diff options
Diffstat (limited to 'pkg/segment')
-rw-r--r-- | pkg/segment/BUILD | 2 | ||||
-rw-r--r-- | pkg/segment/set.go | 400 | ||||
-rw-r--r-- | pkg/segment/test/BUILD | 18 | ||||
-rw-r--r-- | pkg/segment/test/segment_test.go | 397 | ||||
-rw-r--r-- | pkg/segment/test/set_functions.go | 32 |
5 files changed, 786 insertions, 63 deletions
diff --git a/pkg/segment/BUILD b/pkg/segment/BUILD index 1b487b887..f57ccc170 100644 --- a/pkg/segment/BUILD +++ b/pkg/segment/BUILD @@ -21,6 +21,8 @@ go_template( ], opt_consts = [ "minDegree", + # trackGaps must either be 0 or 1. + "trackGaps", ], types = [ "Key", diff --git a/pkg/segment/set.go b/pkg/segment/set.go index 03e4f258f..1a17ad9cb 100644 --- a/pkg/segment/set.go +++ b/pkg/segment/set.go @@ -36,6 +36,34 @@ type Range interface{} // Value is a required type parameter. type Value interface{} +// trackGaps is an optional parameter. +// +// If trackGaps is 1, the Set will track maximum gap size recursively, +// enabling the GapIterator.{Prev,Next}LargeEnoughGap functions. In this +// case, Key must be an unsigned integer. +// +// trackGaps must be 0 or 1. +const trackGaps = 0 + +var _ = uint8(trackGaps << 7) // Will fail if not zero or one. + +// dynamicGap is a type that disappears if trackGaps is 0. +type dynamicGap [trackGaps]Key + +// Get returns the value of the gap. +// +// Precondition: trackGaps must be non-zero. +func (d *dynamicGap) Get() Key { + return d[:][0] +} + +// Set sets the value of the gap. +// +// Precondition: trackGaps must be non-zero. +func (d *dynamicGap) Set(v Key) { + d[:][0] = v +} + // Functions is a required type parameter that must be a struct implementing // the methods defined by Functions. type Functions interface { @@ -327,8 +355,12 @@ func (s *Set) Insert(gap GapIterator, r Range, val Value) Iterator { } if prev.Ok() && prev.End() == r.Start { if mval, ok := (Functions{}).Merge(prev.Range(), prev.Value(), r, val); ok { + shrinkMaxGap := trackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get() prev.SetEndUnchecked(r.End) prev.SetValue(mval) + if shrinkMaxGap { + gap.node.updateMaxGapLeaf() + } if next.Ok() && next.Start() == r.End { val = mval if mval, ok := (Functions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok { @@ -342,11 +374,16 @@ func (s *Set) Insert(gap GapIterator, r Range, val Value) Iterator { } if next.Ok() && next.Start() == r.End { if mval, ok := (Functions{}).Merge(r, val, next.Range(), next.Value()); ok { + shrinkMaxGap := trackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get() next.SetStartUnchecked(r.Start) next.SetValue(mval) + if shrinkMaxGap { + gap.node.updateMaxGapLeaf() + } return next } } + // InsertWithoutMergingUnchecked will maintain maxGap if necessary. return s.InsertWithoutMergingUnchecked(gap, r, val) } @@ -373,11 +410,15 @@ func (s *Set) InsertWithoutMerging(gap GapIterator, r Range, val Value) Iterator // Preconditions: r.Start >= gap.Start(); r.End <= gap.End(). func (s *Set) InsertWithoutMergingUnchecked(gap GapIterator, r Range, val Value) Iterator { gap = gap.node.rebalanceBeforeInsert(gap) + splitMaxGap := trackGaps != 0 && (gap.node.nrSegments == 0 || gap.Range().Length() == gap.node.maxGap.Get()) copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments]) copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments]) gap.node.keys[gap.index] = r gap.node.values[gap.index] = val gap.node.nrSegments++ + if splitMaxGap { + gap.node.updateMaxGapLeaf() + } return Iterator{gap.node, gap.index} } @@ -399,12 +440,23 @@ func (s *Set) Remove(seg Iterator) GapIterator { // overlap. seg.SetRangeUnchecked(victim.Range()) seg.SetValue(victim.Value()) + // Need to update the nextAdjacentNode's maxGap because the gap in between + // must have been modified by updating seg.Range() to victim.Range(). + // seg.NextSegment() must exist since the last segment can't be in a + // non-leaf node. + nextAdjacentNode := seg.NextSegment().node + if trackGaps != 0 { + nextAdjacentNode.updateMaxGapLeaf() + } return s.Remove(victim).NextGap() } copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments]) copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments]) Functions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1]) seg.node.nrSegments-- + if trackGaps != 0 { + seg.node.updateMaxGapLeaf() + } return seg.node.rebalanceAfterRemove(GapIterator{seg.node, seg.index}) } @@ -455,6 +507,7 @@ func (s *Set) MergeUnchecked(first, second Iterator) Iterator { // overlaps second. first.SetEndUnchecked(second.End()) first.SetValue(mval) + // Remove will handle the maxGap update if necessary. return s.Remove(second).PrevSegment() } } @@ -631,6 +684,12 @@ type node struct { // than "isLeaf" because false must be the correct value for an empty root. hasChildren bool + // The longest gap within this node. If the node is a leaf, it's simply the + // maximum gap among all the (nrSegments+1) gaps formed by its nrSegments keys + // including the 0th and nrSegments-th gap possibly shared with its upper-level + // nodes; if it's a non-leaf node, it's the max of all children's maxGap. + maxGap dynamicGap + // Nodes store keys and values in separate arrays to maximize locality in // the common case (scanning keys for lookup). keys [maxDegree - 1]Range @@ -676,12 +735,12 @@ func (n *node) nextSibling() *node { // required for insertion, and returns an updated iterator to the position // represented by gap. func (n *node) rebalanceBeforeInsert(gap GapIterator) GapIterator { - if n.parent != nil { - gap = n.parent.rebalanceBeforeInsert(gap) - } if n.nrSegments < maxDegree-1 { return gap } + if n.parent != nil { + gap = n.parent.rebalanceBeforeInsert(gap) + } if n.parent == nil { // n is root. Move all segments before and after n's median segment // into new child nodes adjacent to the median segment, which is now @@ -719,6 +778,13 @@ func (n *node) rebalanceBeforeInsert(gap GapIterator) GapIterator { n.hasChildren = true n.children[0] = left n.children[1] = right + // In this case, n's maxGap won't violated as it's still the root, + // but the left and right children should be updated locally as they + // are newly split from n. + if trackGaps != 0 { + left.updateMaxGapLocal() + right.updateMaxGapLocal() + } if gap.node != n { return gap } @@ -758,6 +824,12 @@ func (n *node) rebalanceBeforeInsert(gap GapIterator) GapIterator { } } n.nrSegments = minDegree - 1 + // MaxGap of n's parent is not violated because the segments within is not changed. + // n and its sibling's maxGap need to be updated locally as they are two new nodes split from old n. + if trackGaps != 0 { + n.updateMaxGapLocal() + sibling.updateMaxGapLocal() + } // gap.node can't be n.parent because gaps are always in leaf nodes. if gap.node != n { return gap @@ -821,6 +893,12 @@ func (n *node) rebalanceAfterRemove(gap GapIterator) GapIterator { } n.nrSegments++ sibling.nrSegments-- + // n's parent's maxGap does not need to be updated as its content is unmodified. + // n and its sibling must be updated with (new) maxGap because of the shift of keys. + if trackGaps != 0 { + n.updateMaxGapLocal() + sibling.updateMaxGapLocal() + } if gap.node == sibling && gap.index == sibling.nrSegments { return GapIterator{n, 0} } @@ -849,6 +927,12 @@ func (n *node) rebalanceAfterRemove(gap GapIterator) GapIterator { } n.nrSegments++ sibling.nrSegments-- + // n's parent's maxGap does not need to be updated as its content is unmodified. + // n and its sibling must be updated with (new) maxGap because of the shift of keys. + if trackGaps != 0 { + n.updateMaxGapLocal() + sibling.updateMaxGapLocal() + } if gap.node == sibling { if gap.index == 0 { return GapIterator{n, n.nrSegments} @@ -886,6 +970,7 @@ func (n *node) rebalanceAfterRemove(gap GapIterator) GapIterator { p.children[0] = nil p.children[1] = nil } + // No need to update maxGap of p as its content is not changed. if gap.node == left { return GapIterator{p, gap.index} } @@ -932,11 +1017,152 @@ func (n *node) rebalanceAfterRemove(gap GapIterator) GapIterator { } p.children[p.nrSegments] = nil p.nrSegments-- + // Update maxGap of left locally, no need to change p and right because + // p's contents is not changed and right is already invalid. + if trackGaps != 0 { + left.updateMaxGapLocal() + } // This process robs p of one segment, so recurse into rebalancing p. n = p } } +// updateMaxGapLeaf updates maxGap bottom-up from the calling leaf until no +// necessary update. +// +// Preconditions: n must be a leaf node, trackGaps must be 1. +func (n *node) updateMaxGapLeaf() { + if n.hasChildren { + panic(fmt.Sprintf("updateMaxGapLeaf should always be called on leaf node: %v", n)) + } + max := n.calculateMaxGapLeaf() + if max == n.maxGap.Get() { + // If new max equals the old maxGap, no update is needed. + return + } + oldMax := n.maxGap.Get() + n.maxGap.Set(max) + if max > oldMax { + // Grow ancestor maxGaps. + for p := n.parent; p != nil; p = p.parent { + if p.maxGap.Get() >= max { + // p and its ancestors already contain an equal or larger gap. + break + } + // Only if new maxGap is larger than parent's + // old maxGap, propagate this update to parent. + p.maxGap.Set(max) + } + return + } + // Shrink ancestor maxGaps. + for p := n.parent; p != nil; p = p.parent { + if p.maxGap.Get() > oldMax { + // p and its ancestors still contain a larger gap. + break + } + // If new max is smaller than the old maxGap, and this gap used + // to be the maxGap of its parent, iterate parent's children + // and calculate parent's new maxGap.(It's probable that parent + // has two children with the old maxGap, but we need to check it anyway.) + parentNewMax := p.calculateMaxGapInternal() + if p.maxGap.Get() == parentNewMax { + // p and its ancestors still contain a gap of at least equal size. + break + } + // If p's new maxGap differs from the old one, propagate this update. + p.maxGap.Set(parentNewMax) + } +} + +// updateMaxGapLocal updates maxGap of the calling node solely with no +// propagation to ancestor nodes. +// +// Precondition: trackGaps must be 1. +func (n *node) updateMaxGapLocal() { + if !n.hasChildren { + // Leaf node iterates its gaps. + n.maxGap.Set(n.calculateMaxGapLeaf()) + } else { + // Non-leaf node iterates its children. + n.maxGap.Set(n.calculateMaxGapInternal()) + } +} + +// calculateMaxGapLeaf iterates the gaps within a leaf node and calculate the +// max. +// +// Preconditions: n must be a leaf node. +func (n *node) calculateMaxGapLeaf() Key { + max := GapIterator{n, 0}.Range().Length() + for i := 1; i <= n.nrSegments; i++ { + if current := (GapIterator{n, i}).Range().Length(); current > max { + max = current + } + } + return max +} + +// calculateMaxGapInternal iterates children's maxGap within an internal node n +// and calculate the max. +// +// Preconditions: n must be a non-leaf node. +func (n *node) calculateMaxGapInternal() Key { + max := n.children[0].maxGap.Get() + for i := 1; i <= n.nrSegments; i++ { + if current := n.children[i].maxGap.Get(); current > max { + max = current + } + } + return max +} + +// searchFirstLargeEnoughGap returns the first gap having at least minSize length +// in the subtree rooted by n. If not found, return a terminal gap iterator. +func (n *node) searchFirstLargeEnoughGap(minSize Key) GapIterator { + if n.maxGap.Get() < minSize { + return GapIterator{} + } + if n.hasChildren { + for i := 0; i <= n.nrSegments; i++ { + if largeEnoughGap := n.children[i].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() { + return largeEnoughGap + } + } + } else { + for i := 0; i <= n.nrSegments; i++ { + currentGap := GapIterator{n, i} + if currentGap.Range().Length() >= minSize { + return currentGap + } + } + } + panic(fmt.Sprintf("invalid maxGap in %v", n)) +} + +// searchLastLargeEnoughGap returns the last gap having at least minSize length +// in the subtree rooted by n. If not found, return a terminal gap iterator. +func (n *node) searchLastLargeEnoughGap(minSize Key) GapIterator { + if n.maxGap.Get() < minSize { + return GapIterator{} + } + if n.hasChildren { + for i := n.nrSegments; i >= 0; i-- { + if largeEnoughGap := n.children[i].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() { + return largeEnoughGap + } + } + } else { + for i := n.nrSegments; i >= 0; i-- { + currentGap := GapIterator{n, i} + if currentGap.Range().Length() >= minSize { + return currentGap + } + } + } + panic(fmt.Sprintf("invalid maxGap in %v", n)) +} + // A Iterator is conceptually one of: // // - A pointer to a segment in a set; or @@ -1243,6 +1469,122 @@ func (gap GapIterator) NextGap() GapIterator { return seg.NextGap() } +// NextLargeEnoughGap returns the iterated gap's first next gap with larger +// length than minSize. If not found, return a terminal gap iterator (does NOT +// include this gap itself). +// +// Precondition: trackGaps must be 1. +func (gap GapIterator) NextLargeEnoughGap(minSize Key) GapIterator { + if trackGaps != 1 { + panic("set is not tracking gaps") + } + if gap.node != nil && gap.node.hasChildren && gap.index == gap.node.nrSegments { + // If gap is the trailing gap of an non-leaf node, + // translate it to the equivalent gap on leaf level. + gap.node = gap.NextSegment().node + gap.index = 0 + return gap.nextLargeEnoughGapHelper(minSize) + } + return gap.nextLargeEnoughGapHelper(minSize) +} + +// nextLargeEnoughGapHelper is the helper function used by NextLargeEnoughGap +// to do the real recursions. +// +// Preconditions: gap is NOT the trailing gap of a non-leaf node. +func (gap GapIterator) nextLargeEnoughGapHelper(minSize Key) GapIterator { + // Crawl up the tree if no large enough gap in current node or the + // current gap is the trailing one on leaf level. + for gap.node != nil && + (gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == gap.node.nrSegments)) { + gap.node, gap.index = gap.node.parent, gap.node.parentIndex + } + // If no large enough gap throughout the whole set, return a terminal + // gap iterator. + if gap.node == nil { + return GapIterator{} + } + // Iterate subsequent gaps. + gap.index++ + for gap.index <= gap.node.nrSegments { + if gap.node.hasChildren { + if largeEnoughGap := gap.node.children[gap.index].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() { + return largeEnoughGap + } + } else { + if gap.Range().Length() >= minSize { + return gap + } + } + gap.index++ + } + gap.node, gap.index = gap.node.parent, gap.node.parentIndex + if gap.node != nil && gap.index == gap.node.nrSegments { + // If gap is the trailing gap of a non-leaf node, crawl up to + // parent again and do recursion. + gap.node, gap.index = gap.node.parent, gap.node.parentIndex + } + return gap.nextLargeEnoughGapHelper(minSize) +} + +// PrevLargeEnoughGap returns the iterated gap's first prev gap with larger or +// equal length than minSize. If not found, return a terminal gap iterator +// (does NOT include this gap itself). +// +// Precondition: trackGaps must be 1. +func (gap GapIterator) PrevLargeEnoughGap(minSize Key) GapIterator { + if trackGaps != 1 { + panic("set is not tracking gaps") + } + if gap.node != nil && gap.node.hasChildren && gap.index == 0 { + // If gap is the first gap of an non-leaf node, + // translate it to the equivalent gap on leaf level. + gap.node = gap.PrevSegment().node + gap.index = gap.node.nrSegments + return gap.prevLargeEnoughGapHelper(minSize) + } + return gap.prevLargeEnoughGapHelper(minSize) +} + +// prevLargeEnoughGapHelper is the helper function used by PrevLargeEnoughGap +// to do the real recursions. +// +// Preconditions: gap is NOT the first gap of a non-leaf node. +func (gap GapIterator) prevLargeEnoughGapHelper(minSize Key) GapIterator { + // Crawl up the tree if no large enough gap in current node or the + // current gap is the first one on leaf level. + for gap.node != nil && + (gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == 0)) { + gap.node, gap.index = gap.node.parent, gap.node.parentIndex + } + // If no large enough gap throughout the whole set, return a terminal + // gap iterator. + if gap.node == nil { + return GapIterator{} + } + // Iterate previous gaps. + gap.index-- + for gap.index >= 0 { + if gap.node.hasChildren { + if largeEnoughGap := gap.node.children[gap.index].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() { + return largeEnoughGap + } + } else { + if gap.Range().Length() >= minSize { + return gap + } + } + gap.index-- + } + gap.node, gap.index = gap.node.parent, gap.node.parentIndex + if gap.node != nil && gap.index == 0 { + // If gap is the first gap of a non-leaf node, crawl up to + // parent again and do recursion. + gap.node, gap.index = gap.node.parent, gap.node.parentIndex + } + return gap.prevLargeEnoughGapHelper(minSize) +} + // segmentBeforePosition returns the predecessor segment of the position given // by n.children[i], which may or may not contain a child. If no such segment // exists, segmentBeforePosition returns a terminal iterator. @@ -1271,7 +1613,7 @@ func segmentAfterPosition(n *node, i int) Iterator { func zeroValueSlice(slice []Value) { // TODO(jamieliu): check if Go is actually smart enough to optimize a - // ClearValue that assigns nil to a memset here + // ClearValue that assigns nil to a memset here. for i := range slice { Functions{}.ClearValue(&slice[i]) } @@ -1310,7 +1652,15 @@ func (n *node) writeDebugString(buf *bytes.Buffer, prefix string) { child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i)) } buf.WriteString(prefix) - buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i])) + if n.hasChildren { + if trackGaps != 0 { + buf.WriteString(fmt.Sprintf("- % 3d: %v => %v, maxGap: %d\n", i, n.keys[i], n.values[i], n.maxGap.Get())) + } else { + buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i])) + } + } else { + buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i])) + } } if child := n.children[n.nrSegments]; child != nil { child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments)) @@ -1362,3 +1712,43 @@ func (s *Set) ImportSortedSlices(sds *SegmentDataSlices) error { } return nil } + +// segmentTestCheck returns an error if s is incorrectly sorted, does not +// contain exactly expectedSegments segments, or contains a segment which +// fails the passed check. +// +// This should be used only for testing, and has been added to this package for +// templating convenience. +func (s *Set) segmentTestCheck(expectedSegments int, segFunc func(int, Range, Value) error) error { + havePrev := false + prev := Key(0) + nrSegments := 0 + for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { + next := seg.Start() + if havePrev && prev >= next { + return fmt.Errorf("incorrect order: key %d (segment %d) >= key %d (segment %d)", prev, nrSegments-1, next, nrSegments) + } + if segFunc != nil { + if err := segFunc(nrSegments, seg.Range(), seg.Value()); err != nil { + return err + } + } + prev = next + havePrev = true + nrSegments++ + } + if nrSegments != expectedSegments { + return fmt.Errorf("incorrect number of segments: got %d, wanted %d", nrSegments, expectedSegments) + } + return nil +} + +// countSegments counts the number of segments in the set. +// +// Similar to Check, this should only be used for testing. +func (s *Set) countSegments() (segments int) { + for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { + segments++ + } + return segments +} diff --git a/pkg/segment/test/BUILD b/pkg/segment/test/BUILD index f2d8462d8..131bf09b9 100644 --- a/pkg/segment/test/BUILD +++ b/pkg/segment/test/BUILD @@ -29,10 +29,28 @@ go_template_instance( }, ) +go_template_instance( + name = "gap_set", + out = "gap_set.go", + consts = { + "trackGaps": "1", + }, + package = "segment", + prefix = "gap", + template = "//pkg/segment:generic_set", + types = { + "Key": "int", + "Range": "Range", + "Value": "int", + "Functions": "gapSetFunctions", + }, +) + go_library( name = "segment", testonly = 1, srcs = [ + "gap_set.go", "int_range.go", "int_set.go", "set_functions.go", diff --git a/pkg/segment/test/segment_test.go b/pkg/segment/test/segment_test.go index f19a005f3..85fa19096 100644 --- a/pkg/segment/test/segment_test.go +++ b/pkg/segment/test/segment_test.go @@ -17,6 +17,7 @@ package segment import ( "fmt" "math/rand" + "reflect" "testing" ) @@ -32,61 +33,65 @@ const ( // valueOffset is the difference between the value and start of test // segments. valueOffset = 100000 + + // intervalLength is the interval used by random gap tests. + intervalLength = 10 ) func shuffle(xs []int) { - for i := range xs { - j := rand.Intn(i + 1) - xs[i], xs[j] = xs[j], xs[i] - } + rand.Shuffle(len(xs), func(i, j int) { xs[i], xs[j] = xs[j], xs[i] }) } -func randPermutation(size int) []int { +func randIntervalPermutation(size int) []int { p := make([]int, size) for i := range p { - p[i] = i + p[i] = intervalLength * i } shuffle(p) return p } -// checkSet returns an error if s is incorrectly sorted, does not contain -// exactly expectedSegments segments, or contains a segment for which val != -// key + valueOffset. -func checkSet(s *Set, expectedSegments int) error { - havePrev := false - prev := 0 - nrSegments := 0 - for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { - next := seg.Start() - if havePrev && prev >= next { - return fmt.Errorf("incorrect order: key %d (segment %d) >= key %d (segment %d)", prev, nrSegments-1, next, nrSegments) - } - if got, want := seg.Value(), seg.Start()+valueOffset; got != want { - return fmt.Errorf("segment %d has key %d, value %d (expected %d)", nrSegments, seg.Start, got, want) - } - prev = next - havePrev = true - nrSegments++ - } - if nrSegments != expectedSegments { - return fmt.Errorf("incorrect number of segments: got %d, wanted %d", nrSegments, expectedSegments) +// validate can be passed to Check. +func validate(nr int, r Range, v int) error { + if got, want := v, r.Start+valueOffset; got != want { + return fmt.Errorf("segment %d has key %d, value %d (expected %d)", nr, r.Start, got, want) } return nil } -// countSegmentsIn returns the number of segments in s. -func countSegmentsIn(s *Set) int { - var count int - for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { - count++ +// checkSetMaxGap returns an error if maxGap inside all nodes of s is not well +// maintained. +func checkSetMaxGap(s *gapSet) error { + n := s.root + return checkNodeMaxGap(&n) +} + +// checkNodeMaxGap returns an error if maxGap inside the subtree rooted by n is +// not well maintained. +func checkNodeMaxGap(n *gapnode) error { + var max int + if !n.hasChildren { + max = n.calculateMaxGapLeaf() + } else { + for i := 0; i <= n.nrSegments; i++ { + child := n.children[i] + if err := checkNodeMaxGap(child); err != nil { + return err + } + if temp := child.maxGap.Get(); i == 0 || temp > max { + max = temp + } + } + } + if max != n.maxGap.Get() { + return fmt.Errorf("maxGap wrong in node\n%vexpected: %d got: %d", n, max, n.maxGap) } - return count + return nil } func TestAddRandom(t *testing.T) { var s Set - order := randPermutation(testSize) + order := rand.Perm(testSize) var nrInsertions int for i, j := range order { if !s.AddWithoutMerging(Range{j, j + 1}, j+valueOffset) { @@ -94,12 +99,12 @@ func TestAddRandom(t *testing.T) { break } nrInsertions++ - if err := checkSet(&s, nrInsertions); err != nil { + if err := s.segmentTestCheck(nrInsertions, validate); err != nil { t.Errorf("Iteration %d: %v", i, err) break } } - if got, want := countSegmentsIn(&s), nrInsertions; got != want { + if got, want := s.countSegments(), nrInsertions; got != want { t.Errorf("Wrong final number of segments: got %d, wanted %d", got, want) } if t.Failed() { @@ -115,7 +120,156 @@ func TestRemoveRandom(t *testing.T) { t.Fatalf("Failed to insert segment %d", i) } } - order := randPermutation(testSize) + order := rand.Perm(testSize) + var nrRemovals int + for i, j := range order { + seg := s.FindSegment(j) + if !seg.Ok() { + t.Errorf("Iteration %d: failed to find segment with key %d", i, j) + break + } + s.Remove(seg) + nrRemovals++ + if err := s.segmentTestCheck(testSize-nrRemovals, validate); err != nil { + t.Errorf("Iteration %d: %v", i, err) + break + } + } + if got, want := s.countSegments(), testSize-nrRemovals; got != want { + t.Errorf("Wrong final number of segments: got %d, wanted %d", got, want) + } + if t.Failed() { + t.Logf("Removal order: %v", order[:nrRemovals]) + t.Logf("Set contents:\n%v", &s) + t.FailNow() + } +} + +func TestMaxGapAddRandom(t *testing.T) { + var s gapSet + order := rand.Perm(testSize) + var nrInsertions int + for i, j := range order { + if !s.AddWithoutMerging(Range{j, j + 1}, j+valueOffset) { + t.Errorf("Iteration %d: failed to insert segment with key %d", i, j) + break + } + nrInsertions++ + if err := s.segmentTestCheck(nrInsertions, validate); err != nil { + t.Errorf("Iteration %d: %v", i, err) + break + } + if err := checkSetMaxGap(&s); err != nil { + t.Errorf("When inserting %d: %v", j, err) + break + } + } + if got, want := s.countSegments(), nrInsertions; got != want { + t.Errorf("Wrong final number of segments: got %d, wanted %d", got, want) + } + if t.Failed() { + t.Logf("Insertion order: %v", order[:nrInsertions]) + t.Logf("Set contents:\n%v", &s) + } +} + +func TestMaxGapAddRandomWithRandomInterval(t *testing.T) { + var s gapSet + order := randIntervalPermutation(testSize) + var nrInsertions int + for i, j := range order { + if !s.AddWithoutMerging(Range{j, j + rand.Intn(intervalLength-1) + 1}, j+valueOffset) { + t.Errorf("Iteration %d: failed to insert segment with key %d", i, j) + break + } + nrInsertions++ + if err := s.segmentTestCheck(nrInsertions, validate); err != nil { + t.Errorf("Iteration %d: %v", i, err) + break + } + if err := checkSetMaxGap(&s); err != nil { + t.Errorf("When inserting %d: %v", j, err) + break + } + } + if got, want := s.countSegments(), nrInsertions; got != want { + t.Errorf("Wrong final number of segments: got %d, wanted %d", got, want) + } + if t.Failed() { + t.Logf("Insertion order: %v", order[:nrInsertions]) + t.Logf("Set contents:\n%v", &s) + } +} + +func TestMaxGapAddRandomWithMerge(t *testing.T) { + var s gapSet + order := randIntervalPermutation(testSize) + nrInsertions := 1 + for i, j := range order { + if !s.Add(Range{j, j + intervalLength}, j+valueOffset) { + t.Errorf("Iteration %d: failed to insert segment with key %d", i, j) + break + } + if err := checkSetMaxGap(&s); err != nil { + t.Errorf("When inserting %d: %v", j, err) + break + } + } + if got, want := s.countSegments(), nrInsertions; got != want { + t.Errorf("Wrong final number of segments: got %d, wanted %d", got, want) + } + if t.Failed() { + t.Logf("Insertion order: %v", order) + t.Logf("Set contents:\n%v", &s) + } +} + +func TestMaxGapRemoveRandom(t *testing.T) { + var s gapSet + for i := 0; i < testSize; i++ { + if !s.AddWithoutMerging(Range{i, i + 1}, i+valueOffset) { + t.Fatalf("Failed to insert segment %d", i) + } + } + order := rand.Perm(testSize) + var nrRemovals int + for i, j := range order { + seg := s.FindSegment(j) + if !seg.Ok() { + t.Errorf("Iteration %d: failed to find segment with key %d", i, j) + break + } + temprange := seg.Range() + s.Remove(seg) + nrRemovals++ + if err := s.segmentTestCheck(testSize-nrRemovals, validate); err != nil { + t.Errorf("Iteration %d: %v", i, err) + break + } + if err := checkSetMaxGap(&s); err != nil { + t.Errorf("When removing %v: %v", temprange, err) + break + } + } + if got, want := s.countSegments(), testSize-nrRemovals; got != want { + t.Errorf("Wrong final number of segments: got %d, wanted %d", got, want) + } + if t.Failed() { + t.Logf("Removal order: %v", order[:nrRemovals]) + t.Logf("Set contents:\n%v", &s) + t.FailNow() + } +} + +func TestMaxGapRemoveHalfRandom(t *testing.T) { + var s gapSet + for i := 0; i < testSize; i++ { + if !s.AddWithoutMerging(Range{intervalLength * i, intervalLength*i + rand.Intn(intervalLength-1) + 1}, intervalLength*i+valueOffset) { + t.Fatalf("Failed to insert segment %d", i) + } + } + order := randIntervalPermutation(testSize) + order = order[:testSize/2] var nrRemovals int for i, j := range order { seg := s.FindSegment(j) @@ -123,14 +277,19 @@ func TestRemoveRandom(t *testing.T) { t.Errorf("Iteration %d: failed to find segment with key %d", i, j) break } + temprange := seg.Range() s.Remove(seg) nrRemovals++ - if err := checkSet(&s, testSize-nrRemovals); err != nil { + if err := s.segmentTestCheck(testSize-nrRemovals, validate); err != nil { t.Errorf("Iteration %d: %v", i, err) break } + if err := checkSetMaxGap(&s); err != nil { + t.Errorf("When removing %v: %v", temprange, err) + break + } } - if got, want := countSegmentsIn(&s), testSize-nrRemovals; got != want { + if got, want := s.countSegments(), testSize-nrRemovals; got != want { t.Errorf("Wrong final number of segments: got %d, wanted %d", got, want) } if t.Failed() { @@ -140,6 +299,148 @@ func TestRemoveRandom(t *testing.T) { } } +func TestMaxGapAddRandomRemoveRandomHalfWithMerge(t *testing.T) { + var s gapSet + order := randIntervalPermutation(testSize * 2) + order = order[:testSize] + for i, j := range order { + if !s.Add(Range{j, j + intervalLength}, j+valueOffset) { + t.Errorf("Iteration %d: failed to insert segment with key %d", i, j) + break + } + if err := checkSetMaxGap(&s); err != nil { + t.Errorf("When inserting %d: %v", j, err) + break + } + } + shuffle(order) + var nrRemovals int + for _, j := range order { + seg := s.FindSegment(j) + if !seg.Ok() { + continue + } + temprange := seg.Range() + s.Remove(seg) + nrRemovals++ + if err := checkSetMaxGap(&s); err != nil { + t.Errorf("When removing %v: %v", temprange, err) + break + } + } + if t.Failed() { + t.Logf("Removal order: %v", order[:nrRemovals]) + t.Logf("Set contents:\n%v", &s) + t.FailNow() + } +} + +func TestNextLargeEnoughGap(t *testing.T) { + var s gapSet + order := randIntervalPermutation(testSize * 2) + order = order[:testSize] + for i, j := range order { + if !s.Add(Range{j, j + rand.Intn(intervalLength-1) + 1}, j+valueOffset) { + t.Errorf("Iteration %d: failed to insert segment with key %d", i, j) + break + } + if err := checkSetMaxGap(&s); err != nil { + t.Errorf("When inserting %d: %v", j, err) + break + } + } + shuffle(order) + order = order[:testSize/2] + for _, j := range order { + seg := s.FindSegment(j) + if !seg.Ok() { + continue + } + temprange := seg.Range() + s.Remove(seg) + if err := checkSetMaxGap(&s); err != nil { + t.Errorf("When removing %v: %v", temprange, err) + break + } + } + minSize := 7 + var gapArr1 []int + for gap := s.LowerBoundGap(0).NextLargeEnoughGap(minSize); gap.Ok(); gap = gap.NextLargeEnoughGap(minSize) { + if gap.Range().Length() < minSize { + t.Errorf("NextLargeEnoughGap wrong, gap %v has length %d, wanted %d", gap.Range(), gap.Range().Length(), minSize) + } else { + gapArr1 = append(gapArr1, gap.Range().Start) + } + } + var gapArr2 []int + for gap := s.LowerBoundGap(0).NextGap(); gap.Ok(); gap = gap.NextGap() { + if gap.Range().Length() >= minSize { + gapArr2 = append(gapArr2, gap.Range().Start) + } + } + + if !reflect.DeepEqual(gapArr2, gapArr1) { + t.Errorf("Search result not correct, got: %v, wanted: %v", gapArr1, gapArr2) + } + if t.Failed() { + t.Logf("Set contents:\n%v", &s) + t.FailNow() + } +} + +func TestPrevLargeEnoughGap(t *testing.T) { + var s gapSet + order := randIntervalPermutation(testSize * 2) + order = order[:testSize] + for i, j := range order { + if !s.Add(Range{j, j + rand.Intn(intervalLength-1) + 1}, j+valueOffset) { + t.Errorf("Iteration %d: failed to insert segment with key %d", i, j) + break + } + if err := checkSetMaxGap(&s); err != nil { + t.Errorf("When inserting %d: %v", j, err) + break + } + } + end := s.LastSegment().End() + shuffle(order) + order = order[:testSize/2] + for _, j := range order { + seg := s.FindSegment(j) + if !seg.Ok() { + continue + } + temprange := seg.Range() + s.Remove(seg) + if err := checkSetMaxGap(&s); err != nil { + t.Errorf("When removing %v: %v", temprange, err) + break + } + } + minSize := 7 + var gapArr1 []int + for gap := s.UpperBoundGap(end + intervalLength).PrevLargeEnoughGap(minSize); gap.Ok(); gap = gap.PrevLargeEnoughGap(minSize) { + if gap.Range().Length() < minSize { + t.Errorf("PrevLargeEnoughGap wrong, gap length %d, wanted %d", gap.Range().Length(), minSize) + } else { + gapArr1 = append(gapArr1, gap.Range().Start) + } + } + var gapArr2 []int + for gap := s.UpperBoundGap(end + intervalLength).PrevGap(); gap.Ok(); gap = gap.PrevGap() { + if gap.Range().Length() >= minSize { + gapArr2 = append(gapArr2, gap.Range().Start) + } + } + if !reflect.DeepEqual(gapArr2, gapArr1) { + t.Errorf("Search result not correct, got: %v, wanted: %v", gapArr1, gapArr2) + } + if t.Failed() { + t.Logf("Set contents:\n%v", &s) + t.FailNow() + } +} + func TestAddSequentialAdjacent(t *testing.T) { var s Set var nrInsertions int @@ -148,12 +449,12 @@ func TestAddSequentialAdjacent(t *testing.T) { t.Fatalf("Failed to insert segment %d", i) } nrInsertions++ - if err := checkSet(&s, nrInsertions); err != nil { + if err := s.segmentTestCheck(nrInsertions, validate); err != nil { t.Errorf("Iteration %d: %v", i, err) break } } - if got, want := countSegmentsIn(&s), nrInsertions; got != want { + if got, want := s.countSegments(), nrInsertions; got != want { t.Errorf("Wrong final number of segments: got %d, wanted %d", got, want) } if t.Failed() { @@ -202,12 +503,12 @@ func TestAddSequentialNonAdjacent(t *testing.T) { t.Fatalf("Failed to insert segment %d", i) } nrInsertions++ - if err := checkSet(&s, nrInsertions); err != nil { + if err := s.segmentTestCheck(nrInsertions, validate); err != nil { t.Errorf("Iteration %d: %v", i, err) break } } - if got, want := countSegmentsIn(&s), nrInsertions; got != want { + if got, want := s.countSegments(), nrInsertions; got != want { t.Errorf("Wrong final number of segments: got %d, wanted %d", got, want) } if t.Failed() { @@ -293,7 +594,7 @@ Tests: var i int for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { if i > len(test.final) { - t.Errorf("%s: Incorrect number of segments: got %d, wanted %d; set contents:\n%v", test.name, countSegmentsIn(&s), len(test.final), &s) + t.Errorf("%s: Incorrect number of segments: got %d, wanted %d; set contents:\n%v", test.name, s.countSegments(), len(test.final), &s) continue Tests } if got, want := seg.Range(), test.final[i]; got != want { @@ -351,7 +652,7 @@ Tests: var i int for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { if i > len(test.final) { - t.Errorf("%s: Incorrect number of segments: got %d, wanted %d; set contents:\n%v", test.name, countSegmentsIn(&s), len(test.final), &s) + t.Errorf("%s: Incorrect number of segments: got %d, wanted %d; set contents:\n%v", test.name, s.countSegments(), len(test.final), &s) continue Tests } if got, want := seg.Range(), test.final[i]; got != want { @@ -378,7 +679,7 @@ func benchmarkAddSequential(b *testing.B, size int) { } func benchmarkAddRandom(b *testing.B, size int) { - order := randPermutation(size) + order := rand.Perm(size) b.ResetTimer() for n := 0; n < b.N; n++ { @@ -416,7 +717,7 @@ func benchmarkFindRandom(b *testing.B, size int) { b.Fatalf("Failed to insert segment %d", i) } } - order := randPermutation(size) + order := rand.Perm(size) b.ResetTimer() for n := 0; n < b.N; n++ { @@ -470,7 +771,7 @@ func benchmarkAddFindRemoveSequential(b *testing.B, size int) { } func benchmarkAddFindRemoveRandom(b *testing.B, size int) { - order := randPermutation(size) + order := rand.Perm(size) b.ResetTimer() for n := 0; n < b.N; n++ { diff --git a/pkg/segment/test/set_functions.go b/pkg/segment/test/set_functions.go index bcddb39bb..7cd895cc7 100644 --- a/pkg/segment/test/set_functions.go +++ b/pkg/segment/test/set_functions.go @@ -14,21 +14,16 @@ package segment -// Basic numeric constants that we define because the math package doesn't. -// TODO(nlacasse): These should be Math.MaxInt64/MinInt64? -const ( - maxInt = int(^uint(0) >> 1) - minInt = -maxInt - 1 -) - type setFunctions struct{} -func (setFunctions) MinKey() int { - return minInt +// MinKey returns the minimum key for the set. +func (s setFunctions) MinKey() int { + return -s.MaxKey() - 1 } +// MaxKey returns the maximum key for the set. func (setFunctions) MaxKey() int { - return maxInt + return int(^uint(0) >> 1) } func (setFunctions) ClearValue(*int) {} @@ -40,3 +35,20 @@ func (setFunctions) Merge(_ Range, val1 int, _ Range, _ int) (int, bool) { func (setFunctions) Split(_ Range, val int, _ int) (int, int) { return val, val } + +type gapSetFunctions struct { + setFunctions +} + +// MinKey is adjusted to make sure no add overflow would happen in test cases. +// e.g. A gap with range {MinInt32, 2} would cause overflow in Range().Length(). +// +// Normally Keys should be unsigned to avoid these issues. +func (s gapSetFunctions) MinKey() int { + return s.setFunctions.MinKey() / 2 +} + +// MaxKey returns the maximum key for the set. +func (s gapSetFunctions) MaxKey() int { + return s.setFunctions.MaxKey() / 2 +} |