summaryrefslogtreecommitdiffhomepage
path: root/pkg/segment
diff options
context:
space:
mode:
Diffstat (limited to 'pkg/segment')
-rw-r--r--pkg/segment/BUILD31
-rw-r--r--pkg/segment/range.go77
-rw-r--r--pkg/segment/set.go1359
-rw-r--r--pkg/segment/set_state.go25
-rw-r--r--pkg/segment/test/BUILD52
-rw-r--r--pkg/segment/test/segment_test.go564
-rw-r--r--pkg/segment/test/set_functions.go42
7 files changed, 2150 insertions, 0 deletions
diff --git a/pkg/segment/BUILD b/pkg/segment/BUILD
new file mode 100644
index 000000000..964d73af8
--- /dev/null
+++ b/pkg/segment/BUILD
@@ -0,0 +1,31 @@
+package(
+ default_visibility = ["//:sandbox"],
+ licenses = ["notice"], # Apache 2.0
+)
+
+load("//tools/go_generics:defs.bzl", "go_template")
+
+go_template(
+ name = "generic_range",
+ srcs = ["range.go"],
+ types = [
+ "T",
+ ],
+)
+
+go_template(
+ name = "generic_set",
+ srcs = [
+ "set.go",
+ "set_state.go",
+ ],
+ opt_consts = [
+ "minDegree",
+ ],
+ types = [
+ "Key",
+ "Range",
+ "Value",
+ "Functions",
+ ],
+)
diff --git a/pkg/segment/range.go b/pkg/segment/range.go
new file mode 100644
index 000000000..5ff30d489
--- /dev/null
+++ b/pkg/segment/range.go
@@ -0,0 +1,77 @@
+// Copyright 2018 Google Inc.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package segment
+
+// T is a required type parameter that must be an integral type.
+type T uint64
+
+// A Range represents a contiguous range of T.
+type Range struct {
+ // Start is the inclusive start of the range.
+ Start T
+
+ // End is the exclusive end of the range.
+ End T
+}
+
+// WellFormed returns true if r.Start <= r.End. All other methods on a Range
+// require that the Range is well-formed.
+func (r Range) WellFormed() bool {
+ return r.Start <= r.End
+}
+
+// Length returns the length of the range.
+func (r Range) Length() T {
+ return r.End - r.Start
+}
+
+// Contains returns true if r contains x.
+func (r Range) Contains(x T) bool {
+ return r.Start <= x && x < r.End
+}
+
+// Overlaps returns true if r and r2 overlap.
+func (r Range) Overlaps(r2 Range) bool {
+ return r.Start < r2.End && r2.Start < r.End
+}
+
+// IsSupersetOf returns true if r is a superset of r2; that is, the range r2 is
+// contained within r.
+func (r Range) IsSupersetOf(r2 Range) bool {
+ return r.Start <= r2.Start && r.End >= r2.End
+}
+
+// Intersect returns a range consisting of the intersection between r and r2.
+// If r and r2 do not overlap, Intersect returns a range with unspecified
+// bounds, but for which Length() == 0.
+func (r Range) Intersect(r2 Range) Range {
+ if r.Start < r2.Start {
+ r.Start = r2.Start
+ }
+ if r.End > r2.End {
+ r.End = r2.End
+ }
+ if r.End < r.Start {
+ r.End = r.Start
+ }
+ return r
+}
+
+// CanSplitAt returns true if it is legal to split a segment spanning the range
+// r at x; that is, splitting at x would produce two ranges, both of which have
+// non-zero length.
+func (r Range) CanSplitAt(x T) bool {
+ return r.Contains(x) && r.Start < x
+}
diff --git a/pkg/segment/set.go b/pkg/segment/set.go
new file mode 100644
index 000000000..6eed1d930
--- /dev/null
+++ b/pkg/segment/set.go
@@ -0,0 +1,1359 @@
+// Copyright 2018 Google Inc.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Package segment provides tools for working with collections of segments. A
+// segment is a key-value mapping, where the key is a non-empty contiguous
+// range of values of type Key, and the value is a single value of type Value.
+//
+// Clients using this package must use the go_template_instance rule in
+// tools/go_generics/defs.bzl to create an instantiation of this
+// template package, providing types to use in place of Key, Range, Value, and
+// Functions. See pkg/segment/test/BUILD for a usage example.
+package segment
+
+import (
+ "bytes"
+ "fmt"
+)
+
+// Key is a required type parameter that must be an integral type.
+type Key uint64
+
+// Range is a required type parameter equivalent to Range<Key>.
+type Range interface{}
+
+// Value is a required type parameter.
+type Value interface{}
+
+// Functions is a required type parameter that must be a struct implementing
+// the methods defined by Functions.
+type Functions interface {
+ // MinKey returns the minimum allowed key.
+ MinKey() Key
+
+ // MaxKey returns the maximum allowed key + 1.
+ MaxKey() Key
+
+ // ClearValue deinitializes the given value. (For example, if Value is a
+ // pointer or interface type, ClearValue should set it to nil.)
+ ClearValue(*Value)
+
+ // Merge attempts to merge the values corresponding to two consecutive
+ // segments. If successful, Merge returns (merged value, true). Otherwise,
+ // it returns (unspecified, false).
+ //
+ // Preconditions: r1.End == r2.Start.
+ //
+ // Postconditions: If merging succeeds, val1 and val2 are invalidated.
+ Merge(r1 Range, val1 Value, r2 Range, val2 Value) (Value, bool)
+
+ // Split splits a segment's value at a key within its range, such that the
+ // first returned value corresponds to the range [r.Start, split) and the
+ // second returned value corresponds to the range [split, r.End).
+ //
+ // Preconditions: r.Start < split < r.End.
+ //
+ // Postconditions: The original value val is invalidated.
+ Split(r Range, val Value, split Key) (Value, Value)
+}
+
+const (
+ // minDegree is the minimum degree of an internal node in a Set B-tree.
+ //
+ // - Any non-root node has at least minDegree-1 segments.
+ //
+ // - Any non-root internal (non-leaf) node has at least minDegree children.
+ //
+ // - The root node may have fewer than minDegree-1 segments, but it may
+ // only have 0 segments if the tree is empty.
+ //
+ // Our implementation requires minDegree >= 3. Higher values of minDegree
+ // usually improve performance, but increase memory usage for small sets.
+ minDegree = 3
+
+ maxDegree = 2 * minDegree
+)
+
+// A Set is a mapping of segments with non-overlapping Range keys. The zero
+// value for a Set is an empty set. Set values are not safely movable nor
+// copyable. Set is thread-compatible.
+type Set struct {
+ root node `state:".(*SegmentDataSlices)"`
+}
+
+// IsEmpty returns true if the set contains no segments.
+func (s *Set) IsEmpty() bool {
+ return s.root.nrSegments == 0
+}
+
+// IsEmptyRange returns true iff no segments in the set overlap the given
+// range. This is semantically equivalent to s.SpanRange(r) == 0, but may be
+// more efficient.
+func (s *Set) IsEmptyRange(r Range) bool {
+ switch {
+ case r.Length() < 0:
+ panic(fmt.Sprintf("invalid range %v", r))
+ case r.Length() == 0:
+ return true
+ }
+ _, gap := s.Find(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ return r.End <= gap.End()
+}
+
+// Span returns the total size of all segments in the set.
+func (s *Set) Span() Key {
+ var sz Key
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ sz += seg.Range().Length()
+ }
+ return sz
+}
+
+// SpanRange returns the total size of the intersection of segments in the set
+// with the given range.
+func (s *Set) SpanRange(r Range) Key {
+ switch {
+ case r.Length() < 0:
+ panic(fmt.Sprintf("invalid range %v", r))
+ case r.Length() == 0:
+ return 0
+ }
+ var sz Key
+ for seg := s.LowerBoundSegment(r.Start); seg.Ok() && seg.Start() < r.End; seg = seg.NextSegment() {
+ sz += seg.Range().Intersect(r).Length()
+ }
+ return sz
+}
+
+// FirstSegment returns the first segment in the set. If the set is empty,
+// FirstSegment returns a terminal iterator.
+func (s *Set) FirstSegment() Iterator {
+ if s.root.nrSegments == 0 {
+ return Iterator{}
+ }
+ return s.root.firstSegment()
+}
+
+// LastSegment returns the last segment in the set. If the set is empty,
+// LastSegment returns a terminal iterator.
+func (s *Set) LastSegment() Iterator {
+ if s.root.nrSegments == 0 {
+ return Iterator{}
+ }
+ return s.root.lastSegment()
+}
+
+// FirstGap returns the first gap in the set.
+func (s *Set) FirstGap() GapIterator {
+ n := &s.root
+ for n.hasChildren {
+ n = n.children[0]
+ }
+ return GapIterator{n, 0}
+}
+
+// LastGap returns the last gap in the set.
+func (s *Set) LastGap() GapIterator {
+ n := &s.root
+ for n.hasChildren {
+ n = n.children[n.nrSegments]
+ }
+ return GapIterator{n, n.nrSegments}
+}
+
+// Find returns the segment or gap whose range contains the given key. If a
+// segment is found, the returned Iterator is non-terminal and the
+// returned GapIterator is terminal. Otherwise, the returned Iterator is
+// terminal and the returned GapIterator is non-terminal.
+func (s *Set) Find(key Key) (Iterator, GapIterator) {
+ n := &s.root
+ for {
+ // Binary search invariant: the correct value of i lies within [lower,
+ // upper].
+ lower := 0
+ upper := n.nrSegments
+ for lower < upper {
+ i := lower + (upper-lower)/2
+ if r := n.keys[i]; key < r.End {
+ if key >= r.Start {
+ return Iterator{n, i}, GapIterator{}
+ }
+ upper = i
+ } else {
+ lower = i + 1
+ }
+ }
+ i := lower
+ if !n.hasChildren {
+ return Iterator{}, GapIterator{n, i}
+ }
+ n = n.children[i]
+ }
+}
+
+// FindSegment returns the segment whose range contains the given key. If no
+// such segment exists, FindSegment returns a terminal iterator.
+func (s *Set) FindSegment(key Key) Iterator {
+ seg, _ := s.Find(key)
+ return seg
+}
+
+// LowerBoundSegment returns the segment with the lowest range that contains a
+// key greater than or equal to min. If no such segment exists,
+// LowerBoundSegment returns a terminal iterator.
+func (s *Set) LowerBoundSegment(min Key) Iterator {
+ seg, gap := s.Find(min)
+ if seg.Ok() {
+ return seg
+ }
+ return gap.NextSegment()
+}
+
+// UpperBoundSegment returns the segment with the highest range that contains a
+// key less than or equal to max. If no such segment exists, UpperBoundSegment
+// returns a terminal iterator.
+func (s *Set) UpperBoundSegment(max Key) Iterator {
+ seg, gap := s.Find(max)
+ if seg.Ok() {
+ return seg
+ }
+ return gap.PrevSegment()
+}
+
+// FindGap returns the gap containing the given key. If no such gap exists
+// (i.e. the set contains a segment containing that key), FindGap returns a
+// terminal iterator.
+func (s *Set) FindGap(key Key) GapIterator {
+ _, gap := s.Find(key)
+ return gap
+}
+
+// LowerBoundGap returns the gap with the lowest range that is greater than or
+// equal to min.
+func (s *Set) LowerBoundGap(min Key) GapIterator {
+ seg, gap := s.Find(min)
+ if gap.Ok() {
+ return gap
+ }
+ return seg.NextGap()
+}
+
+// UpperBoundGap returns the gap with the highest range that is less than or
+// equal to max.
+func (s *Set) UpperBoundGap(max Key) GapIterator {
+ seg, gap := s.Find(max)
+ if gap.Ok() {
+ return gap
+ }
+ return seg.PrevGap()
+}
+
+// Add inserts the given segment into the set and returns true. If the new
+// segment can be merged with adjacent segments, Add will do so. If the new
+// segment would overlap an existing segment, Add returns false. If Add
+// succeeds, all existing iterators are invalidated.
+func (s *Set) Add(r Range, val Value) bool {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ gap := s.FindGap(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ if r.End > gap.End() {
+ return false
+ }
+ s.Insert(gap, r, val)
+ return true
+}
+
+// AddWithoutMerging inserts the given segment into the set and returns true.
+// If it would overlap an existing segment, AddWithoutMerging does nothing and
+// returns false. If AddWithoutMerging succeeds, all existing iterators are
+// invalidated.
+func (s *Set) AddWithoutMerging(r Range, val Value) bool {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ gap := s.FindGap(r.Start)
+ if !gap.Ok() {
+ return false
+ }
+ if r.End > gap.End() {
+ return false
+ }
+ s.InsertWithoutMergingUnchecked(gap, r, val)
+ return true
+}
+
+// Insert inserts the given segment into the given gap. If the new segment can
+// be merged with adjacent segments, Insert will do so. Insert returns an
+// iterator to the segment containing the inserted value (which may have been
+// merged with other values). All existing iterators (including gap, but not
+// including the returned iterator) are invalidated.
+//
+// If the gap cannot accommodate the segment, or if r is invalid, Insert panics.
+//
+// Insert is semantically equivalent to a InsertWithoutMerging followed by a
+// Merge, but may be more efficient. Note that there is no unchecked variant of
+// Insert since Insert must retrieve and inspect gap's predecessor and
+// successor segments regardless.
+func (s *Set) Insert(gap GapIterator, r Range, val Value) Iterator {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ prev, next := gap.PrevSegment(), gap.NextSegment()
+ if prev.Ok() && prev.End() > r.Start {
+ panic(fmt.Sprintf("new segment %v overlaps predecessor %v", r, prev.Range()))
+ }
+ if next.Ok() && next.Start() < r.End {
+ panic(fmt.Sprintf("new segment %v overlaps successor %v", r, next.Range()))
+ }
+ if prev.Ok() && prev.End() == r.Start {
+ if mval, ok := (Functions{}).Merge(prev.Range(), prev.Value(), r, val); ok {
+ prev.SetEndUnchecked(r.End)
+ prev.SetValue(mval)
+ if next.Ok() && next.Start() == r.End {
+ val = mval
+ if mval, ok := (Functions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok {
+ prev.SetEndUnchecked(next.End())
+ prev.SetValue(mval)
+ return s.Remove(next).PrevSegment()
+ }
+ }
+ return prev
+ }
+ }
+ if next.Ok() && next.Start() == r.End {
+ if mval, ok := (Functions{}).Merge(r, val, next.Range(), next.Value()); ok {
+ next.SetStartUnchecked(r.Start)
+ next.SetValue(mval)
+ return next
+ }
+ }
+ return s.InsertWithoutMergingUnchecked(gap, r, val)
+}
+
+// InsertWithoutMerging inserts the given segment into the given gap and
+// returns an iterator to the inserted segment. All existing iterators
+// (including gap, but not including the returned iterator) are invalidated.
+//
+// If the gap cannot accommodate the segment, or if r is invalid,
+// InsertWithoutMerging panics.
+func (s *Set) InsertWithoutMerging(gap GapIterator, r Range, val Value) Iterator {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ if gr := gap.Range(); !gr.IsSupersetOf(r) {
+ panic(fmt.Sprintf("cannot insert segment range %v into gap range %v", r, gr))
+ }
+ return s.InsertWithoutMergingUnchecked(gap, r, val)
+}
+
+// InsertWithoutMergingUnchecked inserts the given segment into the given gap
+// and returns an iterator to the inserted segment. All existing iterators
+// (including gap, but not including the returned iterator) are invalidated.
+//
+// Preconditions: r.Start >= gap.Start(); r.End <= gap.End().
+func (s *Set) InsertWithoutMergingUnchecked(gap GapIterator, r Range, val Value) Iterator {
+ gap = gap.node.rebalanceBeforeInsert(gap)
+ copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments])
+ copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments])
+ gap.node.keys[gap.index] = r
+ gap.node.values[gap.index] = val
+ gap.node.nrSegments++
+ return Iterator{gap.node, gap.index}
+}
+
+// Remove removes the given segment and returns an iterator to the vacated gap.
+// All existing iterators (including seg, but not including the returned
+// iterator) are invalidated.
+func (s *Set) Remove(seg Iterator) GapIterator {
+ // We only want to remove directly from a leaf node.
+ if seg.node.hasChildren {
+ // Since seg.node has children, the removed segment must have a
+ // predecessor (at the end of the rightmost leaf of its left child
+ // subtree). Move the contents of that predecessor into the removed
+ // segment's position, and remove that predecessor instead. (We choose
+ // to steal the predecessor rather than the successor because removing
+ // from the end of a leaf node doesn't involve any copying unless
+ // merging is required.)
+ victim := seg.PrevSegment()
+ // This must be unchecked since until victim is removed, seg and victim
+ // overlap.
+ seg.SetRangeUnchecked(victim.Range())
+ seg.SetValue(victim.Value())
+ return s.Remove(victim).NextGap()
+ }
+ copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments])
+ copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments])
+ Functions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1])
+ seg.node.nrSegments--
+ return seg.node.rebalanceAfterRemove(GapIterator{seg.node, seg.index})
+}
+
+// RemoveAll removes all segments from the set. All existing iterators are
+// invalidated.
+func (s *Set) RemoveAll() {
+ s.root = node{}
+}
+
+// RemoveRange removes all segments in the given range. An iterator to the
+// newly formed gap is returned, and all existing iterators are invalidated.
+func (s *Set) RemoveRange(r Range) GapIterator {
+ seg, gap := s.Find(r.Start)
+ if seg.Ok() {
+ seg = s.Isolate(seg, r)
+ gap = s.Remove(seg)
+ }
+ for seg = gap.NextSegment(); seg.Ok() && seg.Start() < r.End; seg = gap.NextSegment() {
+ seg = s.Isolate(seg, r)
+ gap = s.Remove(seg)
+ }
+ return gap
+}
+
+// Merge attempts to merge two neighboring segments. If successful, Merge
+// returns an iterator to the merged segment, and all existing iterators are
+// invalidated. Otherwise, Merge returns a terminal iterator.
+//
+// If first is not the predecessor of second, Merge panics.
+func (s *Set) Merge(first, second Iterator) Iterator {
+ if first.NextSegment() != second {
+ panic(fmt.Sprintf("attempt to merge non-neighboring segments %v, %v", first.Range(), second.Range()))
+ }
+ return s.MergeUnchecked(first, second)
+}
+
+// MergeUnchecked attempts to merge two neighboring segments. If successful,
+// MergeUnchecked returns an iterator to the merged segment, and all existing
+// iterators are invalidated. Otherwise, MergeUnchecked returns a terminal
+// iterator.
+//
+// Precondition: first is the predecessor of second: first.NextSegment() ==
+// second, first == second.PrevSegment().
+func (s *Set) MergeUnchecked(first, second Iterator) Iterator {
+ if first.End() == second.Start() {
+ if mval, ok := (Functions{}).Merge(first.Range(), first.Value(), second.Range(), second.Value()); ok {
+ // N.B. This must be unchecked because until s.Remove(second), first
+ // overlaps second.
+ first.SetEndUnchecked(second.End())
+ first.SetValue(mval)
+ return s.Remove(second).PrevSegment()
+ }
+ }
+ return Iterator{}
+}
+
+// MergeAll attempts to merge all adjacent segments in the set. All existing
+// iterators are invalidated.
+func (s *Set) MergeAll() {
+ seg := s.FirstSegment()
+ if !seg.Ok() {
+ return
+ }
+ next := seg.NextSegment()
+ for next.Ok() {
+ if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
+ seg, next = mseg, mseg.NextSegment()
+ } else {
+ seg, next = next, next.NextSegment()
+ }
+ }
+}
+
+// MergeRange attempts to merge all adjacent segments that contain a key in the
+// specific range. All existing iterators are invalidated.
+func (s *Set) MergeRange(r Range) {
+ seg := s.LowerBoundSegment(r.Start)
+ if !seg.Ok() {
+ return
+ }
+ next := seg.NextSegment()
+ for next.Ok() && next.Range().Start < r.End {
+ if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
+ seg, next = mseg, mseg.NextSegment()
+ } else {
+ seg, next = next, next.NextSegment()
+ }
+ }
+}
+
+// MergeAdjacent attempts to merge the segment containing r.Start with its
+// predecessor, and the segment containing r.End-1 with its successor.
+func (s *Set) MergeAdjacent(r Range) {
+ first := s.FindSegment(r.Start)
+ if first.Ok() {
+ if prev := first.PrevSegment(); prev.Ok() {
+ s.Merge(prev, first)
+ }
+ }
+ last := s.FindSegment(r.End - 1)
+ if last.Ok() {
+ if next := last.NextSegment(); next.Ok() {
+ s.Merge(last, next)
+ }
+ }
+}
+
+// Split splits the given segment at the given key and returns iterators to the
+// two resulting segments. All existing iterators (including seg, but not
+// including the returned iterators) are invalidated.
+//
+// If the segment cannot be split at split (because split is at the start or
+// end of the segment's range, so splitting would produce a segment with zero
+// length, or because split falls outside the segment's range altogether),
+// Split panics.
+func (s *Set) Split(seg Iterator, split Key) (Iterator, Iterator) {
+ if !seg.Range().CanSplitAt(split) {
+ panic(fmt.Sprintf("can't split %v at %v", seg.Range(), split))
+ }
+ return s.SplitUnchecked(seg, split)
+}
+
+// SplitUnchecked splits the given segment at the given key and returns
+// iterators to the two resulting segments. All existing iterators (including
+// seg, but not including the returned iterators) are invalidated.
+//
+// Preconditions: seg.Start() < key < seg.End().
+func (s *Set) SplitUnchecked(seg Iterator, split Key) (Iterator, Iterator) {
+ val1, val2 := (Functions{}).Split(seg.Range(), seg.Value(), split)
+ end2 := seg.End()
+ seg.SetEndUnchecked(split)
+ seg.SetValue(val1)
+ seg2 := s.InsertWithoutMergingUnchecked(seg.NextGap(), Range{split, end2}, val2)
+ // seg may now be invalid due to the Insert.
+ return seg2.PrevSegment(), seg2
+}
+
+// SplitAt splits the segment straddling split, if one exists. SplitAt returns
+// true if a segment was split and false otherwise. If SplitAt splits a
+// segment, all existing iterators are invalidated.
+func (s *Set) SplitAt(split Key) bool {
+ if seg := s.FindSegment(split); seg.Ok() && seg.Range().CanSplitAt(split) {
+ s.SplitUnchecked(seg, split)
+ return true
+ }
+ return false
+}
+
+// Isolate ensures that the given segment's range does not escape r by
+// splitting at r.Start and r.End if necessary, and returns an updated iterator
+// to the bounded segment. All existing iterators (including seg, but not
+// including the returned iterators) are invalidated.
+func (s *Set) Isolate(seg Iterator, r Range) Iterator {
+ if seg.Range().CanSplitAt(r.Start) {
+ _, seg = s.SplitUnchecked(seg, r.Start)
+ }
+ if seg.Range().CanSplitAt(r.End) {
+ seg, _ = s.SplitUnchecked(seg, r.End)
+ }
+ return seg
+}
+
+// ApplyContiguous applies a function to a contiguous range of segments,
+// splitting if necessary. The function is applied until the first gap is
+// encountered, at which point the gap is returned. If the function is applied
+// across the entire range, a terminal gap is returned. All existing iterators
+// are invalidated.
+//
+// N.B. The Iterator must not be invalidated by the function.
+func (s *Set) ApplyContiguous(r Range, fn func(seg Iterator)) GapIterator {
+ seg, gap := s.Find(r.Start)
+ if !seg.Ok() {
+ return gap
+ }
+ for {
+ seg = s.Isolate(seg, r)
+ fn(seg)
+ if seg.End() >= r.End {
+ return GapIterator{}
+ }
+ gap = seg.NextGap()
+ if !gap.IsEmpty() {
+ return gap
+ }
+ seg = gap.NextSegment()
+ if !seg.Ok() {
+ // This implies that the last segment extended all the
+ // way to the maximum value, since the gap was empty.
+ return GapIterator{}
+ }
+ }
+}
+
+type node struct {
+ // An internal binary tree node looks like:
+ //
+ // K
+ // / \
+ // Cl Cr
+ //
+ // where all keys in the subtree rooted by Cl (the left subtree) are less
+ // than K (the key of the parent node), and all keys in the subtree rooted
+ // by Cr (the right subtree) are greater than K.
+ //
+ // An internal B-tree node's indexes work out to look like:
+ //
+ // K0 K1 K2 ... Kn-1
+ // / \/ \/ \ ... / \
+ // C0 C1 C2 C3 ... Cn-1 Cn
+ //
+ // where n is nrSegments.
+ nrSegments int
+
+ // parent is a pointer to this node's parent. If this node is root, parent
+ // is nil.
+ parent *node
+
+ // parentIndex is the index of this node in parent.children.
+ parentIndex int
+
+ // Flag for internal nodes that is technically redundant with "children[0]
+ // != nil", but is stored in the first cache line. "hasChildren" rather
+ // than "isLeaf" because false must be the correct value for an empty root.
+ hasChildren bool
+
+ // Nodes store keys and values in separate arrays to maximize locality in
+ // the common case (scanning keys for lookup).
+ keys [maxDegree - 1]Range
+ values [maxDegree - 1]Value
+ children [maxDegree]*node
+}
+
+// firstSegment returns the first segment in the subtree rooted by n.
+//
+// Preconditions: n.nrSegments != 0.
+func (n *node) firstSegment() Iterator {
+ for n.hasChildren {
+ n = n.children[0]
+ }
+ return Iterator{n, 0}
+}
+
+// lastSegment returns the last segment in the subtree rooted by n.
+//
+// Preconditions: n.nrSegments != 0.
+func (n *node) lastSegment() Iterator {
+ for n.hasChildren {
+ n = n.children[n.nrSegments]
+ }
+ return Iterator{n, n.nrSegments - 1}
+}
+
+func (n *node) prevSibling() *node {
+ if n.parent == nil || n.parentIndex == 0 {
+ return nil
+ }
+ return n.parent.children[n.parentIndex-1]
+}
+
+func (n *node) nextSibling() *node {
+ if n.parent == nil || n.parentIndex == n.parent.nrSegments {
+ return nil
+ }
+ return n.parent.children[n.parentIndex+1]
+}
+
+// rebalanceBeforeInsert splits n and its ancestors if they are full, as
+// required for insertion, and returns an updated iterator to the position
+// represented by gap.
+func (n *node) rebalanceBeforeInsert(gap GapIterator) GapIterator {
+ if n.parent != nil {
+ gap = n.parent.rebalanceBeforeInsert(gap)
+ }
+ if n.nrSegments < maxDegree-1 {
+ return gap
+ }
+ if n.parent == nil {
+ // n is root. Move all segments before and after n's median segment
+ // into new child nodes adjacent to the median segment, which is now
+ // the only segment in root.
+ left := &node{
+ nrSegments: minDegree - 1,
+ parent: n,
+ parentIndex: 0,
+ hasChildren: n.hasChildren,
+ }
+ right := &node{
+ nrSegments: minDegree - 1,
+ parent: n,
+ parentIndex: 1,
+ hasChildren: n.hasChildren,
+ }
+ copy(left.keys[:minDegree-1], n.keys[:minDegree-1])
+ copy(left.values[:minDegree-1], n.values[:minDegree-1])
+ copy(right.keys[:minDegree-1], n.keys[minDegree:])
+ copy(right.values[:minDegree-1], n.values[minDegree:])
+ n.keys[0], n.values[0] = n.keys[minDegree-1], n.values[minDegree-1]
+ zeroValueSlice(n.values[1:])
+ if n.hasChildren {
+ copy(left.children[:minDegree], n.children[:minDegree])
+ copy(right.children[:minDegree], n.children[minDegree:])
+ zeroNodeSlice(n.children[2:])
+ for i := 0; i < minDegree; i++ {
+ left.children[i].parent = left
+ left.children[i].parentIndex = i
+ right.children[i].parent = right
+ right.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments = 1
+ n.hasChildren = true
+ n.children[0] = left
+ n.children[1] = right
+ if gap.node != n {
+ return gap
+ }
+ if gap.index < minDegree {
+ return GapIterator{left, gap.index}
+ }
+ return GapIterator{right, gap.index - minDegree}
+ }
+ // n is non-root. Move n's median segment into its parent node (which can't
+ // be full because we've already invoked n.parent.rebalanceBeforeInsert)
+ // and move all segments after n's median into a new sibling node (the
+ // median segment's right child subtree).
+ copy(n.parent.keys[n.parentIndex+1:], n.parent.keys[n.parentIndex:n.parent.nrSegments])
+ copy(n.parent.values[n.parentIndex+1:], n.parent.values[n.parentIndex:n.parent.nrSegments])
+ n.parent.keys[n.parentIndex], n.parent.values[n.parentIndex] = n.keys[minDegree-1], n.values[minDegree-1]
+ copy(n.parent.children[n.parentIndex+2:], n.parent.children[n.parentIndex+1:n.parent.nrSegments+1])
+ for i := n.parentIndex + 2; i < n.parent.nrSegments+2; i++ {
+ n.parent.children[i].parentIndex = i
+ }
+ sibling := &node{
+ nrSegments: minDegree - 1,
+ parent: n.parent,
+ parentIndex: n.parentIndex + 1,
+ hasChildren: n.hasChildren,
+ }
+ n.parent.children[n.parentIndex+1] = sibling
+ n.parent.nrSegments++
+ copy(sibling.keys[:minDegree-1], n.keys[minDegree:])
+ copy(sibling.values[:minDegree-1], n.values[minDegree:])
+ zeroValueSlice(n.values[minDegree-1:])
+ if n.hasChildren {
+ copy(sibling.children[:minDegree], n.children[minDegree:])
+ zeroNodeSlice(n.children[minDegree:])
+ for i := 0; i < minDegree; i++ {
+ sibling.children[i].parent = sibling
+ sibling.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments = minDegree - 1
+ // gap.node can't be n.parent because gaps are always in leaf nodes.
+ if gap.node != n {
+ return gap
+ }
+ if gap.index < minDegree {
+ return gap
+ }
+ return GapIterator{sibling, gap.index - minDegree}
+}
+
+// rebalanceAfterRemove "unsplits" n and its ancestors if they are deficient
+// (contain fewer segments than required by B-tree invariants), as required for
+// removal, and returns an updated iterator to the position represented by gap.
+//
+// Precondition: n is the only node in the tree that may currently violate a
+// B-tree invariant.
+func (n *node) rebalanceAfterRemove(gap GapIterator) GapIterator {
+ for {
+ if n.nrSegments >= minDegree-1 {
+ return gap
+ }
+ if n.parent == nil {
+ // Root is allowed to be deficient.
+ return gap
+ }
+ // There's one other thing we can do before resorting to unsplitting.
+ // If either sibling node has at least minDegree segments, rotate that
+ // sibling's closest segment through the segment in the parent that
+ // separates us. That is, given:
+ //
+ // ... D ...
+ // / \
+ // ... B C] [E ...
+ //
+ // where the node containing E is deficient, end up with:
+ //
+ // ... C ...
+ // / \
+ // ... B] [D E ...
+ //
+ // As in Set.Remove, prefer rotating from the end of the sibling to the
+ // left: by precondition, n.node has fewer segments (to memcpy) than
+ // the sibling does.
+ if sibling := n.prevSibling(); sibling != nil && sibling.nrSegments >= minDegree {
+ copy(n.keys[1:], n.keys[:n.nrSegments])
+ copy(n.values[1:], n.values[:n.nrSegments])
+ n.keys[0] = n.parent.keys[n.parentIndex-1]
+ n.values[0] = n.parent.values[n.parentIndex-1]
+ n.parent.keys[n.parentIndex-1] = sibling.keys[sibling.nrSegments-1]
+ n.parent.values[n.parentIndex-1] = sibling.values[sibling.nrSegments-1]
+ Functions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
+ if n.hasChildren {
+ copy(n.children[1:], n.children[:n.nrSegments+1])
+ n.children[0] = sibling.children[sibling.nrSegments]
+ sibling.children[sibling.nrSegments] = nil
+ n.children[0].parent = n
+ n.children[0].parentIndex = 0
+ for i := 1; i < n.nrSegments+2; i++ {
+ n.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments++
+ sibling.nrSegments--
+ if gap.node == sibling && gap.index == sibling.nrSegments {
+ return GapIterator{n, 0}
+ }
+ if gap.node == n {
+ return GapIterator{n, gap.index + 1}
+ }
+ return gap
+ }
+ if sibling := n.nextSibling(); sibling != nil && sibling.nrSegments >= minDegree {
+ n.keys[n.nrSegments] = n.parent.keys[n.parentIndex]
+ n.values[n.nrSegments] = n.parent.values[n.parentIndex]
+ n.parent.keys[n.parentIndex] = sibling.keys[0]
+ n.parent.values[n.parentIndex] = sibling.values[0]
+ copy(sibling.keys[:sibling.nrSegments-1], sibling.keys[1:])
+ copy(sibling.values[:sibling.nrSegments-1], sibling.values[1:])
+ Functions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
+ if n.hasChildren {
+ n.children[n.nrSegments+1] = sibling.children[0]
+ copy(sibling.children[:sibling.nrSegments], sibling.children[1:])
+ sibling.children[sibling.nrSegments] = nil
+ n.children[n.nrSegments+1].parent = n
+ n.children[n.nrSegments+1].parentIndex = n.nrSegments + 1
+ for i := 0; i < sibling.nrSegments; i++ {
+ sibling.children[i].parentIndex = i
+ }
+ }
+ n.nrSegments++
+ sibling.nrSegments--
+ if gap.node == sibling {
+ if gap.index == 0 {
+ return GapIterator{n, n.nrSegments}
+ }
+ return GapIterator{sibling, gap.index - 1}
+ }
+ return gap
+ }
+ // Otherwise, we must unsplit.
+ p := n.parent
+ if p.nrSegments == 1 {
+ // Merge all segments in both n and its sibling back into n.parent.
+ // This is the reverse of the root splitting case in
+ // node.rebalanceBeforeInsert. (Because we require minDegree >= 3,
+ // only root can have 1 segment in this path, so this reduces the
+ // height of the tree by 1, without violating the constraint that
+ // all leaf nodes remain at the same depth.)
+ left, right := p.children[0], p.children[1]
+ p.nrSegments = left.nrSegments + right.nrSegments + 1
+ p.hasChildren = left.hasChildren
+ p.keys[left.nrSegments] = p.keys[0]
+ p.values[left.nrSegments] = p.values[0]
+ copy(p.keys[:left.nrSegments], left.keys[:left.nrSegments])
+ copy(p.values[:left.nrSegments], left.values[:left.nrSegments])
+ copy(p.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
+ copy(p.values[left.nrSegments+1:], right.values[:right.nrSegments])
+ if left.hasChildren {
+ copy(p.children[:left.nrSegments+1], left.children[:left.nrSegments+1])
+ copy(p.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
+ for i := 0; i < p.nrSegments+1; i++ {
+ p.children[i].parent = p
+ p.children[i].parentIndex = i
+ }
+ } else {
+ p.children[0] = nil
+ p.children[1] = nil
+ }
+ if gap.node == left {
+ return GapIterator{p, gap.index}
+ }
+ if gap.node == right {
+ return GapIterator{p, gap.index + left.nrSegments + 1}
+ }
+ return gap
+ }
+ // Merge n and either sibling, along with the segment separating the
+ // two, into whichever of the two nodes comes first. This is the
+ // reverse of the non-root splitting case in
+ // node.rebalanceBeforeInsert.
+ var left, right *node
+ if n.parentIndex > 0 {
+ left = n.prevSibling()
+ right = n
+ } else {
+ left = n
+ right = n.nextSibling()
+ }
+ // Fix up gap first since we need the old left.nrSegments, which
+ // merging will change.
+ if gap.node == right {
+ gap = GapIterator{left, gap.index + left.nrSegments + 1}
+ }
+ left.keys[left.nrSegments] = p.keys[left.parentIndex]
+ left.values[left.nrSegments] = p.values[left.parentIndex]
+ copy(left.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
+ copy(left.values[left.nrSegments+1:], right.values[:right.nrSegments])
+ if left.hasChildren {
+ copy(left.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
+ for i := left.nrSegments + 1; i < left.nrSegments+right.nrSegments+2; i++ {
+ left.children[i].parent = left
+ left.children[i].parentIndex = i
+ }
+ }
+ left.nrSegments += right.nrSegments + 1
+ copy(p.keys[left.parentIndex:], p.keys[left.parentIndex+1:p.nrSegments])
+ copy(p.values[left.parentIndex:], p.values[left.parentIndex+1:p.nrSegments])
+ Functions{}.ClearValue(&p.values[p.nrSegments-1])
+ copy(p.children[left.parentIndex+1:], p.children[left.parentIndex+2:p.nrSegments+1])
+ for i := 0; i < p.nrSegments; i++ {
+ p.children[i].parentIndex = i
+ }
+ p.children[p.nrSegments] = nil
+ p.nrSegments--
+ // This process robs p of one segment, so recurse into rebalancing p.
+ n = p
+ }
+}
+
+// A Iterator is conceptually one of:
+//
+// - A pointer to a segment in a set; or
+//
+// - A terminal iterator, which is a sentinel indicating that the end of
+// iteration has been reached.
+//
+// Iterators are copyable values and are meaningfully equality-comparable. The
+// zero value of Iterator is a terminal iterator.
+//
+// Unless otherwise specified, any mutation of a set invalidates all existing
+// iterators into the set.
+type Iterator struct {
+ // node is the node containing the iterated segment. If the iterator is
+ // terminal, node is nil.
+ node *node
+
+ // index is the index of the segment in node.keys/values.
+ index int
+}
+
+// Ok returns true if the iterator is not terminal. All other methods are only
+// valid for non-terminal iterators.
+func (seg Iterator) Ok() bool {
+ return seg.node != nil
+}
+
+// Range returns the iterated segment's range key.
+func (seg Iterator) Range() Range {
+ return seg.node.keys[seg.index]
+}
+
+// Start is equivalent to Range().Start, but should be preferred if only the
+// start of the range is needed.
+func (seg Iterator) Start() Key {
+ return seg.node.keys[seg.index].Start
+}
+
+// End is equivalent to Range().End, but should be preferred if only the end of
+// the range is needed.
+func (seg Iterator) End() Key {
+ return seg.node.keys[seg.index].End
+}
+
+// SetRangeUnchecked mutates the iterated segment's range key. This operation
+// does not invalidate any iterators.
+//
+// Preconditions:
+//
+// - r.Length() > 0.
+//
+// - The new range must not overlap an existing one: If seg.NextSegment().Ok(),
+// then r.end <= seg.NextSegment().Start(); if seg.PrevSegment().Ok(), then
+// r.start >= seg.PrevSegment().End().
+func (seg Iterator) SetRangeUnchecked(r Range) {
+ seg.node.keys[seg.index] = r
+}
+
+// SetRange mutates the iterated segment's range key. If the new range would
+// cause the iterated segment to overlap another segment, or if the new range
+// is invalid, SetRange panics. This operation does not invalidate any
+// iterators.
+func (seg Iterator) SetRange(r Range) {
+ if r.Length() <= 0 {
+ panic(fmt.Sprintf("invalid segment range %v", r))
+ }
+ if prev := seg.PrevSegment(); prev.Ok() && r.Start < prev.End() {
+ panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, prev.Range()))
+ }
+ if next := seg.NextSegment(); next.Ok() && r.End > next.Start() {
+ panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, next.Range()))
+ }
+ seg.SetRangeUnchecked(r)
+}
+
+// SetStartUnchecked mutates the iterated segment's start. This operation does
+// not invalidate any iterators.
+//
+// Preconditions: The new start must be valid: start < seg.End(); if
+// seg.PrevSegment().Ok(), then start >= seg.PrevSegment().End().
+func (seg Iterator) SetStartUnchecked(start Key) {
+ seg.node.keys[seg.index].Start = start
+}
+
+// SetStart mutates the iterated segment's start. If the new start value would
+// cause the iterated segment to overlap another segment, or would result in an
+// invalid range, SetStart panics. This operation does not invalidate any
+// iterators.
+func (seg Iterator) SetStart(start Key) {
+ if start >= seg.End() {
+ panic(fmt.Sprintf("new start %v would invalidate segment range %v", start, seg.Range()))
+ }
+ if prev := seg.PrevSegment(); prev.Ok() && start < prev.End() {
+ panic(fmt.Sprintf("new start %v would cause segment range %v to overlap segment range %v", start, seg.Range(), prev.Range()))
+ }
+ seg.SetStartUnchecked(start)
+}
+
+// SetEndUnchecked mutates the iterated segment's end. This operation does not
+// invalidate any iterators.
+//
+// Preconditions: The new end must be valid: end > seg.Start(); if
+// seg.NextSegment().Ok(), then end <= seg.NextSegment().Start().
+func (seg Iterator) SetEndUnchecked(end Key) {
+ seg.node.keys[seg.index].End = end
+}
+
+// SetEnd mutates the iterated segment's end. If the new end value would cause
+// the iterated segment to overlap another segment, or would result in an
+// invalid range, SetEnd panics. This operation does not invalidate any
+// iterators.
+func (seg Iterator) SetEnd(end Key) {
+ if end <= seg.Start() {
+ panic(fmt.Sprintf("new end %v would invalidate segment range %v", end, seg.Range()))
+ }
+ if next := seg.NextSegment(); next.Ok() && end > next.Start() {
+ panic(fmt.Sprintf("new end %v would cause segment range %v to overlap segment range %v", end, seg.Range(), next.Range()))
+ }
+ seg.SetEndUnchecked(end)
+}
+
+// Value returns a copy of the iterated segment's value.
+func (seg Iterator) Value() Value {
+ return seg.node.values[seg.index]
+}
+
+// ValuePtr returns a pointer to the iterated segment's value. The pointer is
+// invalidated if the iterator is invalidated. This operation does not
+// invalidate any iterators.
+func (seg Iterator) ValuePtr() *Value {
+ return &seg.node.values[seg.index]
+}
+
+// SetValue mutates the iterated segment's value. This operation does not
+// invalidate any iterators.
+func (seg Iterator) SetValue(val Value) {
+ seg.node.values[seg.index] = val
+}
+
+// PrevSegment returns the iterated segment's predecessor. If there is no
+// preceding segment, PrevSegment returns a terminal iterator.
+func (seg Iterator) PrevSegment() Iterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index].lastSegment()
+ }
+ if seg.index > 0 {
+ return Iterator{seg.node, seg.index - 1}
+ }
+ if seg.node.parent == nil {
+ return Iterator{}
+ }
+ return segmentBeforePosition(seg.node.parent, seg.node.parentIndex)
+}
+
+// NextSegment returns the iterated segment's successor. If there is no
+// succeeding segment, NextSegment returns a terminal iterator.
+func (seg Iterator) NextSegment() Iterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index+1].firstSegment()
+ }
+ if seg.index < seg.node.nrSegments-1 {
+ return Iterator{seg.node, seg.index + 1}
+ }
+ if seg.node.parent == nil {
+ return Iterator{}
+ }
+ return segmentAfterPosition(seg.node.parent, seg.node.parentIndex)
+}
+
+// PrevGap returns the gap immediately before the iterated segment.
+func (seg Iterator) PrevGap() GapIterator {
+ if seg.node.hasChildren {
+ // Note that this isn't recursive because the last segment in a subtree
+ // must be in a leaf node.
+ return seg.node.children[seg.index].lastSegment().NextGap()
+ }
+ return GapIterator{seg.node, seg.index}
+}
+
+// NextGap returns the gap immediately after the iterated segment.
+func (seg Iterator) NextGap() GapIterator {
+ if seg.node.hasChildren {
+ return seg.node.children[seg.index+1].firstSegment().PrevGap()
+ }
+ return GapIterator{seg.node, seg.index + 1}
+}
+
+// PrevNonEmpty returns the iterated segment's predecessor if it is adjacent,
+// or the gap before the iterated segment otherwise. If seg.Start() ==
+// Functions.MinKey(), PrevNonEmpty will return two terminal iterators.
+// Otherwise, exactly one of the iterators returned by PrevNonEmpty will be
+// non-terminal.
+func (seg Iterator) PrevNonEmpty() (Iterator, GapIterator) {
+ gap := seg.PrevGap()
+ if gap.Range().Length() != 0 {
+ return Iterator{}, gap
+ }
+ return gap.PrevSegment(), GapIterator{}
+}
+
+// NextNonEmpty returns the iterated segment's successor if it is adjacent, or
+// the gap after the iterated segment otherwise. If seg.End() ==
+// Functions.MaxKey(), NextNonEmpty will return two terminal iterators.
+// Otherwise, exactly one of the iterators returned by NextNonEmpty will be
+// non-terminal.
+func (seg Iterator) NextNonEmpty() (Iterator, GapIterator) {
+ gap := seg.NextGap()
+ if gap.Range().Length() != 0 {
+ return Iterator{}, gap
+ }
+ return gap.NextSegment(), GapIterator{}
+}
+
+// A GapIterator is conceptually one of:
+//
+// - A pointer to a position between two segments, before the first segment, or
+// after the last segment in a set, called a *gap*; or
+//
+// - A terminal iterator, which is a sentinel indicating that the end of
+// iteration has been reached.
+//
+// Note that the gap between two adjacent segments exists (iterators to it are
+// non-terminal), but has a length of zero. GapIterator.IsEmpty returns true
+// for such gaps. An empty set contains a single gap, spanning the entire range
+// of the set's keys.
+//
+// GapIterators are copyable values and are meaningfully equality-comparable.
+// The zero value of GapIterator is a terminal iterator.
+//
+// Unless otherwise specified, any mutation of a set invalidates all existing
+// iterators into the set.
+type GapIterator struct {
+ // The representation of a GapIterator is identical to that of an Iterator,
+ // except that index corresponds to positions between segments in the same
+ // way as for node.children (see comment for node.nrSegments).
+ node *node
+ index int
+}
+
+// Ok returns true if the iterator is not terminal. All other methods are only
+// valid for non-terminal iterators.
+func (gap GapIterator) Ok() bool {
+ return gap.node != nil
+}
+
+// Range returns the range spanned by the iterated gap.
+func (gap GapIterator) Range() Range {
+ return Range{gap.Start(), gap.End()}
+}
+
+// Start is equivalent to Range().Start, but should be preferred if only the
+// start of the range is needed.
+func (gap GapIterator) Start() Key {
+ if ps := gap.PrevSegment(); ps.Ok() {
+ return ps.End()
+ }
+ return Functions{}.MinKey()
+}
+
+// End is equivalent to Range().End, but should be preferred if only the end of
+// the range is needed.
+func (gap GapIterator) End() Key {
+ if ns := gap.NextSegment(); ns.Ok() {
+ return ns.Start()
+ }
+ return Functions{}.MaxKey()
+}
+
+// IsEmpty returns true if the iterated gap is empty (that is, the "gap" is
+// between two adjacent segments.)
+func (gap GapIterator) IsEmpty() bool {
+ return gap.Range().Length() == 0
+}
+
+// PrevSegment returns the segment immediately before the iterated gap. If no
+// such segment exists, PrevSegment returns a terminal iterator.
+func (gap GapIterator) PrevSegment() Iterator {
+ return segmentBeforePosition(gap.node, gap.index)
+}
+
+// NextSegment returns the segment immediately after the iterated gap. If no
+// such segment exists, NextSegment returns a terminal iterator.
+func (gap GapIterator) NextSegment() Iterator {
+ return segmentAfterPosition(gap.node, gap.index)
+}
+
+// PrevGap returns the iterated gap's predecessor. If no such gap exists,
+// PrevGap returns a terminal iterator.
+func (gap GapIterator) PrevGap() GapIterator {
+ seg := gap.PrevSegment()
+ if !seg.Ok() {
+ return GapIterator{}
+ }
+ return seg.PrevGap()
+}
+
+// NextGap returns the iterated gap's successor. If no such gap exists, NextGap
+// returns a terminal iterator.
+func (gap GapIterator) NextGap() GapIterator {
+ seg := gap.NextSegment()
+ if !seg.Ok() {
+ return GapIterator{}
+ }
+ return seg.NextGap()
+}
+
+// segmentBeforePosition returns the predecessor segment of the position given
+// by n.children[i], which may or may not contain a child. If no such segment
+// exists, segmentBeforePosition returns a terminal iterator.
+func segmentBeforePosition(n *node, i int) Iterator {
+ for i == 0 {
+ if n.parent == nil {
+ return Iterator{}
+ }
+ n, i = n.parent, n.parentIndex
+ }
+ return Iterator{n, i - 1}
+}
+
+// segmentAfterPosition returns the successor segment of the position given by
+// n.children[i], which may or may not contain a child. If no such segment
+// exists, segmentAfterPosition returns a terminal iterator.
+func segmentAfterPosition(n *node, i int) Iterator {
+ for i == n.nrSegments {
+ if n.parent == nil {
+ return Iterator{}
+ }
+ n, i = n.parent, n.parentIndex
+ }
+ return Iterator{n, i}
+}
+
+func zeroValueSlice(slice []Value) {
+ // TODO: check if Go is actually smart enough to optimize a
+ // ClearValue that assigns nil to a memset here
+ for i := range slice {
+ Functions{}.ClearValue(&slice[i])
+ }
+}
+
+func zeroNodeSlice(slice []*node) {
+ for i := range slice {
+ slice[i] = nil
+ }
+}
+
+// String stringifies a Set for debugging.
+func (s *Set) String() string {
+ return s.root.String()
+}
+
+// String stringifes a node (and all of its children) for debugging.
+func (n *node) String() string {
+ var buf bytes.Buffer
+ n.writeDebugString(&buf, "")
+ return buf.String()
+}
+
+func (n *node) writeDebugString(buf *bytes.Buffer, prefix string) {
+ if n.hasChildren != (n.nrSegments > 0 && n.children[0] != nil) {
+ buf.WriteString(prefix)
+ buf.WriteString(fmt.Sprintf("WARNING: inconsistent value of hasChildren: got %v, want %v\n", n.hasChildren, !n.hasChildren))
+ }
+ for i := 0; i < n.nrSegments; i++ {
+ if child := n.children[i]; child != nil {
+ cprefix := fmt.Sprintf("%s- % 3d ", prefix, i)
+ if child.parent != n || child.parentIndex != i {
+ buf.WriteString(cprefix)
+ buf.WriteString(fmt.Sprintf("WARNING: inconsistent linkage to parent: got (%p, %d), want (%p, %d)\n", child.parent, child.parentIndex, n, i))
+ }
+ child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i))
+ }
+ buf.WriteString(prefix)
+ buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i]))
+ }
+ if child := n.children[n.nrSegments]; child != nil {
+ child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments))
+ }
+}
+
+// SegmentDataSlices represents segments from a set as slices of start, end, and
+// values. SegmentDataSlices is primarily used as an intermediate representation
+// for save/restore and the layout here is optimized for that.
+type SegmentDataSlices struct {
+ Start []Key
+ End []Key
+ Values []Value
+}
+
+// ExportSortedSlice returns a copy of all segments in the given set, in ascending
+// key order.
+func (s *Set) ExportSortedSlices() *SegmentDataSlices {
+ var sds SegmentDataSlices
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ sds.Start = append(sds.Start, seg.Start())
+ sds.End = append(sds.End, seg.End())
+ sds.Values = append(sds.Values, seg.Value())
+ }
+ sds.Start = sds.Start[:len(sds.Start):len(sds.Start)]
+ sds.End = sds.End[:len(sds.End):len(sds.End)]
+ sds.Values = sds.Values[:len(sds.Values):len(sds.Values)]
+ return &sds
+}
+
+// ImportSortedSlice initializes the given set from the given slice.
+//
+// Preconditions: s must be empty. sds must represent a valid set (the segments
+// in sds must have valid lengths that do not overlap). The segments in sds
+// must be sorted in ascending key order.
+func (s *Set) ImportSortedSlices(sds *SegmentDataSlices) error {
+ if !s.IsEmpty() {
+ return fmt.Errorf("cannot import into non-empty set %v", s)
+ }
+ gap := s.FirstGap()
+ for i := range sds.Start {
+ r := Range{sds.Start[i], sds.End[i]}
+ if !gap.Range().IsSupersetOf(r) {
+ return fmt.Errorf("segment overlaps a preceding segment or is incorrectly sorted: [%d, %d) => %v", sds.Start[i], sds.End[i], sds.Values[i])
+ }
+ gap = s.InsertWithoutMerging(gap, r, sds.Values[i]).NextGap()
+ }
+ return nil
+}
diff --git a/pkg/segment/set_state.go b/pkg/segment/set_state.go
new file mode 100644
index 000000000..a763d1915
--- /dev/null
+++ b/pkg/segment/set_state.go
@@ -0,0 +1,25 @@
+// Copyright 2018 Google Inc.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package segment
+
+func (s *Set) saveRoot() *SegmentDataSlices {
+ return s.ExportSortedSlices()
+}
+
+func (s *Set) loadRoot(sds *SegmentDataSlices) {
+ if err := s.ImportSortedSlices(sds); err != nil {
+ panic(err)
+ }
+}
diff --git a/pkg/segment/test/BUILD b/pkg/segment/test/BUILD
new file mode 100644
index 000000000..9d398d71a
--- /dev/null
+++ b/pkg/segment/test/BUILD
@@ -0,0 +1,52 @@
+load("@io_bazel_rules_go//go:def.bzl", "go_library", "go_test")
+
+package(
+ default_visibility = ["//visibility:private"],
+ licenses = ["notice"], # Apache 2.0
+)
+
+load("//tools/go_generics:defs.bzl", "go_template_instance")
+
+go_template_instance(
+ name = "int_range",
+ out = "int_range.go",
+ package = "segment",
+ template = "//pkg/segment:generic_range",
+ types = {
+ "T": "int",
+ },
+)
+
+go_template_instance(
+ name = "int_set",
+ out = "int_set.go",
+ package = "segment",
+ template = "//pkg/segment:generic_set",
+ types = {
+ "Key": "int",
+ "Range": "Range",
+ "Value": "int",
+ "Functions": "setFunctions",
+ },
+)
+
+go_library(
+ name = "segment",
+ testonly = 1,
+ srcs = [
+ "int_range.go",
+ "int_set.go",
+ "set_functions.go",
+ ],
+ importpath = "gvisor.googlesource.com/gvisor/pkg/segment/segment",
+ deps = [
+ "//pkg/state",
+ ],
+)
+
+go_test(
+ name = "segment_test",
+ size = "small",
+ srcs = ["segment_test.go"],
+ embed = [":segment"],
+)
diff --git a/pkg/segment/test/segment_test.go b/pkg/segment/test/segment_test.go
new file mode 100644
index 000000000..7ea24b177
--- /dev/null
+++ b/pkg/segment/test/segment_test.go
@@ -0,0 +1,564 @@
+// Copyright 2018 Google Inc.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package segment
+
+import (
+ "fmt"
+ "math/rand"
+ "testing"
+)
+
+const (
+ // testSize is the baseline number of elements inserted into sets under
+ // test, and is chosen to be large enough to ensure interesting amounts of
+ // tree rebalancing.
+ //
+ // Note that because checkSet is called between each insertion/removal in
+ // some tests that use it, tests may be quadratic in testSize.
+ testSize = 8000
+
+ // valueOffset is the difference between the value and start of test
+ // segments.
+ valueOffset = 100000
+)
+
+func shuffle(xs []int) {
+ for i := range xs {
+ j := rand.Intn(i + 1)
+ xs[i], xs[j] = xs[j], xs[i]
+ }
+}
+
+func randPermutation(size int) []int {
+ p := make([]int, size)
+ for i := range p {
+ p[i] = i
+ }
+ shuffle(p)
+ return p
+}
+
+// checkSet returns an error if s is incorrectly sorted, does not contain
+// exactly expectedSegments segments, or contains a segment for which val !=
+// key + valueOffset.
+func checkSet(s *Set, expectedSegments int) error {
+ havePrev := false
+ prev := 0
+ nrSegments := 0
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ next := seg.Start()
+ if havePrev && prev >= next {
+ return fmt.Errorf("incorrect order: key %d (segment %d) >= key %d (segment %d)", prev, nrSegments-1, next, nrSegments)
+ }
+ if got, want := seg.Value(), seg.Start()+valueOffset; got != want {
+ return fmt.Errorf("segment %d has key %d, value %d (expected %d)", nrSegments, seg.Start, got, want)
+ }
+ prev = next
+ havePrev = true
+ nrSegments++
+ }
+ if nrSegments != expectedSegments {
+ return fmt.Errorf("incorrect number of segments: got %d, wanted %d", nrSegments, expectedSegments)
+ }
+ return nil
+}
+
+// countSegmentsIn returns the number of segments in s.
+func countSegmentsIn(s *Set) int {
+ var count int
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ count++
+ }
+ return count
+}
+
+func TestAddRandom(t *testing.T) {
+ var s Set
+ order := randPermutation(testSize)
+ var nrInsertions int
+ for i, j := range order {
+ if !s.AddWithoutMerging(Range{j, j + 1}, j+valueOffset) {
+ t.Errorf("Iteration %d: failed to insert segment with key %d", i, j)
+ break
+ }
+ nrInsertions++
+ if err := checkSet(&s, nrInsertions); err != nil {
+ t.Errorf("Iteration %d: %v", i, err)
+ break
+ }
+ }
+ if got, want := countSegmentsIn(&s), nrInsertions; got != want {
+ t.Errorf("Wrong final number of segments: got %d, wanted %d", got, want)
+ }
+ if t.Failed() {
+ t.Logf("Insertion order: %v", order[:nrInsertions])
+ t.Logf("Set contents:\n%v", &s)
+ }
+}
+
+func TestRemoveRandom(t *testing.T) {
+ var s Set
+ for i := 0; i < testSize; i++ {
+ if !s.AddWithoutMerging(Range{i, i + 1}, i+valueOffset) {
+ t.Fatalf("Failed to insert segment %d", i)
+ }
+ }
+ order := randPermutation(testSize)
+ var nrRemovals int
+ for i, j := range order {
+ seg := s.FindSegment(j)
+ if !seg.Ok() {
+ t.Errorf("Iteration %d: failed to find segment with key %d", i, j)
+ break
+ }
+ s.Remove(seg)
+ nrRemovals++
+ if err := checkSet(&s, testSize-nrRemovals); err != nil {
+ t.Errorf("Iteration %d: %v", i, err)
+ break
+ }
+ }
+ if got, want := countSegmentsIn(&s), testSize-nrRemovals; got != want {
+ t.Errorf("Wrong final number of segments: got %d, wanted %d", got, want)
+ }
+ if t.Failed() {
+ t.Logf("Removal order: %v", order[:nrRemovals])
+ t.Logf("Set contents:\n%v", &s)
+ t.FailNow()
+ }
+}
+
+func TestAddSequentialAdjacent(t *testing.T) {
+ var s Set
+ var nrInsertions int
+ for i := 0; i < testSize; i++ {
+ if !s.AddWithoutMerging(Range{i, i + 1}, i+valueOffset) {
+ t.Fatalf("Failed to insert segment %d", i)
+ }
+ nrInsertions++
+ if err := checkSet(&s, nrInsertions); err != nil {
+ t.Errorf("Iteration %d: %v", i, err)
+ break
+ }
+ }
+ if got, want := countSegmentsIn(&s), nrInsertions; got != want {
+ t.Errorf("Wrong final number of segments: got %d, wanted %d", got, want)
+ }
+ if t.Failed() {
+ t.Logf("Set contents:\n%v", &s)
+ }
+
+ first := s.FirstSegment()
+ gotSeg, gotGap := first.PrevNonEmpty()
+ if wantGap := s.FirstGap(); gotSeg.Ok() || gotGap != wantGap {
+ t.Errorf("FirstSegment().PrevNonEmpty(): got (%v, %v), wanted (<terminal iterator>, %v)", gotSeg, gotGap, wantGap)
+ }
+ gotSeg, gotGap = first.NextNonEmpty()
+ if wantSeg := first.NextSegment(); gotSeg != wantSeg || gotGap.Ok() {
+ t.Errorf("FirstSegment().NextNonEmpty(): got (%v, %v), wanted (%v, <terminal iterator>)", gotSeg, gotGap, wantSeg)
+ }
+
+ last := s.LastSegment()
+ gotSeg, gotGap = last.PrevNonEmpty()
+ if wantSeg := last.PrevSegment(); gotSeg != wantSeg || gotGap.Ok() {
+ t.Errorf("LastSegment().PrevNonEmpty(): got (%v, %v), wanted (%v, <terminal iterator>)", gotSeg, gotGap, wantSeg)
+ }
+ gotSeg, gotGap = last.NextNonEmpty()
+ if wantGap := s.LastGap(); gotSeg.Ok() || gotGap != wantGap {
+ t.Errorf("LastSegment().NextNonEmpty(): got (%v, %v), wanted (<terminal iterator>, %v)", gotSeg, gotGap, wantGap)
+ }
+
+ for seg := first.NextSegment(); seg != last; seg = seg.NextSegment() {
+ gotSeg, gotGap = seg.PrevNonEmpty()
+ if wantSeg := seg.PrevSegment(); gotSeg != wantSeg || gotGap.Ok() {
+ t.Errorf("%v.PrevNonEmpty(): got (%v, %v), wanted (%v, <terminal iterator>)", seg, gotSeg, gotGap, wantSeg)
+ }
+ gotSeg, gotGap = seg.NextNonEmpty()
+ if wantSeg := seg.NextSegment(); gotSeg != wantSeg || gotGap.Ok() {
+ t.Errorf("%v.NextNonEmpty(): got (%v, %v), wanted (%v, <terminal iterator>)", seg, gotSeg, gotGap, wantSeg)
+ }
+ }
+}
+
+func TestAddSequentialNonAdjacent(t *testing.T) {
+ var s Set
+ var nrInsertions int
+ for i := 0; i < testSize; i++ {
+ // The range here differs from TestAddSequentialAdjacent so that
+ // consecutive segments are not adjacent.
+ if !s.AddWithoutMerging(Range{2 * i, 2*i + 1}, 2*i+valueOffset) {
+ t.Fatalf("Failed to insert segment %d", i)
+ }
+ nrInsertions++
+ if err := checkSet(&s, nrInsertions); err != nil {
+ t.Errorf("Iteration %d: %v", i, err)
+ break
+ }
+ }
+ if got, want := countSegmentsIn(&s), nrInsertions; got != want {
+ t.Errorf("Wrong final number of segments: got %d, wanted %d", got, want)
+ }
+ if t.Failed() {
+ t.Logf("Set contents:\n%v", &s)
+ }
+
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ gotSeg, gotGap := seg.PrevNonEmpty()
+ if wantGap := seg.PrevGap(); gotSeg.Ok() || gotGap != wantGap {
+ t.Errorf("%v.PrevNonEmpty(): got (%v, %v), wanted (<terminal iterator>, %v)", seg, gotSeg, gotGap, wantGap)
+ }
+ gotSeg, gotGap = seg.NextNonEmpty()
+ if wantGap := seg.NextGap(); gotSeg.Ok() || gotGap != wantGap {
+ t.Errorf("%v.NextNonEmpty(): got (%v, %v), wanted (<terminal iterator>, %v)", seg, gotSeg, gotGap, wantGap)
+ }
+ }
+}
+
+func TestMergeSplit(t *testing.T) {
+ tests := []struct {
+ name string
+ initial []Range
+ split bool
+ splitAddr int
+ final []Range
+ }{
+ {
+ name: "Add merges after existing segment",
+ initial: []Range{{1000, 1100}, {1100, 1200}},
+ final: []Range{{1000, 1200}},
+ },
+ {
+ name: "Add merges before existing segment",
+ initial: []Range{{1100, 1200}, {1000, 1100}},
+ final: []Range{{1000, 1200}},
+ },
+ {
+ name: "Add merges between existing segments",
+ initial: []Range{{1000, 1100}, {1200, 1300}, {1100, 1200}},
+ final: []Range{{1000, 1300}},
+ },
+ {
+ name: "SplitAt does nothing at a free address",
+ initial: []Range{{100, 200}},
+ split: true,
+ splitAddr: 300,
+ final: []Range{{100, 200}},
+ },
+ {
+ name: "SplitAt does nothing at the beginning of a segment",
+ initial: []Range{{100, 200}},
+ split: true,
+ splitAddr: 100,
+ final: []Range{{100, 200}},
+ },
+ {
+ name: "SplitAt does nothing at the end of a segment",
+ initial: []Range{{100, 200}},
+ split: true,
+ splitAddr: 200,
+ final: []Range{{100, 200}},
+ },
+ {
+ name: "SplitAt splits in the middle of a segment",
+ initial: []Range{{100, 200}},
+ split: true,
+ splitAddr: 150,
+ final: []Range{{100, 150}, {150, 200}},
+ },
+ }
+Tests:
+ for _, test := range tests {
+ var s Set
+ for _, r := range test.initial {
+ if !s.Add(r, 0) {
+ t.Errorf("%s: Add(%v) failed; set contents:\n%v", test.name, r, &s)
+ continue Tests
+ }
+ }
+ if test.split {
+ s.SplitAt(test.splitAddr)
+ }
+ var i int
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ if i > len(test.final) {
+ t.Errorf("%s: Incorrect number of segments: got %d, wanted %d; set contents:\n%v", test.name, countSegmentsIn(&s), len(test.final), &s)
+ continue Tests
+ }
+ if got, want := seg.Range(), test.final[i]; got != want {
+ t.Errorf("%s: Segment %d mismatch: got %v, wanted %v; set contents:\n%v", test.name, i, got, want, &s)
+ continue Tests
+ }
+ i++
+ }
+ if i < len(test.final) {
+ t.Errorf("%s: Incorrect number of segments: got %d, wanted %d; set contents:\n%v", test.name, i, len(test.final), &s)
+ }
+ }
+}
+
+func TestIsolate(t *testing.T) {
+ tests := []struct {
+ name string
+ initial Range
+ bounds Range
+ final []Range
+ }{
+ {
+ name: "Isolate does not split a segment that falls inside bounds",
+ initial: Range{100, 200},
+ bounds: Range{100, 200},
+ final: []Range{{100, 200}},
+ },
+ {
+ name: "Isolate splits at beginning of segment",
+ initial: Range{50, 200},
+ bounds: Range{100, 200},
+ final: []Range{{50, 100}, {100, 200}},
+ },
+ {
+ name: "Isolate splits at end of segment",
+ initial: Range{100, 250},
+ bounds: Range{100, 200},
+ final: []Range{{100, 200}, {200, 250}},
+ },
+ {
+ name: "Isolate splits at beginning and end of segment",
+ initial: Range{50, 250},
+ bounds: Range{100, 200},
+ final: []Range{{50, 100}, {100, 200}, {200, 250}},
+ },
+ }
+Tests:
+ for _, test := range tests {
+ var s Set
+ seg := s.Insert(s.FirstGap(), test.initial, 0)
+ seg = s.Isolate(seg, test.bounds)
+ if !test.bounds.IsSupersetOf(seg.Range()) {
+ t.Errorf("%s: Isolated segment %v lies outside bounds %v; set contents:\n%v", test.name, seg.Range(), test.bounds, &s)
+ }
+ var i int
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ if i > len(test.final) {
+ t.Errorf("%s: Incorrect number of segments: got %d, wanted %d; set contents:\n%v", test.name, countSegmentsIn(&s), len(test.final), &s)
+ continue Tests
+ }
+ if got, want := seg.Range(), test.final[i]; got != want {
+ t.Errorf("%s: Segment %d mismatch: got %v, wanted %v; set contents:\n%v", test.name, i, got, want, &s)
+ continue Tests
+ }
+ i++
+ }
+ if i < len(test.final) {
+ t.Errorf("%s: Incorrect number of segments: got %d, wanted %d; set contents:\n%v", test.name, i, len(test.final), &s)
+ }
+ }
+}
+
+func benchmarkAddSequential(b *testing.B, size int) {
+ for n := 0; n < b.N; n++ {
+ var s Set
+ for i := 0; i < size; i++ {
+ if !s.AddWithoutMerging(Range{i, i + 1}, i) {
+ b.Fatalf("Failed to insert segment %d", i)
+ }
+ }
+ }
+}
+
+func benchmarkAddRandom(b *testing.B, size int) {
+ order := randPermutation(size)
+
+ b.ResetTimer()
+ for n := 0; n < b.N; n++ {
+ var s Set
+ for _, i := range order {
+ if !s.AddWithoutMerging(Range{i, i + 1}, i) {
+ b.Fatalf("Failed to insert segment %d", i)
+ }
+ }
+ }
+}
+
+func benchmarkFindSequential(b *testing.B, size int) {
+ var s Set
+ for i := 0; i < size; i++ {
+ if !s.AddWithoutMerging(Range{i, i + 1}, i) {
+ b.Fatalf("Failed to insert segment %d", i)
+ }
+ }
+
+ b.ResetTimer()
+ for n := 0; n < b.N; n++ {
+ for i := 0; i < size; i++ {
+ if seg := s.FindSegment(i); !seg.Ok() {
+ b.Fatalf("Failed to find segment %d", i)
+ }
+ }
+ }
+}
+
+func benchmarkFindRandom(b *testing.B, size int) {
+ var s Set
+ for i := 0; i < size; i++ {
+ if !s.AddWithoutMerging(Range{i, i + 1}, i) {
+ b.Fatalf("Failed to insert segment %d", i)
+ }
+ }
+ order := randPermutation(size)
+
+ b.ResetTimer()
+ for n := 0; n < b.N; n++ {
+ for _, i := range order {
+ if si := s.FindSegment(i); !si.Ok() {
+ b.Fatalf("Failed to find segment %d", i)
+ }
+ }
+ }
+}
+
+func benchmarkIteration(b *testing.B, size int) {
+ var s Set
+ for i := 0; i < size; i++ {
+ if !s.AddWithoutMerging(Range{i, i + 1}, i) {
+ b.Fatalf("Failed to insert segment %d", i)
+ }
+ }
+
+ b.ResetTimer()
+ var count uint64
+ for n := 0; n < b.N; n++ {
+ for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
+ count++
+ }
+ }
+ if got, want := count, uint64(size)*uint64(b.N); got != want {
+ b.Fatalf("Iterated wrong number of segments: got %d, wanted %d", got, want)
+ }
+}
+
+func benchmarkAddFindRemoveSequential(b *testing.B, size int) {
+ for n := 0; n < b.N; n++ {
+ var s Set
+ for i := 0; i < size; i++ {
+ if !s.AddWithoutMerging(Range{i, i + 1}, i) {
+ b.Fatalf("Failed to insert segment %d", i)
+ }
+ }
+ for i := 0; i < size; i++ {
+ seg := s.FindSegment(i)
+ if !seg.Ok() {
+ b.Fatalf("Failed to find segment %d", i)
+ }
+ s.Remove(seg)
+ }
+ if !s.IsEmpty() {
+ b.Fatalf("Set not empty after all removals:\n%v", &s)
+ }
+ }
+}
+
+func benchmarkAddFindRemoveRandom(b *testing.B, size int) {
+ order := randPermutation(size)
+
+ b.ResetTimer()
+ for n := 0; n < b.N; n++ {
+ var s Set
+ for _, i := range order {
+ if !s.AddWithoutMerging(Range{i, i + 1}, i) {
+ b.Fatalf("Failed to insert segment %d", i)
+ }
+ }
+ for _, i := range order {
+ seg := s.FindSegment(i)
+ if !seg.Ok() {
+ b.Fatalf("Failed to find segment %d", i)
+ }
+ s.Remove(seg)
+ }
+ if !s.IsEmpty() {
+ b.Fatalf("Set not empty after all removals:\n%v", &s)
+ }
+ }
+}
+
+// Although we don't generally expect our segment sets to get this big, they're
+// useful for emulating the effect of cache pressure.
+var testSizes = []struct {
+ desc string
+ size int
+}{
+ {"64", 1 << 6},
+ {"256", 1 << 8},
+ {"1K", 1 << 10},
+ {"4K", 1 << 12},
+ {"16K", 1 << 14},
+ {"64K", 1 << 16},
+}
+
+func BenchmarkAddSequential(b *testing.B) {
+ for _, test := range testSizes {
+ b.Run(test.desc, func(b *testing.B) {
+ benchmarkAddSequential(b, test.size)
+ })
+ }
+}
+
+func BenchmarkAddRandom(b *testing.B) {
+ for _, test := range testSizes {
+ b.Run(test.desc, func(b *testing.B) {
+ benchmarkAddRandom(b, test.size)
+ })
+ }
+}
+
+func BenchmarkFindSequential(b *testing.B) {
+ for _, test := range testSizes {
+ b.Run(test.desc, func(b *testing.B) {
+ benchmarkFindSequential(b, test.size)
+ })
+ }
+}
+
+func BenchmarkFindRandom(b *testing.B) {
+ for _, test := range testSizes {
+ b.Run(test.desc, func(b *testing.B) {
+ benchmarkFindRandom(b, test.size)
+ })
+ }
+}
+
+func BenchmarkIteration(b *testing.B) {
+ for _, test := range testSizes {
+ b.Run(test.desc, func(b *testing.B) {
+ benchmarkIteration(b, test.size)
+ })
+ }
+}
+
+func BenchmarkAddFindRemoveSequential(b *testing.B) {
+ for _, test := range testSizes {
+ b.Run(test.desc, func(b *testing.B) {
+ benchmarkAddFindRemoveSequential(b, test.size)
+ })
+ }
+}
+
+func BenchmarkAddFindRemoveRandom(b *testing.B) {
+ for _, test := range testSizes {
+ b.Run(test.desc, func(b *testing.B) {
+ benchmarkAddFindRemoveRandom(b, test.size)
+ })
+ }
+}
diff --git a/pkg/segment/test/set_functions.go b/pkg/segment/test/set_functions.go
new file mode 100644
index 000000000..37c196ea1
--- /dev/null
+++ b/pkg/segment/test/set_functions.go
@@ -0,0 +1,42 @@
+// Copyright 2018 Google Inc.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package segment
+
+// Basic numeric constants that we define because the math package doesn't.
+// TODO: These should be Math.MaxInt64/MinInt64?
+const (
+ maxInt = int(^uint(0) >> 1)
+ minInt = -maxInt - 1
+)
+
+type setFunctions struct{}
+
+func (setFunctions) MinKey() int {
+ return minInt
+}
+
+func (setFunctions) MaxKey() int {
+ return maxInt
+}
+
+func (setFunctions) ClearValue(*int) {}
+
+func (setFunctions) Merge(_ Range, val1 int, _ Range, _ int) (int, bool) {
+ return val1, true
+}
+
+func (setFunctions) Split(_ Range, val int, _ int) (int, int) {
+ return val, val
+}