diff options
Diffstat (limited to 'pkg/segment/set.go')
-rw-r--r-- | pkg/segment/set.go | 1758 |
1 files changed, 0 insertions, 1758 deletions
diff --git a/pkg/segment/set.go b/pkg/segment/set.go deleted file mode 100644 index fae6c363d..000000000 --- a/pkg/segment/set.go +++ /dev/null @@ -1,1758 +0,0 @@ -// Copyright 2018 The gVisor Authors. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -// Package segment provides tools for working with collections of segments. A -// segment is a key-value mapping, where the key is a non-empty contiguous -// range of values of type Key, and the value is a single value of type Value. -// -// Clients using this package must use the go_template_instance rule in -// tools/go_generics/defs.bzl to create an instantiation of this -// template package, providing types to use in place of Key, Range, Value, and -// Functions. See pkg/segment/test/BUILD for a usage example. -package segment - -import ( - "bytes" - "fmt" -) - -// Key is a required type parameter that must be an integral type. -type Key uint64 - -// Range is a required type parameter equivalent to Range<Key>. -type Range interface{} - -// Value is a required type parameter. -type Value interface{} - -// trackGaps is an optional parameter. -// -// If trackGaps is 1, the Set will track maximum gap size recursively, -// enabling the GapIterator.{Prev,Next}LargeEnoughGap functions. In this -// case, Key must be an unsigned integer. -// -// trackGaps must be 0 or 1. -const trackGaps = 0 - -var _ = uint8(trackGaps << 7) // Will fail if not zero or one. - -// dynamicGap is a type that disappears if trackGaps is 0. -type dynamicGap [trackGaps]Key - -// Get returns the value of the gap. -// -// Precondition: trackGaps must be non-zero. -func (d *dynamicGap) Get() Key { - return d[:][0] -} - -// Set sets the value of the gap. -// -// Precondition: trackGaps must be non-zero. -func (d *dynamicGap) Set(v Key) { - d[:][0] = v -} - -// Functions is a required type parameter that must be a struct implementing -// the methods defined by Functions. -type Functions interface { - // MinKey returns the minimum allowed key. - MinKey() Key - - // MaxKey returns the maximum allowed key + 1. - MaxKey() Key - - // ClearValue deinitializes the given value. (For example, if Value is a - // pointer or interface type, ClearValue should set it to nil.) - ClearValue(*Value) - - // Merge attempts to merge the values corresponding to two consecutive - // segments. If successful, Merge returns (merged value, true). Otherwise, - // it returns (unspecified, false). - // - // Preconditions: r1.End == r2.Start. - // - // Postconditions: If merging succeeds, val1 and val2 are invalidated. - Merge(r1 Range, val1 Value, r2 Range, val2 Value) (Value, bool) - - // Split splits a segment's value at a key within its range, such that the - // first returned value corresponds to the range [r.Start, split) and the - // second returned value corresponds to the range [split, r.End). - // - // Preconditions: r.Start < split < r.End. - // - // Postconditions: The original value val is invalidated. - Split(r Range, val Value, split Key) (Value, Value) -} - -const ( - // minDegree is the minimum degree of an internal node in a Set B-tree. - // - // - Any non-root node has at least minDegree-1 segments. - // - // - Any non-root internal (non-leaf) node has at least minDegree children. - // - // - The root node may have fewer than minDegree-1 segments, but it may - // only have 0 segments if the tree is empty. - // - // Our implementation requires minDegree >= 3. Higher values of minDegree - // usually improve performance, but increase memory usage for small sets. - minDegree = 3 - - maxDegree = 2 * minDegree -) - -// A Set is a mapping of segments with non-overlapping Range keys. The zero -// value for a Set is an empty set. Set values are not safely movable nor -// copyable. Set is thread-compatible. -// -// +stateify savable -type Set struct { - root node `state:".(*SegmentDataSlices)"` -} - -// IsEmpty returns true if the set contains no segments. -func (s *Set) IsEmpty() bool { - return s.root.nrSegments == 0 -} - -// IsEmptyRange returns true iff no segments in the set overlap the given -// range. This is semantically equivalent to s.SpanRange(r) == 0, but may be -// more efficient. -func (s *Set) IsEmptyRange(r Range) bool { - switch { - case r.Length() < 0: - panic(fmt.Sprintf("invalid range %v", r)) - case r.Length() == 0: - return true - } - _, gap := s.Find(r.Start) - if !gap.Ok() { - return false - } - return r.End <= gap.End() -} - -// Span returns the total size of all segments in the set. -func (s *Set) Span() Key { - var sz Key - for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { - sz += seg.Range().Length() - } - return sz -} - -// SpanRange returns the total size of the intersection of segments in the set -// with the given range. -func (s *Set) SpanRange(r Range) Key { - switch { - case r.Length() < 0: - panic(fmt.Sprintf("invalid range %v", r)) - case r.Length() == 0: - return 0 - } - var sz Key - for seg := s.LowerBoundSegment(r.Start); seg.Ok() && seg.Start() < r.End; seg = seg.NextSegment() { - sz += seg.Range().Intersect(r).Length() - } - return sz -} - -// FirstSegment returns the first segment in the set. If the set is empty, -// FirstSegment returns a terminal iterator. -func (s *Set) FirstSegment() Iterator { - if s.root.nrSegments == 0 { - return Iterator{} - } - return s.root.firstSegment() -} - -// LastSegment returns the last segment in the set. If the set is empty, -// LastSegment returns a terminal iterator. -func (s *Set) LastSegment() Iterator { - if s.root.nrSegments == 0 { - return Iterator{} - } - return s.root.lastSegment() -} - -// FirstGap returns the first gap in the set. -func (s *Set) FirstGap() GapIterator { - n := &s.root - for n.hasChildren { - n = n.children[0] - } - return GapIterator{n, 0} -} - -// LastGap returns the last gap in the set. -func (s *Set) LastGap() GapIterator { - n := &s.root - for n.hasChildren { - n = n.children[n.nrSegments] - } - return GapIterator{n, n.nrSegments} -} - -// Find returns the segment or gap whose range contains the given key. If a -// segment is found, the returned Iterator is non-terminal and the -// returned GapIterator is terminal. Otherwise, the returned Iterator is -// terminal and the returned GapIterator is non-terminal. -func (s *Set) Find(key Key) (Iterator, GapIterator) { - n := &s.root - for { - // Binary search invariant: the correct value of i lies within [lower, - // upper]. - lower := 0 - upper := n.nrSegments - for lower < upper { - i := lower + (upper-lower)/2 - if r := n.keys[i]; key < r.End { - if key >= r.Start { - return Iterator{n, i}, GapIterator{} - } - upper = i - } else { - lower = i + 1 - } - } - i := lower - if !n.hasChildren { - return Iterator{}, GapIterator{n, i} - } - n = n.children[i] - } -} - -// FindSegment returns the segment whose range contains the given key. If no -// such segment exists, FindSegment returns a terminal iterator. -func (s *Set) FindSegment(key Key) Iterator { - seg, _ := s.Find(key) - return seg -} - -// LowerBoundSegment returns the segment with the lowest range that contains a -// key greater than or equal to min. If no such segment exists, -// LowerBoundSegment returns a terminal iterator. -func (s *Set) LowerBoundSegment(min Key) Iterator { - seg, gap := s.Find(min) - if seg.Ok() { - return seg - } - return gap.NextSegment() -} - -// UpperBoundSegment returns the segment with the highest range that contains a -// key less than or equal to max. If no such segment exists, UpperBoundSegment -// returns a terminal iterator. -func (s *Set) UpperBoundSegment(max Key) Iterator { - seg, gap := s.Find(max) - if seg.Ok() { - return seg - } - return gap.PrevSegment() -} - -// FindGap returns the gap containing the given key. If no such gap exists -// (i.e. the set contains a segment containing that key), FindGap returns a -// terminal iterator. -func (s *Set) FindGap(key Key) GapIterator { - _, gap := s.Find(key) - return gap -} - -// LowerBoundGap returns the gap with the lowest range that is greater than or -// equal to min. -func (s *Set) LowerBoundGap(min Key) GapIterator { - seg, gap := s.Find(min) - if gap.Ok() { - return gap - } - return seg.NextGap() -} - -// UpperBoundGap returns the gap with the highest range that is less than or -// equal to max. -func (s *Set) UpperBoundGap(max Key) GapIterator { - seg, gap := s.Find(max) - if gap.Ok() { - return gap - } - return seg.PrevGap() -} - -// Add inserts the given segment into the set and returns true. If the new -// segment can be merged with adjacent segments, Add will do so. If the new -// segment would overlap an existing segment, Add returns false. If Add -// succeeds, all existing iterators are invalidated. -func (s *Set) Add(r Range, val Value) bool { - if r.Length() <= 0 { - panic(fmt.Sprintf("invalid segment range %v", r)) - } - gap := s.FindGap(r.Start) - if !gap.Ok() { - return false - } - if r.End > gap.End() { - return false - } - s.Insert(gap, r, val) - return true -} - -// AddWithoutMerging inserts the given segment into the set and returns true. -// If it would overlap an existing segment, AddWithoutMerging does nothing and -// returns false. If AddWithoutMerging succeeds, all existing iterators are -// invalidated. -func (s *Set) AddWithoutMerging(r Range, val Value) bool { - if r.Length() <= 0 { - panic(fmt.Sprintf("invalid segment range %v", r)) - } - gap := s.FindGap(r.Start) - if !gap.Ok() { - return false - } - if r.End > gap.End() { - return false - } - s.InsertWithoutMergingUnchecked(gap, r, val) - return true -} - -// Insert inserts the given segment into the given gap. If the new segment can -// be merged with adjacent segments, Insert will do so. Insert returns an -// iterator to the segment containing the inserted value (which may have been -// merged with other values). All existing iterators (including gap, but not -// including the returned iterator) are invalidated. -// -// If the gap cannot accommodate the segment, or if r is invalid, Insert panics. -// -// Insert is semantically equivalent to a InsertWithoutMerging followed by a -// Merge, but may be more efficient. Note that there is no unchecked variant of -// Insert since Insert must retrieve and inspect gap's predecessor and -// successor segments regardless. -func (s *Set) Insert(gap GapIterator, r Range, val Value) Iterator { - if r.Length() <= 0 { - panic(fmt.Sprintf("invalid segment range %v", r)) - } - prev, next := gap.PrevSegment(), gap.NextSegment() - if prev.Ok() && prev.End() > r.Start { - panic(fmt.Sprintf("new segment %v overlaps predecessor %v", r, prev.Range())) - } - if next.Ok() && next.Start() < r.End { - panic(fmt.Sprintf("new segment %v overlaps successor %v", r, next.Range())) - } - if prev.Ok() && prev.End() == r.Start { - if mval, ok := (Functions{}).Merge(prev.Range(), prev.Value(), r, val); ok { - shrinkMaxGap := trackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get() - prev.SetEndUnchecked(r.End) - prev.SetValue(mval) - if shrinkMaxGap { - gap.node.updateMaxGapLeaf() - } - if next.Ok() && next.Start() == r.End { - val = mval - if mval, ok := (Functions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok { - prev.SetEndUnchecked(next.End()) - prev.SetValue(mval) - return s.Remove(next).PrevSegment() - } - } - return prev - } - } - if next.Ok() && next.Start() == r.End { - if mval, ok := (Functions{}).Merge(r, val, next.Range(), next.Value()); ok { - shrinkMaxGap := trackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get() - next.SetStartUnchecked(r.Start) - next.SetValue(mval) - if shrinkMaxGap { - gap.node.updateMaxGapLeaf() - } - return next - } - } - // InsertWithoutMergingUnchecked will maintain maxGap if necessary. - return s.InsertWithoutMergingUnchecked(gap, r, val) -} - -// InsertWithoutMerging inserts the given segment into the given gap and -// returns an iterator to the inserted segment. All existing iterators -// (including gap, but not including the returned iterator) are invalidated. -// -// If the gap cannot accommodate the segment, or if r is invalid, -// InsertWithoutMerging panics. -func (s *Set) InsertWithoutMerging(gap GapIterator, r Range, val Value) Iterator { - if r.Length() <= 0 { - panic(fmt.Sprintf("invalid segment range %v", r)) - } - if gr := gap.Range(); !gr.IsSupersetOf(r) { - panic(fmt.Sprintf("cannot insert segment range %v into gap range %v", r, gr)) - } - return s.InsertWithoutMergingUnchecked(gap, r, val) -} - -// InsertWithoutMergingUnchecked inserts the given segment into the given gap -// and returns an iterator to the inserted segment. All existing iterators -// (including gap, but not including the returned iterator) are invalidated. -// -// Preconditions: -// * r.Start >= gap.Start(). -// * r.End <= gap.End(). -func (s *Set) InsertWithoutMergingUnchecked(gap GapIterator, r Range, val Value) Iterator { - gap = gap.node.rebalanceBeforeInsert(gap) - splitMaxGap := trackGaps != 0 && (gap.node.nrSegments == 0 || gap.Range().Length() == gap.node.maxGap.Get()) - copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments]) - copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments]) - gap.node.keys[gap.index] = r - gap.node.values[gap.index] = val - gap.node.nrSegments++ - if splitMaxGap { - gap.node.updateMaxGapLeaf() - } - return Iterator{gap.node, gap.index} -} - -// Remove removes the given segment and returns an iterator to the vacated gap. -// All existing iterators (including seg, but not including the returned -// iterator) are invalidated. -func (s *Set) Remove(seg Iterator) GapIterator { - // We only want to remove directly from a leaf node. - if seg.node.hasChildren { - // Since seg.node has children, the removed segment must have a - // predecessor (at the end of the rightmost leaf of its left child - // subtree). Move the contents of that predecessor into the removed - // segment's position, and remove that predecessor instead. (We choose - // to steal the predecessor rather than the successor because removing - // from the end of a leaf node doesn't involve any copying unless - // merging is required.) - victim := seg.PrevSegment() - // This must be unchecked since until victim is removed, seg and victim - // overlap. - seg.SetRangeUnchecked(victim.Range()) - seg.SetValue(victim.Value()) - // Need to update the nextAdjacentNode's maxGap because the gap in between - // must have been modified by updating seg.Range() to victim.Range(). - // seg.NextSegment() must exist since the last segment can't be in a - // non-leaf node. - nextAdjacentNode := seg.NextSegment().node - if trackGaps != 0 { - nextAdjacentNode.updateMaxGapLeaf() - } - return s.Remove(victim).NextGap() - } - copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments]) - copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments]) - Functions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1]) - seg.node.nrSegments-- - if trackGaps != 0 { - seg.node.updateMaxGapLeaf() - } - return seg.node.rebalanceAfterRemove(GapIterator{seg.node, seg.index}) -} - -// RemoveAll removes all segments from the set. All existing iterators are -// invalidated. -func (s *Set) RemoveAll() { - s.root = node{} -} - -// RemoveRange removes all segments in the given range. An iterator to the -// newly formed gap is returned, and all existing iterators are invalidated. -func (s *Set) RemoveRange(r Range) GapIterator { - seg, gap := s.Find(r.Start) - if seg.Ok() { - seg = s.Isolate(seg, r) - gap = s.Remove(seg) - } - for seg = gap.NextSegment(); seg.Ok() && seg.Start() < r.End; seg = gap.NextSegment() { - seg = s.Isolate(seg, r) - gap = s.Remove(seg) - } - return gap -} - -// Merge attempts to merge two neighboring segments. If successful, Merge -// returns an iterator to the merged segment, and all existing iterators are -// invalidated. Otherwise, Merge returns a terminal iterator. -// -// If first is not the predecessor of second, Merge panics. -func (s *Set) Merge(first, second Iterator) Iterator { - if first.NextSegment() != second { - panic(fmt.Sprintf("attempt to merge non-neighboring segments %v, %v", first.Range(), second.Range())) - } - return s.MergeUnchecked(first, second) -} - -// MergeUnchecked attempts to merge two neighboring segments. If successful, -// MergeUnchecked returns an iterator to the merged segment, and all existing -// iterators are invalidated. Otherwise, MergeUnchecked returns a terminal -// iterator. -// -// Precondition: first is the predecessor of second: first.NextSegment() == -// second, first == second.PrevSegment(). -func (s *Set) MergeUnchecked(first, second Iterator) Iterator { - if first.End() == second.Start() { - if mval, ok := (Functions{}).Merge(first.Range(), first.Value(), second.Range(), second.Value()); ok { - // N.B. This must be unchecked because until s.Remove(second), first - // overlaps second. - first.SetEndUnchecked(second.End()) - first.SetValue(mval) - // Remove will handle the maxGap update if necessary. - return s.Remove(second).PrevSegment() - } - } - return Iterator{} -} - -// MergeAll attempts to merge all adjacent segments in the set. All existing -// iterators are invalidated. -func (s *Set) MergeAll() { - seg := s.FirstSegment() - if !seg.Ok() { - return - } - next := seg.NextSegment() - for next.Ok() { - if mseg := s.MergeUnchecked(seg, next); mseg.Ok() { - seg, next = mseg, mseg.NextSegment() - } else { - seg, next = next, next.NextSegment() - } - } -} - -// MergeRange attempts to merge all adjacent segments that contain a key in the -// specific range. All existing iterators are invalidated. -func (s *Set) MergeRange(r Range) { - seg := s.LowerBoundSegment(r.Start) - if !seg.Ok() { - return - } - next := seg.NextSegment() - for next.Ok() && next.Range().Start < r.End { - if mseg := s.MergeUnchecked(seg, next); mseg.Ok() { - seg, next = mseg, mseg.NextSegment() - } else { - seg, next = next, next.NextSegment() - } - } -} - -// MergeAdjacent attempts to merge the segment containing r.Start with its -// predecessor, and the segment containing r.End-1 with its successor. -func (s *Set) MergeAdjacent(r Range) { - first := s.FindSegment(r.Start) - if first.Ok() { - if prev := first.PrevSegment(); prev.Ok() { - s.Merge(prev, first) - } - } - last := s.FindSegment(r.End - 1) - if last.Ok() { - if next := last.NextSegment(); next.Ok() { - s.Merge(last, next) - } - } -} - -// Split splits the given segment at the given key and returns iterators to the -// two resulting segments. All existing iterators (including seg, but not -// including the returned iterators) are invalidated. -// -// If the segment cannot be split at split (because split is at the start or -// end of the segment's range, so splitting would produce a segment with zero -// length, or because split falls outside the segment's range altogether), -// Split panics. -func (s *Set) Split(seg Iterator, split Key) (Iterator, Iterator) { - if !seg.Range().CanSplitAt(split) { - panic(fmt.Sprintf("can't split %v at %v", seg.Range(), split)) - } - return s.SplitUnchecked(seg, split) -} - -// SplitUnchecked splits the given segment at the given key and returns -// iterators to the two resulting segments. All existing iterators (including -// seg, but not including the returned iterators) are invalidated. -// -// Preconditions: seg.Start() < key < seg.End(). -func (s *Set) SplitUnchecked(seg Iterator, split Key) (Iterator, Iterator) { - val1, val2 := (Functions{}).Split(seg.Range(), seg.Value(), split) - end2 := seg.End() - seg.SetEndUnchecked(split) - seg.SetValue(val1) - seg2 := s.InsertWithoutMergingUnchecked(seg.NextGap(), Range{split, end2}, val2) - // seg may now be invalid due to the Insert. - return seg2.PrevSegment(), seg2 -} - -// SplitAt splits the segment straddling split, if one exists. SplitAt returns -// true if a segment was split and false otherwise. If SplitAt splits a -// segment, all existing iterators are invalidated. -func (s *Set) SplitAt(split Key) bool { - if seg := s.FindSegment(split); seg.Ok() && seg.Range().CanSplitAt(split) { - s.SplitUnchecked(seg, split) - return true - } - return false -} - -// Isolate ensures that the given segment's range does not escape r by -// splitting at r.Start and r.End if necessary, and returns an updated iterator -// to the bounded segment. All existing iterators (including seg, but not -// including the returned iterators) are invalidated. -func (s *Set) Isolate(seg Iterator, r Range) Iterator { - if seg.Range().CanSplitAt(r.Start) { - _, seg = s.SplitUnchecked(seg, r.Start) - } - if seg.Range().CanSplitAt(r.End) { - seg, _ = s.SplitUnchecked(seg, r.End) - } - return seg -} - -// ApplyContiguous applies a function to a contiguous range of segments, -// splitting if necessary. The function is applied until the first gap is -// encountered, at which point the gap is returned. If the function is applied -// across the entire range, a terminal gap is returned. All existing iterators -// are invalidated. -// -// N.B. The Iterator must not be invalidated by the function. -func (s *Set) ApplyContiguous(r Range, fn func(seg Iterator)) GapIterator { - seg, gap := s.Find(r.Start) - if !seg.Ok() { - return gap - } - for { - seg = s.Isolate(seg, r) - fn(seg) - if seg.End() >= r.End { - return GapIterator{} - } - gap = seg.NextGap() - if !gap.IsEmpty() { - return gap - } - seg = gap.NextSegment() - if !seg.Ok() { - // This implies that the last segment extended all the - // way to the maximum value, since the gap was empty. - return GapIterator{} - } - } -} - -// +stateify savable -type node struct { - // An internal binary tree node looks like: - // - // K - // / \ - // Cl Cr - // - // where all keys in the subtree rooted by Cl (the left subtree) are less - // than K (the key of the parent node), and all keys in the subtree rooted - // by Cr (the right subtree) are greater than K. - // - // An internal B-tree node's indexes work out to look like: - // - // K0 K1 K2 ... Kn-1 - // / \/ \/ \ ... / \ - // C0 C1 C2 C3 ... Cn-1 Cn - // - // where n is nrSegments. - nrSegments int - - // parent is a pointer to this node's parent. If this node is root, parent - // is nil. - parent *node - - // parentIndex is the index of this node in parent.children. - parentIndex int - - // Flag for internal nodes that is technically redundant with "children[0] - // != nil", but is stored in the first cache line. "hasChildren" rather - // than "isLeaf" because false must be the correct value for an empty root. - hasChildren bool - - // The longest gap within this node. If the node is a leaf, it's simply the - // maximum gap among all the (nrSegments+1) gaps formed by its nrSegments keys - // including the 0th and nrSegments-th gap possibly shared with its upper-level - // nodes; if it's a non-leaf node, it's the max of all children's maxGap. - maxGap dynamicGap - - // Nodes store keys and values in separate arrays to maximize locality in - // the common case (scanning keys for lookup). - keys [maxDegree - 1]Range - values [maxDegree - 1]Value - children [maxDegree]*node -} - -// firstSegment returns the first segment in the subtree rooted by n. -// -// Preconditions: n.nrSegments != 0. -func (n *node) firstSegment() Iterator { - for n.hasChildren { - n = n.children[0] - } - return Iterator{n, 0} -} - -// lastSegment returns the last segment in the subtree rooted by n. -// -// Preconditions: n.nrSegments != 0. -func (n *node) lastSegment() Iterator { - for n.hasChildren { - n = n.children[n.nrSegments] - } - return Iterator{n, n.nrSegments - 1} -} - -func (n *node) prevSibling() *node { - if n.parent == nil || n.parentIndex == 0 { - return nil - } - return n.parent.children[n.parentIndex-1] -} - -func (n *node) nextSibling() *node { - if n.parent == nil || n.parentIndex == n.parent.nrSegments { - return nil - } - return n.parent.children[n.parentIndex+1] -} - -// rebalanceBeforeInsert splits n and its ancestors if they are full, as -// required for insertion, and returns an updated iterator to the position -// represented by gap. -func (n *node) rebalanceBeforeInsert(gap GapIterator) GapIterator { - if n.nrSegments < maxDegree-1 { - return gap - } - if n.parent != nil { - gap = n.parent.rebalanceBeforeInsert(gap) - } - if n.parent == nil { - // n is root. Move all segments before and after n's median segment - // into new child nodes adjacent to the median segment, which is now - // the only segment in root. - left := &node{ - nrSegments: minDegree - 1, - parent: n, - parentIndex: 0, - hasChildren: n.hasChildren, - } - right := &node{ - nrSegments: minDegree - 1, - parent: n, - parentIndex: 1, - hasChildren: n.hasChildren, - } - copy(left.keys[:minDegree-1], n.keys[:minDegree-1]) - copy(left.values[:minDegree-1], n.values[:minDegree-1]) - copy(right.keys[:minDegree-1], n.keys[minDegree:]) - copy(right.values[:minDegree-1], n.values[minDegree:]) - n.keys[0], n.values[0] = n.keys[minDegree-1], n.values[minDegree-1] - zeroValueSlice(n.values[1:]) - if n.hasChildren { - copy(left.children[:minDegree], n.children[:minDegree]) - copy(right.children[:minDegree], n.children[minDegree:]) - zeroNodeSlice(n.children[2:]) - for i := 0; i < minDegree; i++ { - left.children[i].parent = left - left.children[i].parentIndex = i - right.children[i].parent = right - right.children[i].parentIndex = i - } - } - n.nrSegments = 1 - n.hasChildren = true - n.children[0] = left - n.children[1] = right - // In this case, n's maxGap won't violated as it's still the root, - // but the left and right children should be updated locally as they - // are newly split from n. - if trackGaps != 0 { - left.updateMaxGapLocal() - right.updateMaxGapLocal() - } - if gap.node != n { - return gap - } - if gap.index < minDegree { - return GapIterator{left, gap.index} - } - return GapIterator{right, gap.index - minDegree} - } - // n is non-root. Move n's median segment into its parent node (which can't - // be full because we've already invoked n.parent.rebalanceBeforeInsert) - // and move all segments after n's median into a new sibling node (the - // median segment's right child subtree). - copy(n.parent.keys[n.parentIndex+1:], n.parent.keys[n.parentIndex:n.parent.nrSegments]) - copy(n.parent.values[n.parentIndex+1:], n.parent.values[n.parentIndex:n.parent.nrSegments]) - n.parent.keys[n.parentIndex], n.parent.values[n.parentIndex] = n.keys[minDegree-1], n.values[minDegree-1] - copy(n.parent.children[n.parentIndex+2:], n.parent.children[n.parentIndex+1:n.parent.nrSegments+1]) - for i := n.parentIndex + 2; i < n.parent.nrSegments+2; i++ { - n.parent.children[i].parentIndex = i - } - sibling := &node{ - nrSegments: minDegree - 1, - parent: n.parent, - parentIndex: n.parentIndex + 1, - hasChildren: n.hasChildren, - } - n.parent.children[n.parentIndex+1] = sibling - n.parent.nrSegments++ - copy(sibling.keys[:minDegree-1], n.keys[minDegree:]) - copy(sibling.values[:minDegree-1], n.values[minDegree:]) - zeroValueSlice(n.values[minDegree-1:]) - if n.hasChildren { - copy(sibling.children[:minDegree], n.children[minDegree:]) - zeroNodeSlice(n.children[minDegree:]) - for i := 0; i < minDegree; i++ { - sibling.children[i].parent = sibling - sibling.children[i].parentIndex = i - } - } - n.nrSegments = minDegree - 1 - // MaxGap of n's parent is not violated because the segments within is not changed. - // n and its sibling's maxGap need to be updated locally as they are two new nodes split from old n. - if trackGaps != 0 { - n.updateMaxGapLocal() - sibling.updateMaxGapLocal() - } - // gap.node can't be n.parent because gaps are always in leaf nodes. - if gap.node != n { - return gap - } - if gap.index < minDegree { - return gap - } - return GapIterator{sibling, gap.index - minDegree} -} - -// rebalanceAfterRemove "unsplits" n and its ancestors if they are deficient -// (contain fewer segments than required by B-tree invariants), as required for -// removal, and returns an updated iterator to the position represented by gap. -// -// Precondition: n is the only node in the tree that may currently violate a -// B-tree invariant. -func (n *node) rebalanceAfterRemove(gap GapIterator) GapIterator { - for { - if n.nrSegments >= minDegree-1 { - return gap - } - if n.parent == nil { - // Root is allowed to be deficient. - return gap - } - // There's one other thing we can do before resorting to unsplitting. - // If either sibling node has at least minDegree segments, rotate that - // sibling's closest segment through the segment in the parent that - // separates us. That is, given: - // - // ... D ... - // / \ - // ... B C] [E ... - // - // where the node containing E is deficient, end up with: - // - // ... C ... - // / \ - // ... B] [D E ... - // - // As in Set.Remove, prefer rotating from the end of the sibling to the - // left: by precondition, n.node has fewer segments (to memcpy) than - // the sibling does. - if sibling := n.prevSibling(); sibling != nil && sibling.nrSegments >= minDegree { - copy(n.keys[1:], n.keys[:n.nrSegments]) - copy(n.values[1:], n.values[:n.nrSegments]) - n.keys[0] = n.parent.keys[n.parentIndex-1] - n.values[0] = n.parent.values[n.parentIndex-1] - n.parent.keys[n.parentIndex-1] = sibling.keys[sibling.nrSegments-1] - n.parent.values[n.parentIndex-1] = sibling.values[sibling.nrSegments-1] - Functions{}.ClearValue(&sibling.values[sibling.nrSegments-1]) - if n.hasChildren { - copy(n.children[1:], n.children[:n.nrSegments+1]) - n.children[0] = sibling.children[sibling.nrSegments] - sibling.children[sibling.nrSegments] = nil - n.children[0].parent = n - n.children[0].parentIndex = 0 - for i := 1; i < n.nrSegments+2; i++ { - n.children[i].parentIndex = i - } - } - n.nrSegments++ - sibling.nrSegments-- - // n's parent's maxGap does not need to be updated as its content is unmodified. - // n and its sibling must be updated with (new) maxGap because of the shift of keys. - if trackGaps != 0 { - n.updateMaxGapLocal() - sibling.updateMaxGapLocal() - } - if gap.node == sibling && gap.index == sibling.nrSegments { - return GapIterator{n, 0} - } - if gap.node == n { - return GapIterator{n, gap.index + 1} - } - return gap - } - if sibling := n.nextSibling(); sibling != nil && sibling.nrSegments >= minDegree { - n.keys[n.nrSegments] = n.parent.keys[n.parentIndex] - n.values[n.nrSegments] = n.parent.values[n.parentIndex] - n.parent.keys[n.parentIndex] = sibling.keys[0] - n.parent.values[n.parentIndex] = sibling.values[0] - copy(sibling.keys[:sibling.nrSegments-1], sibling.keys[1:]) - copy(sibling.values[:sibling.nrSegments-1], sibling.values[1:]) - Functions{}.ClearValue(&sibling.values[sibling.nrSegments-1]) - if n.hasChildren { - n.children[n.nrSegments+1] = sibling.children[0] - copy(sibling.children[:sibling.nrSegments], sibling.children[1:]) - sibling.children[sibling.nrSegments] = nil - n.children[n.nrSegments+1].parent = n - n.children[n.nrSegments+1].parentIndex = n.nrSegments + 1 - for i := 0; i < sibling.nrSegments; i++ { - sibling.children[i].parentIndex = i - } - } - n.nrSegments++ - sibling.nrSegments-- - // n's parent's maxGap does not need to be updated as its content is unmodified. - // n and its sibling must be updated with (new) maxGap because of the shift of keys. - if trackGaps != 0 { - n.updateMaxGapLocal() - sibling.updateMaxGapLocal() - } - if gap.node == sibling { - if gap.index == 0 { - return GapIterator{n, n.nrSegments} - } - return GapIterator{sibling, gap.index - 1} - } - return gap - } - // Otherwise, we must unsplit. - p := n.parent - if p.nrSegments == 1 { - // Merge all segments in both n and its sibling back into n.parent. - // This is the reverse of the root splitting case in - // node.rebalanceBeforeInsert. (Because we require minDegree >= 3, - // only root can have 1 segment in this path, so this reduces the - // height of the tree by 1, without violating the constraint that - // all leaf nodes remain at the same depth.) - left, right := p.children[0], p.children[1] - p.nrSegments = left.nrSegments + right.nrSegments + 1 - p.hasChildren = left.hasChildren - p.keys[left.nrSegments] = p.keys[0] - p.values[left.nrSegments] = p.values[0] - copy(p.keys[:left.nrSegments], left.keys[:left.nrSegments]) - copy(p.values[:left.nrSegments], left.values[:left.nrSegments]) - copy(p.keys[left.nrSegments+1:], right.keys[:right.nrSegments]) - copy(p.values[left.nrSegments+1:], right.values[:right.nrSegments]) - if left.hasChildren { - copy(p.children[:left.nrSegments+1], left.children[:left.nrSegments+1]) - copy(p.children[left.nrSegments+1:], right.children[:right.nrSegments+1]) - for i := 0; i < p.nrSegments+1; i++ { - p.children[i].parent = p - p.children[i].parentIndex = i - } - } else { - p.children[0] = nil - p.children[1] = nil - } - // No need to update maxGap of p as its content is not changed. - if gap.node == left { - return GapIterator{p, gap.index} - } - if gap.node == right { - return GapIterator{p, gap.index + left.nrSegments + 1} - } - return gap - } - // Merge n and either sibling, along with the segment separating the - // two, into whichever of the two nodes comes first. This is the - // reverse of the non-root splitting case in - // node.rebalanceBeforeInsert. - var left, right *node - if n.parentIndex > 0 { - left = n.prevSibling() - right = n - } else { - left = n - right = n.nextSibling() - } - // Fix up gap first since we need the old left.nrSegments, which - // merging will change. - if gap.node == right { - gap = GapIterator{left, gap.index + left.nrSegments + 1} - } - left.keys[left.nrSegments] = p.keys[left.parentIndex] - left.values[left.nrSegments] = p.values[left.parentIndex] - copy(left.keys[left.nrSegments+1:], right.keys[:right.nrSegments]) - copy(left.values[left.nrSegments+1:], right.values[:right.nrSegments]) - if left.hasChildren { - copy(left.children[left.nrSegments+1:], right.children[:right.nrSegments+1]) - for i := left.nrSegments + 1; i < left.nrSegments+right.nrSegments+2; i++ { - left.children[i].parent = left - left.children[i].parentIndex = i - } - } - left.nrSegments += right.nrSegments + 1 - copy(p.keys[left.parentIndex:], p.keys[left.parentIndex+1:p.nrSegments]) - copy(p.values[left.parentIndex:], p.values[left.parentIndex+1:p.nrSegments]) - Functions{}.ClearValue(&p.values[p.nrSegments-1]) - copy(p.children[left.parentIndex+1:], p.children[left.parentIndex+2:p.nrSegments+1]) - for i := 0; i < p.nrSegments; i++ { - p.children[i].parentIndex = i - } - p.children[p.nrSegments] = nil - p.nrSegments-- - // Update maxGap of left locally, no need to change p and right because - // p's contents is not changed and right is already invalid. - if trackGaps != 0 { - left.updateMaxGapLocal() - } - // This process robs p of one segment, so recurse into rebalancing p. - n = p - } -} - -// updateMaxGapLeaf updates maxGap bottom-up from the calling leaf until no -// necessary update. -// -// Preconditions: n must be a leaf node, trackGaps must be 1. -func (n *node) updateMaxGapLeaf() { - if n.hasChildren { - panic(fmt.Sprintf("updateMaxGapLeaf should always be called on leaf node: %v", n)) - } - max := n.calculateMaxGapLeaf() - if max == n.maxGap.Get() { - // If new max equals the old maxGap, no update is needed. - return - } - oldMax := n.maxGap.Get() - n.maxGap.Set(max) - if max > oldMax { - // Grow ancestor maxGaps. - for p := n.parent; p != nil; p = p.parent { - if p.maxGap.Get() >= max { - // p and its ancestors already contain an equal or larger gap. - break - } - // Only if new maxGap is larger than parent's - // old maxGap, propagate this update to parent. - p.maxGap.Set(max) - } - return - } - // Shrink ancestor maxGaps. - for p := n.parent; p != nil; p = p.parent { - if p.maxGap.Get() > oldMax { - // p and its ancestors still contain a larger gap. - break - } - // If new max is smaller than the old maxGap, and this gap used - // to be the maxGap of its parent, iterate parent's children - // and calculate parent's new maxGap.(It's probable that parent - // has two children with the old maxGap, but we need to check it anyway.) - parentNewMax := p.calculateMaxGapInternal() - if p.maxGap.Get() == parentNewMax { - // p and its ancestors still contain a gap of at least equal size. - break - } - // If p's new maxGap differs from the old one, propagate this update. - p.maxGap.Set(parentNewMax) - } -} - -// updateMaxGapLocal updates maxGap of the calling node solely with no -// propagation to ancestor nodes. -// -// Precondition: trackGaps must be 1. -func (n *node) updateMaxGapLocal() { - if !n.hasChildren { - // Leaf node iterates its gaps. - n.maxGap.Set(n.calculateMaxGapLeaf()) - } else { - // Non-leaf node iterates its children. - n.maxGap.Set(n.calculateMaxGapInternal()) - } -} - -// calculateMaxGapLeaf iterates the gaps within a leaf node and calculate the -// max. -// -// Preconditions: n must be a leaf node. -func (n *node) calculateMaxGapLeaf() Key { - max := GapIterator{n, 0}.Range().Length() - for i := 1; i <= n.nrSegments; i++ { - if current := (GapIterator{n, i}).Range().Length(); current > max { - max = current - } - } - return max -} - -// calculateMaxGapInternal iterates children's maxGap within an internal node n -// and calculate the max. -// -// Preconditions: n must be a non-leaf node. -func (n *node) calculateMaxGapInternal() Key { - max := n.children[0].maxGap.Get() - for i := 1; i <= n.nrSegments; i++ { - if current := n.children[i].maxGap.Get(); current > max { - max = current - } - } - return max -} - -// searchFirstLargeEnoughGap returns the first gap having at least minSize length -// in the subtree rooted by n. If not found, return a terminal gap iterator. -func (n *node) searchFirstLargeEnoughGap(minSize Key) GapIterator { - if n.maxGap.Get() < minSize { - return GapIterator{} - } - if n.hasChildren { - for i := 0; i <= n.nrSegments; i++ { - if largeEnoughGap := n.children[i].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() { - return largeEnoughGap - } - } - } else { - for i := 0; i <= n.nrSegments; i++ { - currentGap := GapIterator{n, i} - if currentGap.Range().Length() >= minSize { - return currentGap - } - } - } - panic(fmt.Sprintf("invalid maxGap in %v", n)) -} - -// searchLastLargeEnoughGap returns the last gap having at least minSize length -// in the subtree rooted by n. If not found, return a terminal gap iterator. -func (n *node) searchLastLargeEnoughGap(minSize Key) GapIterator { - if n.maxGap.Get() < minSize { - return GapIterator{} - } - if n.hasChildren { - for i := n.nrSegments; i >= 0; i-- { - if largeEnoughGap := n.children[i].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() { - return largeEnoughGap - } - } - } else { - for i := n.nrSegments; i >= 0; i-- { - currentGap := GapIterator{n, i} - if currentGap.Range().Length() >= minSize { - return currentGap - } - } - } - panic(fmt.Sprintf("invalid maxGap in %v", n)) -} - -// A Iterator is conceptually one of: -// -// - A pointer to a segment in a set; or -// -// - A terminal iterator, which is a sentinel indicating that the end of -// iteration has been reached. -// -// Iterators are copyable values and are meaningfully equality-comparable. The -// zero value of Iterator is a terminal iterator. -// -// Unless otherwise specified, any mutation of a set invalidates all existing -// iterators into the set. -type Iterator struct { - // node is the node containing the iterated segment. If the iterator is - // terminal, node is nil. - node *node - - // index is the index of the segment in node.keys/values. - index int -} - -// Ok returns true if the iterator is not terminal. All other methods are only -// valid for non-terminal iterators. -func (seg Iterator) Ok() bool { - return seg.node != nil -} - -// Range returns the iterated segment's range key. -func (seg Iterator) Range() Range { - return seg.node.keys[seg.index] -} - -// Start is equivalent to Range().Start, but should be preferred if only the -// start of the range is needed. -func (seg Iterator) Start() Key { - return seg.node.keys[seg.index].Start -} - -// End is equivalent to Range().End, but should be preferred if only the end of -// the range is needed. -func (seg Iterator) End() Key { - return seg.node.keys[seg.index].End -} - -// SetRangeUnchecked mutates the iterated segment's range key. This operation -// does not invalidate any iterators. -// -// Preconditions: -// * r.Length() > 0. -// * The new range must not overlap an existing one: -// * If seg.NextSegment().Ok(), then r.end <= seg.NextSegment().Start(). -// * If seg.PrevSegment().Ok(), then r.start >= seg.PrevSegment().End(). -func (seg Iterator) SetRangeUnchecked(r Range) { - seg.node.keys[seg.index] = r -} - -// SetRange mutates the iterated segment's range key. If the new range would -// cause the iterated segment to overlap another segment, or if the new range -// is invalid, SetRange panics. This operation does not invalidate any -// iterators. -func (seg Iterator) SetRange(r Range) { - if r.Length() <= 0 { - panic(fmt.Sprintf("invalid segment range %v", r)) - } - if prev := seg.PrevSegment(); prev.Ok() && r.Start < prev.End() { - panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, prev.Range())) - } - if next := seg.NextSegment(); next.Ok() && r.End > next.Start() { - panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, next.Range())) - } - seg.SetRangeUnchecked(r) -} - -// SetStartUnchecked mutates the iterated segment's start. This operation does -// not invalidate any iterators. -// -// Preconditions: The new start must be valid: -// * start < seg.End() -// * If seg.PrevSegment().Ok(), then start >= seg.PrevSegment().End(). -func (seg Iterator) SetStartUnchecked(start Key) { - seg.node.keys[seg.index].Start = start -} - -// SetStart mutates the iterated segment's start. If the new start value would -// cause the iterated segment to overlap another segment, or would result in an -// invalid range, SetStart panics. This operation does not invalidate any -// iterators. -func (seg Iterator) SetStart(start Key) { - if start >= seg.End() { - panic(fmt.Sprintf("new start %v would invalidate segment range %v", start, seg.Range())) - } - if prev := seg.PrevSegment(); prev.Ok() && start < prev.End() { - panic(fmt.Sprintf("new start %v would cause segment range %v to overlap segment range %v", start, seg.Range(), prev.Range())) - } - seg.SetStartUnchecked(start) -} - -// SetEndUnchecked mutates the iterated segment's end. This operation does not -// invalidate any iterators. -// -// Preconditions: The new end must be valid: -// * end > seg.Start(). -// * If seg.NextSegment().Ok(), then end <= seg.NextSegment().Start(). -func (seg Iterator) SetEndUnchecked(end Key) { - seg.node.keys[seg.index].End = end -} - -// SetEnd mutates the iterated segment's end. If the new end value would cause -// the iterated segment to overlap another segment, or would result in an -// invalid range, SetEnd panics. This operation does not invalidate any -// iterators. -func (seg Iterator) SetEnd(end Key) { - if end <= seg.Start() { - panic(fmt.Sprintf("new end %v would invalidate segment range %v", end, seg.Range())) - } - if next := seg.NextSegment(); next.Ok() && end > next.Start() { - panic(fmt.Sprintf("new end %v would cause segment range %v to overlap segment range %v", end, seg.Range(), next.Range())) - } - seg.SetEndUnchecked(end) -} - -// Value returns a copy of the iterated segment's value. -func (seg Iterator) Value() Value { - return seg.node.values[seg.index] -} - -// ValuePtr returns a pointer to the iterated segment's value. The pointer is -// invalidated if the iterator is invalidated. This operation does not -// invalidate any iterators. -func (seg Iterator) ValuePtr() *Value { - return &seg.node.values[seg.index] -} - -// SetValue mutates the iterated segment's value. This operation does not -// invalidate any iterators. -func (seg Iterator) SetValue(val Value) { - seg.node.values[seg.index] = val -} - -// PrevSegment returns the iterated segment's predecessor. If there is no -// preceding segment, PrevSegment returns a terminal iterator. -func (seg Iterator) PrevSegment() Iterator { - if seg.node.hasChildren { - return seg.node.children[seg.index].lastSegment() - } - if seg.index > 0 { - return Iterator{seg.node, seg.index - 1} - } - if seg.node.parent == nil { - return Iterator{} - } - return segmentBeforePosition(seg.node.parent, seg.node.parentIndex) -} - -// NextSegment returns the iterated segment's successor. If there is no -// succeeding segment, NextSegment returns a terminal iterator. -func (seg Iterator) NextSegment() Iterator { - if seg.node.hasChildren { - return seg.node.children[seg.index+1].firstSegment() - } - if seg.index < seg.node.nrSegments-1 { - return Iterator{seg.node, seg.index + 1} - } - if seg.node.parent == nil { - return Iterator{} - } - return segmentAfterPosition(seg.node.parent, seg.node.parentIndex) -} - -// PrevGap returns the gap immediately before the iterated segment. -func (seg Iterator) PrevGap() GapIterator { - if seg.node.hasChildren { - // Note that this isn't recursive because the last segment in a subtree - // must be in a leaf node. - return seg.node.children[seg.index].lastSegment().NextGap() - } - return GapIterator{seg.node, seg.index} -} - -// NextGap returns the gap immediately after the iterated segment. -func (seg Iterator) NextGap() GapIterator { - if seg.node.hasChildren { - return seg.node.children[seg.index+1].firstSegment().PrevGap() - } - return GapIterator{seg.node, seg.index + 1} -} - -// PrevNonEmpty returns the iterated segment's predecessor if it is adjacent, -// or the gap before the iterated segment otherwise. If seg.Start() == -// Functions.MinKey(), PrevNonEmpty will return two terminal iterators. -// Otherwise, exactly one of the iterators returned by PrevNonEmpty will be -// non-terminal. -func (seg Iterator) PrevNonEmpty() (Iterator, GapIterator) { - gap := seg.PrevGap() - if gap.Range().Length() != 0 { - return Iterator{}, gap - } - return gap.PrevSegment(), GapIterator{} -} - -// NextNonEmpty returns the iterated segment's successor if it is adjacent, or -// the gap after the iterated segment otherwise. If seg.End() == -// Functions.MaxKey(), NextNonEmpty will return two terminal iterators. -// Otherwise, exactly one of the iterators returned by NextNonEmpty will be -// non-terminal. -func (seg Iterator) NextNonEmpty() (Iterator, GapIterator) { - gap := seg.NextGap() - if gap.Range().Length() != 0 { - return Iterator{}, gap - } - return gap.NextSegment(), GapIterator{} -} - -// A GapIterator is conceptually one of: -// -// - A pointer to a position between two segments, before the first segment, or -// after the last segment in a set, called a *gap*; or -// -// - A terminal iterator, which is a sentinel indicating that the end of -// iteration has been reached. -// -// Note that the gap between two adjacent segments exists (iterators to it are -// non-terminal), but has a length of zero. GapIterator.IsEmpty returns true -// for such gaps. An empty set contains a single gap, spanning the entire range -// of the set's keys. -// -// GapIterators are copyable values and are meaningfully equality-comparable. -// The zero value of GapIterator is a terminal iterator. -// -// Unless otherwise specified, any mutation of a set invalidates all existing -// iterators into the set. -type GapIterator struct { - // The representation of a GapIterator is identical to that of an Iterator, - // except that index corresponds to positions between segments in the same - // way as for node.children (see comment for node.nrSegments). - node *node - index int -} - -// Ok returns true if the iterator is not terminal. All other methods are only -// valid for non-terminal iterators. -func (gap GapIterator) Ok() bool { - return gap.node != nil -} - -// Range returns the range spanned by the iterated gap. -func (gap GapIterator) Range() Range { - return Range{gap.Start(), gap.End()} -} - -// Start is equivalent to Range().Start, but should be preferred if only the -// start of the range is needed. -func (gap GapIterator) Start() Key { - if ps := gap.PrevSegment(); ps.Ok() { - return ps.End() - } - return Functions{}.MinKey() -} - -// End is equivalent to Range().End, but should be preferred if only the end of -// the range is needed. -func (gap GapIterator) End() Key { - if ns := gap.NextSegment(); ns.Ok() { - return ns.Start() - } - return Functions{}.MaxKey() -} - -// IsEmpty returns true if the iterated gap is empty (that is, the "gap" is -// between two adjacent segments.) -func (gap GapIterator) IsEmpty() bool { - return gap.Range().Length() == 0 -} - -// PrevSegment returns the segment immediately before the iterated gap. If no -// such segment exists, PrevSegment returns a terminal iterator. -func (gap GapIterator) PrevSegment() Iterator { - return segmentBeforePosition(gap.node, gap.index) -} - -// NextSegment returns the segment immediately after the iterated gap. If no -// such segment exists, NextSegment returns a terminal iterator. -func (gap GapIterator) NextSegment() Iterator { - return segmentAfterPosition(gap.node, gap.index) -} - -// PrevGap returns the iterated gap's predecessor. If no such gap exists, -// PrevGap returns a terminal iterator. -func (gap GapIterator) PrevGap() GapIterator { - seg := gap.PrevSegment() - if !seg.Ok() { - return GapIterator{} - } - return seg.PrevGap() -} - -// NextGap returns the iterated gap's successor. If no such gap exists, NextGap -// returns a terminal iterator. -func (gap GapIterator) NextGap() GapIterator { - seg := gap.NextSegment() - if !seg.Ok() { - return GapIterator{} - } - return seg.NextGap() -} - -// NextLargeEnoughGap returns the iterated gap's first next gap with larger -// length than minSize. If not found, return a terminal gap iterator (does NOT -// include this gap itself). -// -// Precondition: trackGaps must be 1. -func (gap GapIterator) NextLargeEnoughGap(minSize Key) GapIterator { - if trackGaps != 1 { - panic("set is not tracking gaps") - } - if gap.node != nil && gap.node.hasChildren && gap.index == gap.node.nrSegments { - // If gap is the trailing gap of an non-leaf node, - // translate it to the equivalent gap on leaf level. - gap.node = gap.NextSegment().node - gap.index = 0 - return gap.nextLargeEnoughGapHelper(minSize) - } - return gap.nextLargeEnoughGapHelper(minSize) -} - -// nextLargeEnoughGapHelper is the helper function used by NextLargeEnoughGap -// to do the real recursions. -// -// Preconditions: gap is NOT the trailing gap of a non-leaf node. -func (gap GapIterator) nextLargeEnoughGapHelper(minSize Key) GapIterator { - // Crawl up the tree if no large enough gap in current node or the - // current gap is the trailing one on leaf level. - for gap.node != nil && - (gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == gap.node.nrSegments)) { - gap.node, gap.index = gap.node.parent, gap.node.parentIndex - } - // If no large enough gap throughout the whole set, return a terminal - // gap iterator. - if gap.node == nil { - return GapIterator{} - } - // Iterate subsequent gaps. - gap.index++ - for gap.index <= gap.node.nrSegments { - if gap.node.hasChildren { - if largeEnoughGap := gap.node.children[gap.index].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() { - return largeEnoughGap - } - } else { - if gap.Range().Length() >= minSize { - return gap - } - } - gap.index++ - } - gap.node, gap.index = gap.node.parent, gap.node.parentIndex - if gap.node != nil && gap.index == gap.node.nrSegments { - // If gap is the trailing gap of a non-leaf node, crawl up to - // parent again and do recursion. - gap.node, gap.index = gap.node.parent, gap.node.parentIndex - } - return gap.nextLargeEnoughGapHelper(minSize) -} - -// PrevLargeEnoughGap returns the iterated gap's first prev gap with larger or -// equal length than minSize. If not found, return a terminal gap iterator -// (does NOT include this gap itself). -// -// Precondition: trackGaps must be 1. -func (gap GapIterator) PrevLargeEnoughGap(minSize Key) GapIterator { - if trackGaps != 1 { - panic("set is not tracking gaps") - } - if gap.node != nil && gap.node.hasChildren && gap.index == 0 { - // If gap is the first gap of an non-leaf node, - // translate it to the equivalent gap on leaf level. - gap.node = gap.PrevSegment().node - gap.index = gap.node.nrSegments - return gap.prevLargeEnoughGapHelper(minSize) - } - return gap.prevLargeEnoughGapHelper(minSize) -} - -// prevLargeEnoughGapHelper is the helper function used by PrevLargeEnoughGap -// to do the real recursions. -// -// Preconditions: gap is NOT the first gap of a non-leaf node. -func (gap GapIterator) prevLargeEnoughGapHelper(minSize Key) GapIterator { - // Crawl up the tree if no large enough gap in current node or the - // current gap is the first one on leaf level. - for gap.node != nil && - (gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == 0)) { - gap.node, gap.index = gap.node.parent, gap.node.parentIndex - } - // If no large enough gap throughout the whole set, return a terminal - // gap iterator. - if gap.node == nil { - return GapIterator{} - } - // Iterate previous gaps. - gap.index-- - for gap.index >= 0 { - if gap.node.hasChildren { - if largeEnoughGap := gap.node.children[gap.index].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() { - return largeEnoughGap - } - } else { - if gap.Range().Length() >= minSize { - return gap - } - } - gap.index-- - } - gap.node, gap.index = gap.node.parent, gap.node.parentIndex - if gap.node != nil && gap.index == 0 { - // If gap is the first gap of a non-leaf node, crawl up to - // parent again and do recursion. - gap.node, gap.index = gap.node.parent, gap.node.parentIndex - } - return gap.prevLargeEnoughGapHelper(minSize) -} - -// segmentBeforePosition returns the predecessor segment of the position given -// by n.children[i], which may or may not contain a child. If no such segment -// exists, segmentBeforePosition returns a terminal iterator. -func segmentBeforePosition(n *node, i int) Iterator { - for i == 0 { - if n.parent == nil { - return Iterator{} - } - n, i = n.parent, n.parentIndex - } - return Iterator{n, i - 1} -} - -// segmentAfterPosition returns the successor segment of the position given by -// n.children[i], which may or may not contain a child. If no such segment -// exists, segmentAfterPosition returns a terminal iterator. -func segmentAfterPosition(n *node, i int) Iterator { - for i == n.nrSegments { - if n.parent == nil { - return Iterator{} - } - n, i = n.parent, n.parentIndex - } - return Iterator{n, i} -} - -func zeroValueSlice(slice []Value) { - // TODO(jamieliu): check if Go is actually smart enough to optimize a - // ClearValue that assigns nil to a memset here. - for i := range slice { - Functions{}.ClearValue(&slice[i]) - } -} - -func zeroNodeSlice(slice []*node) { - for i := range slice { - slice[i] = nil - } -} - -// String stringifies a Set for debugging. -func (s *Set) String() string { - return s.root.String() -} - -// String stringifies a node (and all of its children) for debugging. -func (n *node) String() string { - var buf bytes.Buffer - n.writeDebugString(&buf, "") - return buf.String() -} - -func (n *node) writeDebugString(buf *bytes.Buffer, prefix string) { - if n.hasChildren != (n.nrSegments > 0 && n.children[0] != nil) { - buf.WriteString(prefix) - buf.WriteString(fmt.Sprintf("WARNING: inconsistent value of hasChildren: got %v, want %v\n", n.hasChildren, !n.hasChildren)) - } - for i := 0; i < n.nrSegments; i++ { - if child := n.children[i]; child != nil { - cprefix := fmt.Sprintf("%s- % 3d ", prefix, i) - if child.parent != n || child.parentIndex != i { - buf.WriteString(cprefix) - buf.WriteString(fmt.Sprintf("WARNING: inconsistent linkage to parent: got (%p, %d), want (%p, %d)\n", child.parent, child.parentIndex, n, i)) - } - child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i)) - } - buf.WriteString(prefix) - if n.hasChildren { - if trackGaps != 0 { - buf.WriteString(fmt.Sprintf("- % 3d: %v => %v, maxGap: %d\n", i, n.keys[i], n.values[i], n.maxGap.Get())) - } else { - buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i])) - } - } else { - buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i])) - } - } - if child := n.children[n.nrSegments]; child != nil { - child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments)) - } -} - -// SegmentDataSlices represents segments from a set as slices of start, end, and -// values. SegmentDataSlices is primarily used as an intermediate representation -// for save/restore and the layout here is optimized for that. -// -// +stateify savable -type SegmentDataSlices struct { - Start []Key - End []Key - Values []Value -} - -// ExportSortedSlices returns a copy of all segments in the given set, in -// ascending key order. -func (s *Set) ExportSortedSlices() *SegmentDataSlices { - var sds SegmentDataSlices - for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { - sds.Start = append(sds.Start, seg.Start()) - sds.End = append(sds.End, seg.End()) - sds.Values = append(sds.Values, seg.Value()) - } - sds.Start = sds.Start[:len(sds.Start):len(sds.Start)] - sds.End = sds.End[:len(sds.End):len(sds.End)] - sds.Values = sds.Values[:len(sds.Values):len(sds.Values)] - return &sds -} - -// ImportSortedSlices initializes the given set from the given slice. -// -// Preconditions: -// * s must be empty. -// * sds must represent a valid set (the segments in sds must have valid -// lengths that do not overlap). -// * The segments in sds must be sorted in ascending key order. -func (s *Set) ImportSortedSlices(sds *SegmentDataSlices) error { - if !s.IsEmpty() { - return fmt.Errorf("cannot import into non-empty set %v", s) - } - gap := s.FirstGap() - for i := range sds.Start { - r := Range{sds.Start[i], sds.End[i]} - if !gap.Range().IsSupersetOf(r) { - return fmt.Errorf("segment overlaps a preceding segment or is incorrectly sorted: [%d, %d) => %v", sds.Start[i], sds.End[i], sds.Values[i]) - } - gap = s.InsertWithoutMerging(gap, r, sds.Values[i]).NextGap() - } - return nil -} - -// segmentTestCheck returns an error if s is incorrectly sorted, does not -// contain exactly expectedSegments segments, or contains a segment which -// fails the passed check. -// -// This should be used only for testing, and has been added to this package for -// templating convenience. -func (s *Set) segmentTestCheck(expectedSegments int, segFunc func(int, Range, Value) error) error { - havePrev := false - prev := Key(0) - nrSegments := 0 - for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { - next := seg.Start() - if havePrev && prev >= next { - return fmt.Errorf("incorrect order: key %d (segment %d) >= key %d (segment %d)", prev, nrSegments-1, next, nrSegments) - } - if segFunc != nil { - if err := segFunc(nrSegments, seg.Range(), seg.Value()); err != nil { - return err - } - } - prev = next - havePrev = true - nrSegments++ - } - if nrSegments != expectedSegments { - return fmt.Errorf("incorrect number of segments: got %d, wanted %d", nrSegments, expectedSegments) - } - return nil -} - -// countSegments counts the number of segments in the set. -// -// Similar to Check, this should only be used for testing. -func (s *Set) countSegments() (segments int) { - for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { - segments++ - } - return segments -} |