg.index < seg.node.nrSegments-1 {
+ return FrameRefIterator{seg.node, seg.index + 1}
+ }
+ if seg.node.parent == nil {
+ return FrameRefIterator{}
+ }
+ return FrameRefsegmentAfterPosition(seg.node.parent, seg.node.parentIndex)
+}
+
+// PrevGap returns the gap immediately before the iterated segment.
+func (seg FrameRefIterator) PrevGap() FrameRefGapIterator {
+ if seg.node.hasChildren {
+
+ return seg.node.children[seg.index].lastSegment().NextGap()
+ }
+ return FrameRefGapIterator{seg.node, seg.index}
+}
+
+// NextGap returns the gap immediately after the iterated segment.
+func (seg FrameRefIterator) NextGap() FrameRefGapIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index+1].firstSegment().PrevGap()
+ }
+ return FrameRefGapIterator{seg.node, seg.index + 1}
+}
+
+// PrevNonEmpty returns the iterated segment's predecessor if it is adjacent,
+// or the gap before the iterated segment otherwise. If seg.Start() ==
+// Functions.MinKey(), PrevNonEmpty will return two terminal iterators.
+// Otherwise, exactly one of the iterators returned by PrevNonEmpty will be
+// non-terminal.
+func (seg FrameRefIterator) PrevNonEmpty() (FrameRefIterator, FrameRefGapIterator) {
+ gap := seg.PrevGap()
+ if gap.Range().Length() != 0 {
+ return FrameRefIterator{}, gap
+ }
+ return gap.PrevSegment(), FrameRefGapIterator{}
+}
+
+// NextNonEmpty returns the iterated segment's successor if it is adjacent, or
+// the gap after the iterated segment otherwise. If seg.End() ==
+// Functions.MaxKey(), NextNonEmpty will return two terminal iterators.
+// Otherwise, exactly one of the iterators returned by NextNonEmpty will be
+// non-terminal.
+func (seg FrameRefIterator) NextNonEmpty() (FrameRefIterator, FrameRefGapIterator) {
+ gap := seg.NextGap()
+ if gap.Range().Length() != 0 {
+ return FrameRefIterator{}, gap
+ }
+ return gap.NextSegment(), FrameRefGapIterator{}
+}
+
+// A GapIterator is conceptually one of:
+//
+// - A pointer to a position between two segments, before the first segment, or
+// after the last segment in a set, called a *gap*; or
+//
+// - A terminal iterator, which is a sentinel indicating that the end of
+// iteration has been reached.
+//
+// Note that the gap between two adjacent segments exists (iterators to it are
+// non-terminal), but has a length of zero. GapIterator.IsEmpty returns true
+// for such gaps. An empty set contains a single gap, spanning the entire range
+// of the set's keys.
+//
+// GapIterators are copyable values and are meaningfully equality-comparable.
+// The zero value of GapIterator is a terminal iterator.
+//
+// Unless otherwise specified, any mutation of a set invalidates all existing
+// iterators into the set.
+type FrameRefGapIterator struct {
+ // The representation of a GapIterator is identical to that of an Iterator,
+ // except that index corresponds to positions between segments in the same
+ // way as for node.children (see comment for node.nrSegments).
+ node *FrameRefnode
+ index int
+}
+
+// Ok returns true if the iterator is not terminal. All other methods are only
+// valid for non-terminal iterators.
+func (gap FrameRefGapIterator) Ok() bool {
+ return gap.node != nil
+}
+
+// Range returns the range spanned by the iterated gap.
+func (gap FrameRefGapIterator) Range() __generics_imported0.FileRange {
+ return __generics_imported0.FileRange{gap.Start(), gap.End()}
+}
+
+// Start is equivalent to Range().Start, but should be preferred if only the
+// start of the range is needed.
+func (gap FrameRefGapIterator) Start() uint64 {
+ if ps := gap.PrevSegment(); ps.Ok() {
+ return ps.End()
+ }
+ return FrameRefSetFunctions{}.MinKey()
+}
+
+// End is equivalent to Range().End, but should be preferred if only the end of
+// the range is needed.
+func (gap FrameRefGapIterator) End() uint64 {
+ if ns := gap.NextSegment(); ns.Ok() {
+ return ns.Start()
+ }
+ return FrameRefSetFunctions{}.MaxKey()
+}
+
+// IsEmpty returns true if the iterated gap is empty (that is, the "gap" is
+// between two adjacent segments.)
+func (gap FrameRefGapIterator) IsEmpty() bool {
+ return gap.Range().Length() == 0
+}
+
+// PrevSegment returns the segment immediately before the iterated gap. If no
+// such segment exists, PrevSegment returns a terminal iterator.
+func (gap FrameRefGapIterator) PrevSegment() FrameRefIterator {
+ return FrameRefsegmentBeforePosition(gap.node, gap.index)
+}
+
+// NextSegment returns the segment immediately after the iterated gap. If no
+// such segment exists, NextSegment returns a terminal iterator.
+func (gap FrameRefGapIterator) NextSegment() FrameRefIterator {
+ return FrameRefsegmentAfterPosition(gap.node, gap.index)
+}
+
+// PrevGap returns the iterated gap's predecessor. If no such gap exists,
+// PrevGap returns a terminal iterator.
+func (gap FrameRefGapIterator) PrevGap() FrameRefGapIterator {
+ seg := gap.PrevSegment()
+ if !seg.Ok() {
+ return FrameRefGapIterator{}
+ }
+ return seg.PrevGap()
+}
+
+// NextGap returns the iterated gap's successor. If no such gap exists, NextGap
+// returns a terminal iterator.
+func (gap FrameRefGapIterator) NextGap() FrameRefGapIterator {
+ seg := gap.NextSegment()
+ if !seg.Ok() {
+ return FrameRefGapIterator{}
+ }
+ return seg.NextGap()
+}
+
+// NextLargeEnoughGap returns the iterated gap's first next gap with larger
+// length than minSize. If not found, return a terminal gap iterator (does NOT
+// include this gap itself).
+//
+// Precondition: trackGaps must be 1.
+func (gap FrameRefGapIterator) NextLargeEnoughGap(minSize uint64) FrameRefGapIterator {
+ if FrameReftrackGaps != 1 {
+ panic("set is not tracking gaps")
+ }
+ if gap.node != nil && gap.node.hasChildren && gap.index == gap.node.nrSegments {
+
+ gap.node = gap.NextSegment().node
+ gap.index = 0
+ return gap.nextLargeEnoughGapHelper(minSize)
+ }
+ return gap.nextLargeEnoughGapHelper(minSize)
+}
+
+// nextLargeEnoughGapHelper is the helper function used by NextLargeEnoughGap
+// to do the real recursions.
+//
+// Preconditions: gap is NOT the trailing gap of a non-leaf node.
+func (gap FrameRefGapIterator) nextLargeEnoughGapHelper(minSize uint64) FrameRefGapIterator {
+
+ for gap.node != nil &&
+ (gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == gap.node.nrSegments)) {
+ gap.node, gap.index = gap.node.parent, gap.node.parentIndex
+ }
+
+ if gap.node == nil {
+ return FrameRefGapIterator{}
+ }
+
+ gap.index++
+ for gap.index <= gap.node.nrSegments {
+ if gap.node.hasChildren {
+ if largeEnoughGap := gap.node.children[gap.index].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() {
+ return largeEnoughGap
+ }
+ } else {
+ if gap.Range().Length() >= minSize {
+ return gap
+ }
+ }
+ gap.index++
+ }
+ gap.node, gap.index = gap.node.parent, gap.node.parentIndex
+ if gap.node != nil && gap.index == gap.node.nrSegments {
+
+ gap.node, gap.index = gap.node.parent, gap.node.parentIndex
+ }
+ return gap.nextLargeEnoughGapHelper(minSize)
+}
+
+// PrevLargeEnoughGap returns the iterated gap's first prev gap with larger or
+// equal length than minSize. If not found, return a terminal gap iterator
+// (does NOT include this gap itself).
+//
+// Precondition: trackGaps must be 1.
+func (gap FrameRefGapIterator) PrevLargeEnoughGap(minSize uint64) FrameRefGapIterator {
+ if FrameReftrackGaps != 1 {
+ panic("set is not tracking gaps")
+ }
+ if gap.node != nil && gap.node.hasChildren && gap.index == 0 {
+
+ gap.node = gap.PrevSegment().node
+ gap.index = gap.node.nrSegments
+ return gap.prevLargeEnoughGapHelper(minSize)
+ }
+ return gap.prevLargeEnoughGapHelper(minSize)
+}
+
+// prevLargeEnoughGapHelper is the helper function used by PrevLargeEnoughGap
+// to do the real recursions.
+//
+// Preconditions: gap is NOT the first gap of a non-leaf node.
+func (gap FrameRefGapIterator) prevLargeEnoughGapHelper(minSize uint64) FrameRefGapIterator {
+
+ for gap.node != nil &&
+ (gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == 0)) {
+ gap.node, gap.index = gap.node.parent, gap.node.parentIndex
+ }
+
+ if gap.node == nil {
+ return FrameRefGapIterator{}
+ }
+
+ gap.index--
+ for gap.index >= 0 {
+ if gap.node.hasChildren {
+ if largeEnoughGap := gap.node.children[gap.index].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() {
+ return largeEnoughGap
+ }
+ } else {
+ if gap.Range().Length() >= minSize {
+ return gap
+ }
+ }
+ gap.index--
+ }
+ gap.node, gap.index = gap.node.parent, gap.node.parentIndex
+ if gap.node != nil && gap.index == 0 {
+
+ gap.node, gap.index = gap.node.parent, gap.node.parentIndex
+ }
+ return gap.prevLargeEnoughGapHelper(minSize)
+}
+
+// segmentBeforePosition returns the predecessor segment of the position given
+// by n.children[i], which may or may not contain a child. If no such segment
+// exists, segmentBeforePosition returns a terminal iterator.
+func FrameRefsegmentBeforePosition(n *FrameRefnode, i int) FrameRefIterator {
+ for i == 0 {
+ if n.parent == nil {
+ return FrameRefIterator{}
+ }
+ n, i = n.parent, n.parentIndex
+ }
+ return FrameRefIterator{n, i - 1}
+}
+
+// segmentAfterPosition returns the successor segment of the position given by
+// n.children[i], which may or may not contain a child. If no such segment
+// exists, segmentAfterPosition returns a terminal iterator.
+func FrameRefsegmentAfterPosition(n *FrameRefnode, i int) FrameRefIterator {
+ for i == n.nrSegments {
+ if n.parent == nil {
+ return FrameRefIterator{}
+ }
+ n, i = n.parent, n.parentIndex
+ }
+ return FrameRefIterator{n, i}
+}
+
+func FrameRefzeroValueSlice(slice []uint64) {
+
+ for i := range slice {
+ FrameRefSetFunctions{}.ClearValue(&slice[i])
+ }
+}
+
+func FrameRefzeroNodeSlice(slice []*FrameRefnode) {
+ for i := range slice {
+ slice[i] = nil
+ }
+}
+
+// String stringifies a Set for debugging.
+func (s *FrameRefSet) String() string {
+ return s.root.String()
+}
+
+// String stringifies a node (and all of its children) for debugging.
+func (n *FrameRefnode) String() string {
+ var buf bytes.Buffer
+ n.writeDebugString(&buf, "")
+ return buf.String()
+}
+
+func (n *FrameRefnode) writeDebugString(buf *bytes.Buffer, prefix string) {
+ if n.hasChildren != (n.nrSegments > 0 && n.children[0] != nil) {
+ buf.WriteString(prefix)
+ buf.WriteString(fmt.Sprintf("WARNING: inconsistent value of hasChildren: got %v, want %v\n", n.hasChildren, !n.hasChildren))
+ }
+ for i := 0; i < n.nrSegments; i++ {
+ if child := n.children[i]; child != nil {
+ cprefix := fmt.Sprintf("%s- % 3d ", prefix, i)
+ if child.parent != n || child.parentIndex != i {
+ buf.WriteString(cprefix)
+ buf.WriteString(fmt.Sprintf("WARNING: inconsistent linkage to parent: got (%p, %d), want (%p, %d)\n", child.parent, child.parentIndex, n, i))
+ }
+ child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i))
+ }
+ buf.WriteString(prefix)
+ if n.hasChildren {
+ if FrameReftrackGaps != 0 {
+ buf.WriteString(fmt.Sprintf("- % 3d: %v => %v, maxGap: %d\n", i, n.keys[i], n.values[i], n.maxGap.Get()))
+ } else {
+ buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i]))
+ }
+ } else {
+ buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i]))
+ }
+ }
+ if child := n.children[n.nrSegments]; child != nil {
+ child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments))
+ }
+}
+
+// SegmentDataSlices represents segments from a set as slices of start, end, and
+// values. SegmentDataSlices is primarily used as an intermediate representation
+// for save/restore and the layout here is optimized for that.
+//
+// +stateify savable
+type FrameRefSegmentDataSlices struct {
+ Start []uint64
+ End []uint64
+ Values []uint64
+}
+
+// ExportSortedSlice returns a copy of all segments in the given set, in ascending
+// key order.
+func (s *FrameRefSet) ExportSortedSlices() *FrameRefSegmentDataSlices {
+ var sds FrameRefSegmentDataSlices
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ sds.Start = append(sds.Start, seg.Start())
+ sds.End = append(sds.End, seg.End())
+ sds.Values = append(sds.Values, seg.Value())
+ }
+ sds.Start = sds.Start[:len(sds.Start):len(sds.Start)]
+ sds.End = sds.End[:len(sds.End):len(sds.End)]
+ sds.Values = sds.Values[:len(sds.Values):len(sds.Values)]
+ return &sds
+}
+
+// ImportSortedSlice initializes the given set from the given slice.
+//
+// Preconditions:
+// * s must be empty.
+// * sds must represent a valid set (the segments in sds must have valid
+// lengths that do not overlap).
+// * The segments in sds must be sorted in ascending key order.
+func (s *FrameRefSet) ImportSortedSlices(sds *FrameRefSegmentDataSlices) error {
+ if !s.IsEmpty() {
+ return fmt.Errorf("cannot import into non-empty set %v", s)
+ }
+ gap := s.FirstGap()
+ for i := range sds.Start {
+ r := __generics_imported0.FileRange{sds.Start[i], sds.End[i]}
+ if !gap.Range().IsSupersetOf(r) {
+ return fmt.Errorf("segment overlaps a preceding segment or is incorrectly sorted: [%d, %d) => %v", sds.Start[i], sds.End[i], sds.Values[i])
+ }
+ gap = s.InsertWithoutMerging(gap, r, sds.Values[i]).NextGap()
+ }
+ return nil
+}
+
+// segmentTestCheck returns an error if s is incorrectly sorted, does not
+// contain exactly expectedSegments segments, or contains a segment which
+// fails the passed check.
+//
+// This should be used only for testing, and has been added to this package for
+// templating convenience.
+func (s *FrameRefSet) segmentTestCheck(expectedSegments int, segFunc func(int, __generics_imported0.FileRange, uint64) error) error {
+ havePrev := false
+ prev := uint64(0)
+ nrSegments := 0
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ next := seg.Start()
+ if havePrev && prev >= next {
+ return fmt.Errorf("incorrect order: key %d (segment %d) >= key %d (segment %d)", prev, nrSegments-1, next, nrSegments)
+ }
+ if segFunc != nil {
+ if err := segFunc(nrSegments, seg.Range(), seg.Value()); err != nil {
+ return err
+ }
+ }
+ prev = next
+ havePrev = true
+ nrSegments++
+ }
+ if nrSegments != expectedSegments {
+ return fmt.Errorf("incorrect number of segments: got %d, wanted %d", nrSegments, expectedSegments)
+ }
+ return nil
+}
+
+// countSegments counts the number of segments in the set.
+//
+// Similar to Check, this should only be used for testing.
+func (s *FrameRefSet) countSegments() (segments int) {
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ segments++
+ }
+ return segments
+}
+func (s *FrameRefSet) saveRoot() *FrameRefSegmentDataSlices {
+ return s.ExportSortedSlices()
+}
+
+func (s *FrameRefSet) loadRoot(sds *FrameRefSegmentDataSlices) {
+ if err := s.ImportSortedSlices(sds); err != nil {
+ panic(err)
+ }
+}
diff --git a/pkg/sentry/fs/fsutil/fsutil_impl_state_autogen.go b/pkg/sentry/fs/fsutil/fsutil_impl_state_autogen.go
new file mode 100644
index 000000000..b3270d11d
--- /dev/null
+++ b/pkg/sentry/fs/fsutil/fsutil_impl_state_autogen.go
@@ -0,0 +1,310 @@
+// automatically generated by stateify.
+
+package fsutil
+
+import (
+ "gvisor.dev/gvisor/pkg/state"
+)
+
+func (x *DirtySet) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.DirtySet"
+}
+
+func (x *DirtySet) StateFields() []string {
+ return []string{
+ "root",
+ }
+}
+
+func (x *DirtySet) beforeSave() {}
+
+func (x *DirtySet) StateSave(m state.Sink) {
+ x.beforeSave()
+ var root *DirtySegmentDataSlices = x.saveRoot()
+ m.SaveValue(0, root)
+}
+
+func (x *DirtySet) afterLoad() {}
+
+func (x *DirtySet) StateLoad(m state.Source) {
+ m.LoadValue(0, new(*DirtySegmentDataSlices), func(y interface{}) { x.loadRoot(y.(*DirtySegmentDataSlices)) })
+}
+
+func (x *Dirtynode) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.Dirtynode"
+}
+
+func (x *Dirtynode) StateFields() []string {
+ return []string{
+ "nrSegments",
+ "parent",
+ "parentIndex",
+ "hasChildren",
+ "maxGap",
+ "keys",
+ "values",
+ "children",
+ }
+}
+
+func (x *Dirtynode) beforeSave() {}
+
+func (x *Dirtynode) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.nrSegments)
+ m.Save(1, &x.parent)
+ m.Save(2, &x.parentIndex)
+ m.Save(3, &x.hasChildren)
+ m.Save(4, &x.maxGap)
+ m.Save(5, &x.keys)
+ m.Save(6, &x.values)
+ m.Save(7, &x.children)
+}
+
+func (x *Dirtynode) afterLoad() {}
+
+func (x *Dirtynode) StateLoad(m state.Source) {
+ m.Load(0, &x.nrSegments)
+ m.Load(1, &x.parent)
+ m.Load(2, &x.parentIndex)
+ m.Load(3, &x.hasChildren)
+ m.Load(4, &x.maxGap)
+ m.Load(5, &x.keys)
+ m.Load(6, &x.values)
+ m.Load(7, &x.children)
+}
+
+func (x *DirtySegmentDataSlices) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.DirtySegmentDataSlices"
+}
+
+func (x *DirtySegmentDataSlices) StateFields() []string {
+ return []string{
+ "Start",
+ "End",
+ "Values",
+ }
+}
+
+func (x *DirtySegmentDataSlices) beforeSave() {}
+
+func (x *DirtySegmentDataSlices) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.Start)
+ m.Save(1, &x.End)
+ m.Save(2, &x.Values)
+}
+
+func (x *DirtySegmentDataSlices) afterLoad() {}
+
+func (x *DirtySegmentDataSlices) StateLoad(m state.Source) {
+ m.Load(0, &x.Start)
+ m.Load(1, &x.End)
+ m.Load(2, &x.Values)
+}
+
+func (x *FileRangeSet) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.FileRangeSet"
+}
+
+func (x *FileRangeSet) StateFields() []string {
+ return []string{
+ "root",
+ }
+}
+
+func (x *FileRangeSet) beforeSave() {}
+
+func (x *FileRangeSet) StateSave(m state.Sink) {
+ x.beforeSave()
+ var root *FileRangeSegmentDataSlices = x.saveRoot()
+ m.SaveValue(0, root)
+}
+
+func (x *FileRangeSet) afterLoad() {}
+
+func (x *FileRangeSet) StateLoad(m state.Source) {
+ m.LoadValue(0, new(*FileRangeSegmentDataSlices), func(y interface{}) { x.loadRoot(y.(*FileRangeSegmentDataSlices)) })
+}
+
+func (x *FileRangenode) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.FileRangenode"
+}
+
+func (x *FileRangenode) StateFields() []string {
+ return []string{
+ "nrSegments",
+ "parent",
+ "parentIndex",
+ "hasChildren",
+ "maxGap",
+ "keys",
+ "values",
+ "children",
+ }
+}
+
+func (x *FileRangenode) beforeSave() {}
+
+func (x *FileRangenode) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.nrSegments)
+ m.Save(1, &x.parent)
+ m.Save(2, &x.parentIndex)
+ m.Save(3, &x.hasChildren)
+ m.Save(4, &x.maxGap)
+ m.Save(5, &x.keys)
+ m.Save(6, &x.values)
+ m.Save(7, &x.children)
+}
+
+func (x *FileRangenode) afterLoad() {}
+
+func (x *FileRangenode) StateLoad(m state.Source) {
+ m.Load(0, &x.nrSegments)
+ m.Load(1, &x.parent)
+ m.Load(2, &x.parentIndex)
+ m.Load(3, &x.hasChildren)
+ m.Load(4, &x.maxGap)
+ m.Load(5, &x.keys)
+ m.Load(6, &x.values)
+ m.Load(7, &x.children)
+}
+
+func (x *FileRangeSegmentDataSlices) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.FileRangeSegmentDataSlices"
+}
+
+func (x *FileRangeSegmentDataSlices) StateFields() []string {
+ return []string{
+ "Start",
+ "End",
+ "Values",
+ }
+}
+
+func (x *FileRangeSegmentDataSlices) beforeSave() {}
+
+func (x *FileRangeSegmentDataSlices) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.Start)
+ m.Save(1, &x.End)
+ m.Save(2, &x.Values)
+}
+
+func (x *FileRangeSegmentDataSlices) afterLoad() {}
+
+func (x *FileRangeSegmentDataSlices) StateLoad(m state.Source) {
+ m.Load(0, &x.Start)
+ m.Load(1, &x.End)
+ m.Load(2, &x.Values)
+}
+
+func (x *FrameRefSet) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.FrameRefSet"
+}
+
+func (x *FrameRefSet) StateFields() []string {
+ return []string{
+ "root",
+ }
+}
+
+func (x *FrameRefSet) beforeSave() {}
+
+func (x *FrameRefSet) StateSave(m state.Sink) {
+ x.beforeSave()
+ var root *FrameRefSegmentDataSlices = x.saveRoot()
+ m.SaveValue(0, root)
+}
+
+func (x *FrameRefSet) afterLoad() {}
+
+func (x *FrameRefSet) StateLoad(m state.Source) {
+ m.LoadValue(0, new(*FrameRefSegmentDataSlices), func(y interface{}) { x.loadRoot(y.(*FrameRefSegmentDataSlices)) })
+}
+
+func (x *FrameRefnode) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.FrameRefnode"
+}
+
+func (x *FrameRefnode) StateFields() []string {
+ return []string{
+ "nrSegments",
+ "parent",
+ "parentIndex",
+ "hasChildren",
+ "maxGap",
+ "keys",
+ "values",
+ "children",
+ }
+}
+
+func (x *FrameRefnode) beforeSave() {}
+
+func (x *FrameRefnode) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.nrSegments)
+ m.Save(1, &x.parent)
+ m.Save(2, &x.parentIndex)
+ m.Save(3, &x.hasChildren)
+ m.Save(4, &x.maxGap)
+ m.Save(5, &x.keys)
+ m.Save(6, &x.values)
+ m.Save(7, &x.children)
+}
+
+func (x *FrameRefnode) afterLoad() {}
+
+func (x *FrameRefnode) StateLoad(m state.Source) {
+ m.Load(0, &x.nrSegments)
+ m.Load(1, &x.parent)
+ m.Load(2, &x.parentIndex)
+ m.Load(3, &x.hasChildren)
+ m.Load(4, &x.maxGap)
+ m.Load(5, &x.keys)
+ m.Load(6, &x.values)
+ m.Load(7, &x.children)
+}
+
+func (x *FrameRefSegmentDataSlices) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.FrameRefSegmentDataSlices"
+}
+
+func (x *FrameRefSegmentDataSlices) StateFields() []string {
+ return []string{
+ "Start",
+ "End",
+ "Values",
+ }
+}
+
+func (x *FrameRefSegmentDataSlices) beforeSave() {}
+
+func (x *FrameRefSegmentDataSlices) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.Start)
+ m.Save(1, &x.End)
+ m.Save(2, &x.Values)
+}
+
+func (x *FrameRefSegmentDataSlices) afterLoad() {}
+
+func (x *FrameRefSegmentDataSlices) StateLoad(m state.Source) {
+ m.Load(0, &x.Start)
+ m.Load(1, &x.End)
+ m.Load(2, &x.Values)
+}
+
+func init() {
+ state.Register((*DirtySet)(nil))
+ state.Register((*Dirtynode)(nil))
+ state.Register((*DirtySegmentDataSlices)(nil))
+ state.Register((*FileRangeSet)(nil))
+ state.Register((*FileRangenode)(nil))
+ state.Register((*FileRangeSegmentDataSlices)(nil))
+ state.Register((*FrameRefSet)(nil))
+ state.Register((*FrameRefnode)(nil))
+ state.Register((*FrameRefSegmentDataSlices)(nil))
+}
diff --git a/pkg/sentry/fs/fsutil/fsutil_state_autogen.go b/pkg/sentry/fs/fsutil/fsutil_state_autogen.go
new file mode 100644
index 000000000..8e2a4c961
--- /dev/null
+++ b/pkg/sentry/fs/fsutil/fsutil_state_autogen.go
@@ -0,0 +1,383 @@
+// automatically generated by stateify.
+
+package fsutil
+
+import (
+ "gvisor.dev/gvisor/pkg/state"
+)
+
+func (x *DirtyInfo) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.DirtyInfo"
+}
+
+func (x *DirtyInfo) StateFields() []string {
+ return []string{
+ "Keep",
+ }
+}
+
+func (x *DirtyInfo) beforeSave() {}
+
+func (x *DirtyInfo) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.Keep)
+}
+
+func (x *DirtyInfo) afterLoad() {}
+
+func (x *DirtyInfo) StateLoad(m state.Source) {
+ m.Load(0, &x.Keep)
+}
+
+func (x *StaticDirFileOperations) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.StaticDirFileOperations"
+}
+
+func (x *StaticDirFileOperations) StateFields() []string {
+ return []string{
+ "dentryMap",
+ "dirCursor",
+ }
+}
+
+func (x *StaticDirFileOperations) beforeSave() {}
+
+func (x *StaticDirFileOperations) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.dentryMap)
+ m.Save(1, &x.dirCursor)
+}
+
+func (x *StaticDirFileOperations) afterLoad() {}
+
+func (x *StaticDirFileOperations) StateLoad(m state.Source) {
+ m.Load(0, &x.dentryMap)
+ m.Load(1, &x.dirCursor)
+}
+
+func (x *NoReadWriteFile) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.NoReadWriteFile"
+}
+
+func (x *NoReadWriteFile) StateFields() []string {
+ return []string{}
+}
+
+func (x *NoReadWriteFile) beforeSave() {}
+
+func (x *NoReadWriteFile) StateSave(m state.Sink) {
+ x.beforeSave()
+}
+
+func (x *NoReadWriteFile) afterLoad() {}
+
+func (x *NoReadWriteFile) StateLoad(m state.Source) {
+}
+
+func (x *FileStaticContentReader) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.FileStaticContentReader"
+}
+
+func (x *FileStaticContentReader) StateFields() []string {
+ return []string{
+ "content",
+ }
+}
+
+func (x *FileStaticContentReader) beforeSave() {}
+
+func (x *FileStaticContentReader) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.content)
+}
+
+func (x *FileStaticContentReader) afterLoad() {}
+
+func (x *FileStaticContentReader) StateLoad(m state.Source) {
+ m.Load(0, &x.content)
+}
+
+func (x *HostFileMapper) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.HostFileMapper"
+}
+
+func (x *HostFileMapper) StateFields() []string {
+ return []string{
+ "refs",
+ }
+}
+
+func (x *HostFileMapper) beforeSave() {}
+
+func (x *HostFileMapper) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.refs)
+}
+
+func (x *HostFileMapper) StateLoad(m state.Source) {
+ m.Load(0, &x.refs)
+ m.AfterLoad(x.afterLoad)
+}
+
+func (x *HostMappable) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.HostMappable"
+}
+
+func (x *HostMappable) StateFields() []string {
+ return []string{
+ "hostFileMapper",
+ "backingFile",
+ "mappings",
+ }
+}
+
+func (x *HostMappable) beforeSave() {}
+
+func (x *HostMappable) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.hostFileMapper)
+ m.Save(1, &x.backingFile)
+ m.Save(2, &x.mappings)
+}
+
+func (x *HostMappable) afterLoad() {}
+
+func (x *HostMappable) StateLoad(m state.Source) {
+ m.Load(0, &x.hostFileMapper)
+ m.Load(1, &x.backingFile)
+ m.Load(2, &x.mappings)
+}
+
+func (x *SimpleFileInode) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.SimpleFileInode"
+}
+
+func (x *SimpleFileInode) StateFields() []string {
+ return []string{
+ "InodeSimpleAttributes",
+ }
+}
+
+func (x *SimpleFileInode) beforeSave() {}
+
+func (x *SimpleFileInode) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.InodeSimpleAttributes)
+}
+
+func (x *SimpleFileInode) afterLoad() {}
+
+func (x *SimpleFileInode) StateLoad(m state.Source) {
+ m.Load(0, &x.InodeSimpleAttributes)
+}
+
+func (x *NoReadWriteFileInode) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.NoReadWriteFileInode"
+}
+
+func (x *NoReadWriteFileInode) StateFields() []string {
+ return []string{
+ "InodeSimpleAttributes",
+ }
+}
+
+func (x *NoReadWriteFileInode) beforeSave() {}
+
+func (x *NoReadWriteFileInode) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.InodeSimpleAttributes)
+}
+
+func (x *NoReadWriteFileInode) afterLoad() {}
+
+func (x *NoReadWriteFileInode) StateLoad(m state.Source) {
+ m.Load(0, &x.InodeSimpleAttributes)
+}
+
+func (x *InodeSimpleAttributes) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.InodeSimpleAttributes"
+}
+
+func (x *InodeSimpleAttributes) StateFields() []string {
+ return []string{
+ "fsType",
+ "unstable",
+ }
+}
+
+func (x *InodeSimpleAttributes) beforeSave() {}
+
+func (x *InodeSimpleAttributes) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.fsType)
+ m.Save(1, &x.unstable)
+}
+
+func (x *InodeSimpleAttributes) afterLoad() {}
+
+func (x *InodeSimpleAttributes) StateLoad(m state.Source) {
+ m.Load(0, &x.fsType)
+ m.Load(1, &x.unstable)
+}
+
+func (x *InodeSimpleExtendedAttributes) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.InodeSimpleExtendedAttributes"
+}
+
+func (x *InodeSimpleExtendedAttributes) StateFields() []string {
+ return []string{
+ "xattrs",
+ }
+}
+
+func (x *InodeSimpleExtendedAttributes) beforeSave() {}
+
+func (x *InodeSimpleExtendedAttributes) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.xattrs)
+}
+
+func (x *InodeSimpleExtendedAttributes) afterLoad() {}
+
+func (x *InodeSimpleExtendedAttributes) StateLoad(m state.Source) {
+ m.Load(0, &x.xattrs)
+}
+
+func (x *staticFile) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.staticFile"
+}
+
+func (x *staticFile) StateFields() []string {
+ return []string{
+ "FileStaticContentReader",
+ }
+}
+
+func (x *staticFile) beforeSave() {}
+
+func (x *staticFile) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.FileStaticContentReader)
+}
+
+func (x *staticFile) afterLoad() {}
+
+func (x *staticFile) StateLoad(m state.Source) {
+ m.Load(0, &x.FileStaticContentReader)
+}
+
+func (x *InodeStaticFileGetter) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.InodeStaticFileGetter"
+}
+
+func (x *InodeStaticFileGetter) StateFields() []string {
+ return []string{
+ "Contents",
+ }
+}
+
+func (x *InodeStaticFileGetter) beforeSave() {}
+
+func (x *InodeStaticFileGetter) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.Contents)
+}
+
+func (x *InodeStaticFileGetter) afterLoad() {}
+
+func (x *InodeStaticFileGetter) StateLoad(m state.Source) {
+ m.Load(0, &x.Contents)
+}
+
+func (x *CachingInodeOperations) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.CachingInodeOperations"
+}
+
+func (x *CachingInodeOperations) StateFields() []string {
+ return []string{
+ "backingFile",
+ "mfp",
+ "opts",
+ "attr",
+ "dirtyAttr",
+ "mappings",
+ "cache",
+ "dirty",
+ "hostFileMapper",
+ "refs",
+ }
+}
+
+func (x *CachingInodeOperations) beforeSave() {}
+
+func (x *CachingInodeOperations) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.backingFile)
+ m.Save(1, &x.mfp)
+ m.Save(2, &x.opts)
+ m.Save(3, &x.attr)
+ m.Save(4, &x.dirtyAttr)
+ m.Save(5, &x.mappings)
+ m.Save(6, &x.cache)
+ m.Save(7, &x.dirty)
+ m.Save(8, &x.hostFileMapper)
+ m.Save(9, &x.refs)
+}
+
+func (x *CachingInodeOperations) afterLoad() {}
+
+func (x *CachingInodeOperations) StateLoad(m state.Source) {
+ m.Load(0, &x.backingFile)
+ m.Load(1, &x.mfp)
+ m.Load(2, &x.opts)
+ m.Load(3, &x.attr)
+ m.Load(4, &x.dirtyAttr)
+ m.Load(5, &x.mappings)
+ m.Load(6, &x.cache)
+ m.Load(7, &x.dirty)
+ m.Load(8, &x.hostFileMapper)
+ m.Load(9, &x.refs)
+}
+
+func (x *CachingInodeOperationsOptions) StateTypeName() string {
+ return "pkg/sentry/fs/fsutil.CachingInodeOperationsOptions"
+}
+
+func (x *CachingInodeOperationsOptions) StateFields() []string {
+ return []string{
+ "ForcePageCache",
+ "LimitHostFDTranslation",
+ }
+}
+
+func (x *CachingInodeOperationsOptions) beforeSave() {}
+
+func (x *CachingInodeOperationsOptions) StateSave(m state.Sink) {
+ x.beforeSave()
+ m.Save(0, &x.ForcePageCache)
+ m.Save(1, &x.LimitHostFDTranslation)
+}
+
+func (x *CachingInodeOperationsOptions) afterLoad() {}
+
+func (x *CachingInodeOperationsOptions) StateLoad(m state.Source) {
+ m.Load(0, &x.ForcePageCache)
+ m.Load(1, &x.LimitHostFDTranslation)
+}
+
+func init() {
+ state.Register((*DirtyInfo)(nil))
+ state.Register((*StaticDirFileOperations)(nil))
+ state.Register((*NoReadWriteFile)(nil))
+ state.Register((*FileStaticContentReader)(nil))
+ state.Register((*HostFileMapper)(nil))
+ state.Register((*HostMappable)(nil))
+ state.Register((*SimpleFileInode)(nil))
+ state.Register((*NoReadWriteFileInode)(nil))
+ state.Register((*InodeSimpleAttributes)(nil))
+ state.Register((*InodeSimpleExtendedAttributes)(nil))
+ state.Register((*staticFile)(nil))
+ state.Register((*InodeStaticFileGetter)(nil))
+ state.Register((*CachingInodeOperations)(nil))
+ state.Register((*CachingInodeOperationsOptions)(nil))
+}
diff --git a/pkg/sentry/fs/fsutil/fsutil_unsafe_state_autogen.go b/pkg/sentry/fs/fsutil/fsutil_unsafe_state_autogen.go
new file mode 100644
index 000000000..00b0994f6
--- /dev/null
+++ b/pkg/sentry/fs/fsutil/fsutil_unsafe_state_autogen.go
@@ -0,0 +1,3 @@
+// automatically generated by stateify.
+
+package fsutil
diff --git a/pkg/sentry/fs/fsutil/inode_cached_test.go b/pkg/sentry/fs/fsutil/inode_cached_test.go
deleted file mode 100644
index 1547584c5..000000000
--- a/pkg/sentry/fs/fsutil/inode_cached_test.go
+++ /dev/null
@@ -1,389 +0,0 @@
-// Copyright 2018 The gVisor Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package fsutil
-
-import (
- "bytes"
- "io"
- "testing"
-
- "gvisor.dev/gvisor/pkg/context"
- "gvisor.dev/gvisor/pkg/safemem"
- "gvisor.dev/gvisor/pkg/sentry/contexttest"
- "gvisor.dev/gvisor/pkg/sentry/fs"
- ktime "gvisor.dev/gvisor/pkg/sentry/kernel/time"
- "gvisor.dev/gvisor/pkg/sentry/memmap"
- "gvisor.dev/gvisor/pkg/syserror"
- "gvisor.dev/gvisor/pkg/usermem"
-)
-
-type noopBackingFile struct{}
-
-func (noopBackingFile) ReadToBlocksAt(ctx context.Context, dsts safemem.BlockSeq, offset uint64) (uint64, error) {
- return dsts.NumBytes(), nil
-}
-
-func (noopBackingFile) WriteFromBlocksAt(ctx context.Context, srcs safemem.BlockSeq, offset uint64) (uint64, error) {
- return srcs.NumBytes(), nil
-}
-
-func (noopBackingFile) SetMaskedAttributes(context.Context, fs.AttrMask, fs.UnstableAttr, bool) error {
- return nil
-}
-
-func (noopBackingFile) Sync(context.Context) error {
- return nil
-}
-
-func (noopBackingFile) FD() int {
- return -1
-}
-
-func (noopBackingFile) Allocate(ctx context.Context, offset int64, length int64) error {
- return nil
-}
-
-func TestSetPermissions(t *testing.T) {
- ctx := contexttest.Context(t)
-
- uattr := fs.WithCurrentTime(ctx, fs.UnstableAttr{
- Perms: fs.FilePermsFromMode(0444),
- })
- iops := NewCachingInodeOperations(ctx, noopBackingFile{}, uattr, CachingInodeOperationsOptions{})
- defer iops.Release()
-
- perms := fs.FilePermsFromMode(0777)
- if !iops.SetPermissions(ctx, nil, perms) {
- t.Fatalf("SetPermissions failed, want success")
- }
-
- // Did permissions change?
- if iops.attr.Perms != perms {
- t.Fatalf("got perms +%v, want +%v", iops.attr.Perms, perms)
- }
-
- // Did status change time change?
- if !iops.dirtyAttr.StatusChangeTime {
- t.Fatalf("got status change time not dirty, want dirty")
- }
- if iops.attr.StatusChangeTime.Equal(uattr.StatusChangeTime) {
- t.Fatalf("got status change time unchanged")
- }
-}
-
-func TestSetTimestamps(t *testing.T) {
- ctx := contexttest.Context(t)
- for _, test := range []struct {
- desc string
- ts fs.TimeSpec
- wantChanged fs.AttrMask
- }{
- {
- desc: "noop",
- ts: fs.TimeSpec{
- ATimeOmit: true,
- MTimeOmit: true,
- },
- wantChanged: fs.AttrMask{},
- },
- {
- desc: "access time only",
- ts: fs.TimeSpec{
- ATime: ktime.NowFromContext(ctx),
- MTimeOmit: true,
- },
- wantChanged: fs.AttrMask{
- AccessTime: true,
- },
- },
- {
- desc: "modification time only",
- ts: fs.TimeSpec{
- ATimeOmit: true,
- MTime: ktime.NowFromContext(ctx),
- },
- wantChanged: fs.AttrMask{
- ModificationTime: true,
- },
- },
- {
- desc: "access and modification time",
- ts: fs.TimeSpec{
- ATime: ktime.NowFromContext(ctx),
- MTime: ktime.NowFromContext(ctx),
- },
- wantChanged: fs.AttrMask{
- AccessTime: true,
- ModificationTime: true,
- },
- },
- {
- desc: "system time access and modification time",
- ts: fs.TimeSpec{
- ATimeSetSystemTime: true,
- MTimeSetSystemTime: true,
- },
- wantChanged: fs.AttrMask{
- AccessTime: true,
- ModificationTime: true,
- },
- },
- } {
- t.Run(test.desc, func(t *testing.T) {
- ctx := contexttest.Context(t)
-
- epoch := ktime.ZeroTime
- uattr := fs.UnstableAttr{
- AccessTime: epoch,
- ModificationTime: epoch,
- StatusChangeTime: epoch,
- }
- iops := NewCachingInodeOperations(ctx, noopBackingFile{}, uattr, CachingInodeOperationsOptions{})
- defer iops.Release()
-
- if err := iops.SetTimestamps(ctx, nil, test.ts); err != nil {
- t.Fatalf("SetTimestamps got error %v, want nil", err)
- }
- if test.wantChanged.AccessTime {
- if !iops.attr.AccessTime.After(uattr.AccessTime) {
- t.Fatalf("diritied access time did not advance, want %v > %v", iops.attr.AccessTime, uattr.AccessTime)
- }
- if !iops.dirtyAttr.StatusChangeTime {
- t.Fatalf("dirty access time requires dirty status change time")
- }
- if !iops.attr.StatusChangeTime.After(uattr.StatusChangeTime) {
- t.Fatalf("dirtied status change time did not advance")
- }
- }
- if test.wantChanged.ModificationTime {
- if !iops.attr.ModificationTime.After(uattr.ModificationTime) {
- t.Fatalf("diritied modification time did not advance")
- }
- if !iops.dirtyAttr.StatusChangeTime {
- t.Fatalf("dirty modification time requires dirty status change time")
- }
- if !iops.attr.StatusChangeTime.After(uattr.StatusChangeTime) {
- t.Fatalf("dirtied status change time did not advance")
- }
- }
- })
- }
-}
-
-func TestTruncate(t *testing.T) {
- ctx := contexttest.Context(t)
-
- uattr := fs.UnstableAttr{
- Size: 0,
- }
- iops := NewCachingInodeOperations(ctx, noopBackingFile{}, uattr, CachingInodeOperationsOptions{})
- defer iops.Release()
-
- if err := iops.Truncate(ctx, nil, uattr.Size); err != nil {
- t.Fatalf("Truncate got error %v, want nil", err)
- }
- var size int64 = 4096
- if err := iops.Truncate(ctx, nil, size); err != nil {
- t.Fatalf("Truncate got error %v, want nil", err)
- }
- if iops.attr.Size != size {
- t.Fatalf("Truncate got %d, want %d", iops.attr.Size, size)
- }
- if !iops.dirtyAttr.ModificationTime || !iops.dirtyAttr.StatusChangeTime {
- t.Fatalf("Truncate did not dirty modification and status change time")
- }
- if !iops.attr.ModificationTime.After(uattr.ModificationTime) {
- t.Fatalf("dirtied modification time did not change")
- }
- if !iops.attr.StatusChangeTime.After(uattr.StatusChangeTime) {
- t.Fatalf("dirtied status change time did not change")
- }
-}
-
-type sliceBackingFile struct {
- data []byte
-}
-
-func newSliceBackingFile(data []byte) *sliceBackingFile {
- return &sliceBackingFile{data}
-}
-
-func (f *sliceBackingFile) ReadToBlocksAt(ctx context.Context, dsts safemem.BlockSeq, offset uint64) (uint64, error) {
- r := safemem.BlockSeqReader{safemem.BlockSeqOf(safemem.BlockFromSafeSlice(f.data)).DropFirst64(offset)}
- return r.ReadToBlocks(dsts)
-}
-
-func (f *sliceBackingFile) WriteFromBlocksAt(ctx context.Context, srcs safemem.BlockSeq, offset uint64) (uint64, error) {
- w := safemem.BlockSeqWriter{safemem.BlockSeqOf(safemem.BlockFromSafeSlice(f.data)).DropFirst64(offset)}
- return w.WriteFromBlocks(srcs)
-}
-
-func (*sliceBackingFile) SetMaskedAttributes(context.Context, fs.AttrMask, fs.UnstableAttr, bool) error {
- return nil
-}
-
-func (*sliceBackingFile) Sync(context.Context) error {
- return nil
-}
-
-func (*sliceBackingFile) FD() int {
- return -1
-}
-
-func (f *sliceBackingFile) Allocate(ctx context.Context, offset int64, length int64) error {
- return syserror.EOPNOTSUPP
-}
-
-type noopMappingSpace struct{}
-
-// Invalidate implements memmap.MappingSpace.Invalidate.
-func (noopMappingSpace) Invalidate(ar usermem.AddrRange, opts memmap.InvalidateOpts) {
-}
-
-func anonInode(ctx context.Context) *fs.Inode {
- return fs.NewInode(ctx, &SimpleFileInode{
- InodeSimpleAttributes: NewInodeSimpleAttributes(ctx, fs.FileOwnerFromContext(ctx), fs.FilePermissions{
- User: fs.PermMask{Read: true, Write: true},
- }, 0),
- }, fs.NewPseudoMountSource(ctx), fs.StableAttr{
- Type: fs.Anonymous,
- BlockSize: usermem.PageSize,
- })
-}
-
-func pagesOf(bs ...byte) []byte {
- buf := make([]byte, 0, len(bs)*usermem.PageSize)
- for _, b := range bs {
- buf = append(buf, bytes.Repeat([]byte{b}, usermem.PageSize)...)
- }
- return buf
-}
-
-func TestRead(t *testing.T) {
- ctx := contexttest.Context(t)
-
- // Construct a 3-page file.
- buf := pagesOf('a', 'b', 'c')
- file := fs.NewFile(ctx, fs.NewDirent(ctx, anonInode(ctx), "anon"), fs.FileFlags{}, nil)
- uattr := fs.UnstableAttr{
- Size: int64(len(buf)),
- }
- iops := NewCachingInodeOperations(ctx, newSliceBackingFile(buf), uattr, CachingInodeOperationsOptions{})
- defer iops.Release()
-
- // Expect the cache to be initially empty.
- if cached := iops.cache.Span(); cached != 0 {
- t.Errorf("Span got %d, want 0", cached)
- }
-
- // Create a memory mapping of the second page (as CachingInodeOperations
- // expects to only cache mapped pages), then call Translate to force it to
- // be cached.
- var ms noopMappingSpace
- ar := usermem.AddrRange{usermem.PageSize, 2 * usermem.PageSize}
- if err := iops.AddMapping(ctx, ms, ar, usermem.PageSize, true); err != nil {
- t.Fatalf("AddMapping got %v, want nil", err)
- }
- mr := memmap.MappableRange{usermem.PageSize, 2 * usermem.PageSize}
- if _, err := iops.Translate(ctx, mr, mr, usermem.Read); err != nil {
- t.Fatalf("Translate got %v, want nil", err)
- }
- if cached := iops.cache.Span(); cached != usermem.PageSize {
- t.Errorf("SpanRange got %d, want %d", cached, usermem.PageSize)
- }
-
- // Try to read 4 pages. The first and third pages should be read directly
- // from the "file", the second page should be read from the cache, and only
- // 3 pages (the size of the file) should be readable.
- rbuf := make([]byte, 4*usermem.PageSize)
- dst := usermem.BytesIOSequence(rbuf)
- n, err := iops.Read(ctx, file, dst, 0)
- if n != 3*usermem.PageSize || (err != nil && err != io.EOF) {
- t.Fatalf("Read got (%d, %v), want (%d, nil or EOF)", n, err, 3*usermem.PageSize)
- }
- rbuf = rbuf[:3*usermem.PageSize]
-
- // Did we get the bytes we expect?
- if !bytes.Equal(rbuf, buf) {
- t.Errorf("Read back bytes %v, want %v", rbuf, buf)
- }
-
- // Delete the memory mapping before iops.Release(). The cached page will
- // either be evicted by ctx's pgalloc.MemoryFile, or dropped by
- // iops.Release().
- iops.RemoveMapping(ctx, ms, ar, usermem.PageSize, true)
-}
-
-func TestWrite(t *testing.T) {
- ctx := contexttest.Context(t)
-
- // Construct a 4-page file.
- buf := pagesOf('a', 'b', 'c', 'd')
- orig := append([]byte(nil), buf...)
- inode := anonInode(ctx)
- uattr := fs.UnstableAttr{
- Size: int64(len(buf)),
- }
- iops := NewCachingInodeOperations(ctx, newSliceBackingFile(buf), uattr, CachingInodeOperationsOptions{})
- defer iops.Release()
-
- // Expect the cache to be initially empty.
- if cached := iops.cache.Span(); cached != 0 {
- t.Errorf("Span got %d, want 0", cached)
- }
-
- // Create a memory mapping of the second and third pages (as
- // CachingInodeOperations expects to only cache mapped pages), then call
- // Translate to force them to be cached.
- var ms noopMappingSpace
- ar := usermem.AddrRange{usermem.PageSize, 3 * usermem.PageSize}
- if err := iops.AddMapping(ctx, ms, ar, usermem.PageSize, true); err != nil {
- t.Fatalf("AddMapping got %v, want nil", err)
- }
- defer iops.RemoveMapping(ctx, ms, ar, usermem.PageSize, true)
- mr := memmap.MappableRange{usermem.PageSize, 3 * usermem.PageSize}
- if _, err := iops.Translate(ctx, mr, mr, usermem.Read); err != nil {
- t.Fatalf("Translate got %v, want nil", err)
- }
- if cached := iops.cache.Span(); cached != 2*usermem.PageSize {
- t.Errorf("SpanRange got %d, want %d", cached, 2*usermem.PageSize)
- }
-
- // Write to the first 2 pages.
- wbuf := pagesOf('e', 'f')
- src := usermem.BytesIOSequence(wbuf)
- n, err := iops.Write(ctx, src, 0)
- if n != 2*usermem.PageSize || err != nil {
- t.Fatalf("Write got (%d, %v), want (%d, nil)", n, err, 2*usermem.PageSize)
- }
-
- // The first page should have been written directly, since it was not cached.
- want := append([]byte(nil), orig...)
- copy(want, pagesOf('e'))
- if !bytes.Equal(buf, want) {
- t.Errorf("File contents are %v, want %v", buf, want)
- }
-
- // Sync back to the "backing file".
- if err := iops.WriteOut(ctx, inode); err != nil {
- t.Errorf("Sync got %v, want nil", err)
- }
-
- // Now the second page should have been written as well.
- copy(want[usermem.PageSize:], pagesOf('f'))
- if !bytes.Equal(buf, want) {
- t.Errorf("File contents are %v, want %v", buf, want)
- }
-}