summaryrefslogtreecommitdiffhomepage
path: root/pkg/segment/set.go
diff options
context:
space:
mode:
Diffstat (limited to 'pkg/segment/set.go')
-rw-r--r--pkg/segment/set.go1758
1 files changed, 0 insertions, 1758 deletions
diff --git a/pkg/segment/set.go b/pkg/segment/set.go
deleted file mode 100644
index fae6c363d..000000000
--- a/pkg/segment/set.go
+++ /dev/null
@@ -1,1758 +0,0 @@
-// Copyright 2018 The gVisor Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-// Package segment provides tools for working with collections of segments. A
-// segment is a key-value mapping, where the key is a non-empty contiguous
-// range of values of type Key, and the value is a single value of type Value.
-//
-// Clients using this package must use the go_template_instance rule in
-// tools/go_generics/defs.bzl to create an instantiation of this
-// template package, providing types to use in place of Key, Range, Value, and
-// Functions. See pkg/segment/test/BUILD for a usage example.
-package segment
-
-import (
- "bytes"
- "fmt"
-)
-
-// Key is a required type parameter that must be an integral type.
-type Key uint64
-
-// Range is a required type parameter equivalent to Range<Key>.
-type Range interface{}
-
-// Value is a required type parameter.
-type Value interface{}
-
-// trackGaps is an optional parameter.
-//
-// If trackGaps is 1, the Set will track maximum gap size recursively,
-// enabling the GapIterator.{Prev,Next}LargeEnoughGap functions. In this
-// case, Key must be an unsigned integer.
-//
-// trackGaps must be 0 or 1.
-const trackGaps = 0
-
-var _ = uint8(trackGaps << 7) // Will fail if not zero or one.
-
-// dynamicGap is a type that disappears if trackGaps is 0.
-type dynamicGap [trackGaps]Key
-
-// Get returns the value of the gap.
-//
-// Precondition: trackGaps must be non-zero.
-func (d *dynamicGap) Get() Key {
- return d[:][0]
-}
-
-// Set sets the value of the gap.
-//
-// Precondition: trackGaps must be non-zero.
-func (d *dynamicGap) Set(v Key) {
- d[:][0] = v
-}
-
-// Functions is a required type parameter that must be a struct implementing
-// the methods defined by Functions.
-type Functions interface {
- // MinKey returns the minimum allowed key.
- MinKey() Key
-
- // MaxKey returns the maximum allowed key + 1.
- MaxKey() Key
-
- // ClearValue deinitializes the given value. (For example, if Value is a
- // pointer or interface type, ClearValue should set it to nil.)
- ClearValue(*Value)
-
- // Merge attempts to merge the values corresponding to two consecutive
- // segments. If successful, Merge returns (merged value, true). Otherwise,
- // it returns (unspecified, false).
- //
- // Preconditions: r1.End == r2.Start.
- //
- // Postconditions: If merging succeeds, val1 and val2 are invalidated.
- Merge(r1 Range, val1 Value, r2 Range, val2 Value) (Value, bool)
-
- // Split splits a segment's value at a key within its range, such that the
- // first returned value corresponds to the range [r.Start, split) and the
- // second returned value corresponds to the range [split, r.End).
- //
- // Preconditions: r.Start < split < r.End.
- //
- // Postconditions: The original value val is invalidated.
- Split(r Range, val Value, split Key) (Value, Value)
-}
-
-const (
- // minDegree is the minimum degree of an internal node in a Set B-tree.
- //
- // - Any non-root node has at least minDegree-1 segments.
- //
- // - Any non-root internal (non-leaf) node has at least minDegree children.
- //
- // - The root node may have fewer than minDegree-1 segments, but it may
- // only have 0 segments if the tree is empty.
- //
- // Our implementation requires minDegree >= 3. Higher values of minDegree
- // usually improve performance, but increase memory usage for small sets.
- minDegree = 3
-
- maxDegree = 2 * minDegree
-)
-
-// A Set is a mapping of segments with non-overlapping Range keys. The zero
-// value for a Set is an empty set. Set values are not safely movable nor
-// copyable. Set is thread-compatible.
-//
-// +stateify savable
-type Set struct {
- root node `state:".(*SegmentDataSlices)"`
-}
-
-// IsEmpty returns true if the set contains no segments.
-func (s *Set) IsEmpty() bool {
- return s.root.nrSegments == 0
-}
-
-// IsEmptyRange returns true iff no segments in the set overlap the given
-// range. This is semantically equivalent to s.SpanRange(r) == 0, but may be
-// more efficient.
-func (s *Set) IsEmptyRange(r Range) bool {
- switch {
- case r.Length() < 0:
- panic(fmt.Sprintf("invalid range %v", r))
- case r.Length() == 0:
- return true
- }
- _, gap := s.Find(r.Start)
- if !gap.Ok() {
- return false
- }
- return r.End <= gap.End()
-}
-
-// Span returns the total size of all segments in the set.
-func (s *Set) Span() Key {
- var sz Key
- for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
- sz += seg.Range().Length()
- }
- return sz
-}
-
-// SpanRange returns the total size of the intersection of segments in the set
-// with the given range.
-func (s *Set) SpanRange(r Range) Key {
- switch {
- case r.Length() < 0:
- panic(fmt.Sprintf("invalid range %v", r))
- case r.Length() == 0:
- return 0
- }
- var sz Key
- for seg := s.LowerBoundSegment(r.Start); seg.Ok() && seg.Start() < r.End; seg = seg.NextSegment() {
- sz += seg.Range().Intersect(r).Length()
- }
- return sz
-}
-
-// FirstSegment returns the first segment in the set. If the set is empty,
-// FirstSegment returns a terminal iterator.
-func (s *Set) FirstSegment() Iterator {
- if s.root.nrSegments == 0 {
- return Iterator{}
- }
- return s.root.firstSegment()
-}
-
-// LastSegment returns the last segment in the set. If the set is empty,
-// LastSegment returns a terminal iterator.
-func (s *Set) LastSegment() Iterator {
- if s.root.nrSegments == 0 {
- return Iterator{}
- }
- return s.root.lastSegment()
-}
-
-// FirstGap returns the first gap in the set.
-func (s *Set) FirstGap() GapIterator {
- n := &s.root
- for n.hasChildren {
- n = n.children[0]
- }
- return GapIterator{n, 0}
-}
-
-// LastGap returns the last gap in the set.
-func (s *Set) LastGap() GapIterator {
- n := &s.root
- for n.hasChildren {
- n = n.children[n.nrSegments]
- }
- return GapIterator{n, n.nrSegments}
-}
-
-// Find returns the segment or gap whose range contains the given key. If a
-// segment is found, the returned Iterator is non-terminal and the
-// returned GapIterator is terminal. Otherwise, the returned Iterator is
-// terminal and the returned GapIterator is non-terminal.
-func (s *Set) Find(key Key) (Iterator, GapIterator) {
- n := &s.root
- for {
- // Binary search invariant: the correct value of i lies within [lower,
- // upper].
- lower := 0
- upper := n.nrSegments
- for lower < upper {
- i := lower + (upper-lower)/2
- if r := n.keys[i]; key < r.End {
- if key >= r.Start {
- return Iterator{n, i}, GapIterator{}
- }
- upper = i
- } else {
- lower = i + 1
- }
- }
- i := lower
- if !n.hasChildren {
- return Iterator{}, GapIterator{n, i}
- }
- n = n.children[i]
- }
-}
-
-// FindSegment returns the segment whose range contains the given key. If no
-// such segment exists, FindSegment returns a terminal iterator.
-func (s *Set) FindSegment(key Key) Iterator {
- seg, _ := s.Find(key)
- return seg
-}
-
-// LowerBoundSegment returns the segment with the lowest range that contains a
-// key greater than or equal to min. If no such segment exists,
-// LowerBoundSegment returns a terminal iterator.
-func (s *Set) LowerBoundSegment(min Key) Iterator {
- seg, gap := s.Find(min)
- if seg.Ok() {
- return seg
- }
- return gap.NextSegment()
-}
-
-// UpperBoundSegment returns the segment with the highest range that contains a
-// key less than or equal to max. If no such segment exists, UpperBoundSegment
-// returns a terminal iterator.
-func (s *Set) UpperBoundSegment(max Key) Iterator {
- seg, gap := s.Find(max)
- if seg.Ok() {
- return seg
- }
- return gap.PrevSegment()
-}
-
-// FindGap returns the gap containing the given key. If no such gap exists
-// (i.e. the set contains a segment containing that key), FindGap returns a
-// terminal iterator.
-func (s *Set) FindGap(key Key) GapIterator {
- _, gap := s.Find(key)
- return gap
-}
-
-// LowerBoundGap returns the gap with the lowest range that is greater than or
-// equal to min.
-func (s *Set) LowerBoundGap(min Key) GapIterator {
- seg, gap := s.Find(min)
- if gap.Ok() {
- return gap
- }
- return seg.NextGap()
-}
-
-// UpperBoundGap returns the gap with the highest range that is less than or
-// equal to max.
-func (s *Set) UpperBoundGap(max Key) GapIterator {
- seg, gap := s.Find(max)
- if gap.Ok() {
- return gap
- }
- return seg.PrevGap()
-}
-
-// Add inserts the given segment into the set and returns true. If the new
-// segment can be merged with adjacent segments, Add will do so. If the new
-// segment would overlap an existing segment, Add returns false. If Add
-// succeeds, all existing iterators are invalidated.
-func (s *Set) Add(r Range, val Value) bool {
- if r.Length() <= 0 {
- panic(fmt.Sprintf("invalid segment range %v", r))
- }
- gap := s.FindGap(r.Start)
- if !gap.Ok() {
- return false
- }
- if r.End > gap.End() {
- return false
- }
- s.Insert(gap, r, val)
- return true
-}
-
-// AddWithoutMerging inserts the given segment into the set and returns true.
-// If it would overlap an existing segment, AddWithoutMerging does nothing and
-// returns false. If AddWithoutMerging succeeds, all existing iterators are
-// invalidated.
-func (s *Set) AddWithoutMerging(r Range, val Value) bool {
- if r.Length() <= 0 {
- panic(fmt.Sprintf("invalid segment range %v", r))
- }
- gap := s.FindGap(r.Start)
- if !gap.Ok() {
- return false
- }
- if r.End > gap.End() {
- return false
- }
- s.InsertWithoutMergingUnchecked(gap, r, val)
- return true
-}
-
-// Insert inserts the given segment into the given gap. If the new segment can
-// be merged with adjacent segments, Insert will do so. Insert returns an
-// iterator to the segment containing the inserted value (which may have been
-// merged with other values). All existing iterators (including gap, but not
-// including the returned iterator) are invalidated.
-//
-// If the gap cannot accommodate the segment, or if r is invalid, Insert panics.
-//
-// Insert is semantically equivalent to a InsertWithoutMerging followed by a
-// Merge, but may be more efficient. Note that there is no unchecked variant of
-// Insert since Insert must retrieve and inspect gap's predecessor and
-// successor segments regardless.
-func (s *Set) Insert(gap GapIterator, r Range, val Value) Iterator {
- if r.Length() <= 0 {
- panic(fmt.Sprintf("invalid segment range %v", r))
- }
- prev, next := gap.PrevSegment(), gap.NextSegment()
- if prev.Ok() && prev.End() > r.Start {
- panic(fmt.Sprintf("new segment %v overlaps predecessor %v", r, prev.Range()))
- }
- if next.Ok() && next.Start() < r.End {
- panic(fmt.Sprintf("new segment %v overlaps successor %v", r, next.Range()))
- }
- if prev.Ok() && prev.End() == r.Start {
- if mval, ok := (Functions{}).Merge(prev.Range(), prev.Value(), r, val); ok {
- shrinkMaxGap := trackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get()
- prev.SetEndUnchecked(r.End)
- prev.SetValue(mval)
- if shrinkMaxGap {
- gap.node.updateMaxGapLeaf()
- }
- if next.Ok() && next.Start() == r.End {
- val = mval
- if mval, ok := (Functions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok {
- prev.SetEndUnchecked(next.End())
- prev.SetValue(mval)
- return s.Remove(next).PrevSegment()
- }
- }
- return prev
- }
- }
- if next.Ok() && next.Start() == r.End {
- if mval, ok := (Functions{}).Merge(r, val, next.Range(), next.Value()); ok {
- shrinkMaxGap := trackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get()
- next.SetStartUnchecked(r.Start)
- next.SetValue(mval)
- if shrinkMaxGap {
- gap.node.updateMaxGapLeaf()
- }
- return next
- }
- }
- // InsertWithoutMergingUnchecked will maintain maxGap if necessary.
- return s.InsertWithoutMergingUnchecked(gap, r, val)
-}
-
-// InsertWithoutMerging inserts the given segment into the given gap and
-// returns an iterator to the inserted segment. All existing iterators
-// (including gap, but not including the returned iterator) are invalidated.
-//
-// If the gap cannot accommodate the segment, or if r is invalid,
-// InsertWithoutMerging panics.
-func (s *Set) InsertWithoutMerging(gap GapIterator, r Range, val Value) Iterator {
- if r.Length() <= 0 {
- panic(fmt.Sprintf("invalid segment range %v", r))
- }
- if gr := gap.Range(); !gr.IsSupersetOf(r) {
- panic(fmt.Sprintf("cannot insert segment range %v into gap range %v", r, gr))
- }
- return s.InsertWithoutMergingUnchecked(gap, r, val)
-}
-
-// InsertWithoutMergingUnchecked inserts the given segment into the given gap
-// and returns an iterator to the inserted segment. All existing iterators
-// (including gap, but not including the returned iterator) are invalidated.
-//
-// Preconditions:
-// * r.Start >= gap.Start().
-// * r.End <= gap.End().
-func (s *Set) InsertWithoutMergingUnchecked(gap GapIterator, r Range, val Value) Iterator {
- gap = gap.node.rebalanceBeforeInsert(gap)
- splitMaxGap := trackGaps != 0 && (gap.node.nrSegments == 0 || gap.Range().Length() == gap.node.maxGap.Get())
- copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments])
- copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments])
- gap.node.keys[gap.index] = r
- gap.node.values[gap.index] = val
- gap.node.nrSegments++
- if splitMaxGap {
- gap.node.updateMaxGapLeaf()
- }
- return Iterator{gap.node, gap.index}
-}
-
-// Remove removes the given segment and returns an iterator to the vacated gap.
-// All existing iterators (including seg, but not including the returned
-// iterator) are invalidated.
-func (s *Set) Remove(seg Iterator) GapIterator {
- // We only want to remove directly from a leaf node.
- if seg.node.hasChildren {
- // Since seg.node has children, the removed segment must have a
- // predecessor (at the end of the rightmost leaf of its left child
- // subtree). Move the contents of that predecessor into the removed
- // segment's position, and remove that predecessor instead. (We choose
- // to steal the predecessor rather than the successor because removing
- // from the end of a leaf node doesn't involve any copying unless
- // merging is required.)
- victim := seg.PrevSegment()
- // This must be unchecked since until victim is removed, seg and victim
- // overlap.
- seg.SetRangeUnchecked(victim.Range())
- seg.SetValue(victim.Value())
- // Need to update the nextAdjacentNode's maxGap because the gap in between
- // must have been modified by updating seg.Range() to victim.Range().
- // seg.NextSegment() must exist since the last segment can't be in a
- // non-leaf node.
- nextAdjacentNode := seg.NextSegment().node
- if trackGaps != 0 {
- nextAdjacentNode.updateMaxGapLeaf()
- }
- return s.Remove(victim).NextGap()
- }
- copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments])
- copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments])
- Functions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1])
- seg.node.nrSegments--
- if trackGaps != 0 {
- seg.node.updateMaxGapLeaf()
- }
- return seg.node.rebalanceAfterRemove(GapIterator{seg.node, seg.index})
-}
-
-// RemoveAll removes all segments from the set. All existing iterators are
-// invalidated.
-func (s *Set) RemoveAll() {
- s.root = node{}
-}
-
-// RemoveRange removes all segments in the given range. An iterator to the
-// newly formed gap is returned, and all existing iterators are invalidated.
-func (s *Set) RemoveRange(r Range) GapIterator {
- seg, gap := s.Find(r.Start)
- if seg.Ok() {
- seg = s.Isolate(seg, r)
- gap = s.Remove(seg)
- }
- for seg = gap.NextSegment(); seg.Ok() && seg.Start() < r.End; seg = gap.NextSegment() {
- seg = s.Isolate(seg, r)
- gap = s.Remove(seg)
- }
- return gap
-}
-
-// Merge attempts to merge two neighboring segments. If successful, Merge
-// returns an iterator to the merged segment, and all existing iterators are
-// invalidated. Otherwise, Merge returns a terminal iterator.
-//
-// If first is not the predecessor of second, Merge panics.
-func (s *Set) Merge(first, second Iterator) Iterator {
- if first.NextSegment() != second {
- panic(fmt.Sprintf("attempt to merge non-neighboring segments %v, %v", first.Range(), second.Range()))
- }
- return s.MergeUnchecked(first, second)
-}
-
-// MergeUnchecked attempts to merge two neighboring segments. If successful,
-// MergeUnchecked returns an iterator to the merged segment, and all existing
-// iterators are invalidated. Otherwise, MergeUnchecked returns a terminal
-// iterator.
-//
-// Precondition: first is the predecessor of second: first.NextSegment() ==
-// second, first == second.PrevSegment().
-func (s *Set) MergeUnchecked(first, second Iterator) Iterator {
- if first.End() == second.Start() {
- if mval, ok := (Functions{}).Merge(first.Range(), first.Value(), second.Range(), second.Value()); ok {
- // N.B. This must be unchecked because until s.Remove(second), first
- // overlaps second.
- first.SetEndUnchecked(second.End())
- first.SetValue(mval)
- // Remove will handle the maxGap update if necessary.
- return s.Remove(second).PrevSegment()
- }
- }
- return Iterator{}
-}
-
-// MergeAll attempts to merge all adjacent segments in the set. All existing
-// iterators are invalidated.
-func (s *Set) MergeAll() {
- seg := s.FirstSegment()
- if !seg.Ok() {
- return
- }
- next := seg.NextSegment()
- for next.Ok() {
- if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
- seg, next = mseg, mseg.NextSegment()
- } else {
- seg, next = next, next.NextSegment()
- }
- }
-}
-
-// MergeRange attempts to merge all adjacent segments that contain a key in the
-// specific range. All existing iterators are invalidated.
-func (s *Set) MergeRange(r Range) {
- seg := s.LowerBoundSegment(r.Start)
- if !seg.Ok() {
- return
- }
- next := seg.NextSegment()
- for next.Ok() && next.Range().Start < r.End {
- if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
- seg, next = mseg, mseg.NextSegment()
- } else {
- seg, next = next, next.NextSegment()
- }
- }
-}
-
-// MergeAdjacent attempts to merge the segment containing r.Start with its
-// predecessor, and the segment containing r.End-1 with its successor.
-func (s *Set) MergeAdjacent(r Range) {
- first := s.FindSegment(r.Start)
- if first.Ok() {
- if prev := first.PrevSegment(); prev.Ok() {
- s.Merge(prev, first)
- }
- }
- last := s.FindSegment(r.End - 1)
- if last.Ok() {
- if next := last.NextSegment(); next.Ok() {
- s.Merge(last, next)
- }
- }
-}
-
-// Split splits the given segment at the given key and returns iterators to the
-// two resulting segments. All existing iterators (including seg, but not
-// including the returned iterators) are invalidated.
-//
-// If the segment cannot be split at split (because split is at the start or
-// end of the segment's range, so splitting would produce a segment with zero
-// length, or because split falls outside the segment's range altogether),
-// Split panics.
-func (s *Set) Split(seg Iterator, split Key) (Iterator, Iterator) {
- if !seg.Range().CanSplitAt(split) {
- panic(fmt.Sprintf("can't split %v at %v", seg.Range(), split))
- }
- return s.SplitUnchecked(seg, split)
-}
-
-// SplitUnchecked splits the given segment at the given key and returns
-// iterators to the two resulting segments. All existing iterators (including
-// seg, but not including the returned iterators) are invalidated.
-//
-// Preconditions: seg.Start() < key < seg.End().
-func (s *Set) SplitUnchecked(seg Iterator, split Key) (Iterator, Iterator) {
- val1, val2 := (Functions{}).Split(seg.Range(), seg.Value(), split)
- end2 := seg.End()
- seg.SetEndUnchecked(split)
- seg.SetValue(val1)
- seg2 := s.InsertWithoutMergingUnchecked(seg.NextGap(), Range{split, end2}, val2)
- // seg may now be invalid due to the Insert.
- return seg2.PrevSegment(), seg2
-}
-
-// SplitAt splits the segment straddling split, if one exists. SplitAt returns
-// true if a segment was split and false otherwise. If SplitAt splits a
-// segment, all existing iterators are invalidated.
-func (s *Set) SplitAt(split Key) bool {
- if seg := s.FindSegment(split); seg.Ok() && seg.Range().CanSplitAt(split) {
- s.SplitUnchecked(seg, split)
- return true
- }
- return false
-}
-
-// Isolate ensures that the given segment's range does not escape r by
-// splitting at r.Start and r.End if necessary, and returns an updated iterator
-// to the bounded segment. All existing iterators (including seg, but not
-// including the returned iterators) are invalidated.
-func (s *Set) Isolate(seg Iterator, r Range) Iterator {
- if seg.Range().CanSplitAt(r.Start) {
- _, seg = s.SplitUnchecked(seg, r.Start)
- }
- if seg.Range().CanSplitAt(r.End) {
- seg, _ = s.SplitUnchecked(seg, r.End)
- }
- return seg
-}
-
-// ApplyContiguous applies a function to a contiguous range of segments,
-// splitting if necessary. The function is applied until the first gap is
-// encountered, at which point the gap is returned. If the function is applied
-// across the entire range, a terminal gap is returned. All existing iterators
-// are invalidated.
-//
-// N.B. The Iterator must not be invalidated by the function.
-func (s *Set) ApplyContiguous(r Range, fn func(seg Iterator)) GapIterator {
- seg, gap := s.Find(r.Start)
- if !seg.Ok() {
- return gap
- }
- for {
- seg = s.Isolate(seg, r)
- fn(seg)
- if seg.End() >= r.End {
- return GapIterator{}
- }
- gap = seg.NextGap()
- if !gap.IsEmpty() {
- return gap
- }
- seg = gap.NextSegment()
- if !seg.Ok() {
- // This implies that the last segment extended all the
- // way to the maximum value, since the gap was empty.
- return GapIterator{}
- }
- }
-}
-
-// +stateify savable
-type node struct {
- // An internal binary tree node looks like:
- //
- // K
- // / \
- // Cl Cr
- //
- // where all keys in the subtree rooted by Cl (the left subtree) are less
- // than K (the key of the parent node), and all keys in the subtree rooted
- // by Cr (the right subtree) are greater than K.
- //
- // An internal B-tree node's indexes work out to look like:
- //
- // K0 K1 K2 ... Kn-1
- // / \/ \/ \ ... / \
- // C0 C1 C2 C3 ... Cn-1 Cn
- //
- // where n is nrSegments.
- nrSegments int
-
- // parent is a pointer to this node's parent. If this node is root, parent
- // is nil.
- parent *node
-
- // parentIndex is the index of this node in parent.children.
- parentIndex int
-
- // Flag for internal nodes that is technically redundant with "children[0]
- // != nil", but is stored in the first cache line. "hasChildren" rather
- // than "isLeaf" because false must be the correct value for an empty root.
- hasChildren bool
-
- // The longest gap within this node. If the node is a leaf, it's simply the
- // maximum gap among all the (nrSegments+1) gaps formed by its nrSegments keys
- // including the 0th and nrSegments-th gap possibly shared with its upper-level
- // nodes; if it's a non-leaf node, it's the max of all children's maxGap.
- maxGap dynamicGap
-
- // Nodes store keys and values in separate arrays to maximize locality in
- // the common case (scanning keys for lookup).
- keys [maxDegree - 1]Range
- values [maxDegree - 1]Value
- children [maxDegree]*node
-}
-
-// firstSegment returns the first segment in the subtree rooted by n.
-//
-// Preconditions: n.nrSegments != 0.
-func (n *node) firstSegment() Iterator {
- for n.hasChildren {
- n = n.children[0]
- }
- return Iterator{n, 0}
-}
-
-// lastSegment returns the last segment in the subtree rooted by n.
-//
-// Preconditions: n.nrSegments != 0.
-func (n *node) lastSegment() Iterator {
- for n.hasChildren {
- n = n.children[n.nrSegments]
- }
- return Iterator{n, n.nrSegments - 1}
-}
-
-func (n *node) prevSibling() *node {
- if n.parent == nil || n.parentIndex == 0 {
- return nil
- }
- return n.parent.children[n.parentIndex-1]
-}
-
-func (n *node) nextSibling() *node {
- if n.parent == nil || n.parentIndex == n.parent.nrSegments {
- return nil
- }
- return n.parent.children[n.parentIndex+1]
-}
-
-// rebalanceBeforeInsert splits n and its ancestors if they are full, as
-// required for insertion, and returns an updated iterator to the position
-// represented by gap.
-func (n *node) rebalanceBeforeInsert(gap GapIterator) GapIterator {
- if n.nrSegments < maxDegree-1 {
- return gap
- }
- if n.parent != nil {
- gap = n.parent.rebalanceBeforeInsert(gap)
- }
- if n.parent == nil {
- // n is root. Move all segments before and after n's median segment
- // into new child nodes adjacent to the median segment, which is now
- // the only segment in root.
- left := &node{
- nrSegments: minDegree - 1,
- parent: n,
- parentIndex: 0,
- hasChildren: n.hasChildren,
- }
- right := &node{
- nrSegments: minDegree - 1,
- parent: n,
- parentIndex: 1,
- hasChildren: n.hasChildren,
- }
- copy(left.keys[:minDegree-1], n.keys[:minDegree-1])
- copy(left.values[:minDegree-1], n.values[:minDegree-1])
- copy(right.keys[:minDegree-1], n.keys[minDegree:])
- copy(right.values[:minDegree-1], n.values[minDegree:])
- n.keys[0], n.values[0] = n.keys[minDegree-1], n.values[minDegree-1]
- zeroValueSlice(n.values[1:])
- if n.hasChildren {
- copy(left.children[:minDegree], n.children[:minDegree])
- copy(right.children[:minDegree], n.children[minDegree:])
- zeroNodeSlice(n.children[2:])
- for i := 0; i < minDegree; i++ {
- left.children[i].parent = left
- left.children[i].parentIndex = i
- right.children[i].parent = right
- right.children[i].parentIndex = i
- }
- }
- n.nrSegments = 1
- n.hasChildren = true
- n.children[0] = left
- n.children[1] = right
- // In this case, n's maxGap won't violated as it's still the root,
- // but the left and right children should be updated locally as they
- // are newly split from n.
- if trackGaps != 0 {
- left.updateMaxGapLocal()
- right.updateMaxGapLocal()
- }
- if gap.node != n {
- return gap
- }
- if gap.index < minDegree {
- return GapIterator{left, gap.index}
- }
- return GapIterator{right, gap.index - minDegree}
- }
- // n is non-root. Move n's median segment into its parent node (which can't
- // be full because we've already invoked n.parent.rebalanceBeforeInsert)
- // and move all segments after n's median into a new sibling node (the
- // median segment's right child subtree).
- copy(n.parent.keys[n.parentIndex+1:], n.parent.keys[n.parentIndex:n.parent.nrSegments])
- copy(n.parent.values[n.parentIndex+1:], n.parent.values[n.parentIndex:n.parent.nrSegments])
- n.parent.keys[n.parentIndex], n.parent.values[n.parentIndex] = n.keys[minDegree-1], n.values[minDegree-1]
- copy(n.parent.children[n.parentIndex+2:], n.parent.children[n.parentIndex+1:n.parent.nrSegments+1])
- for i := n.parentIndex + 2; i < n.parent.nrSegments+2; i++ {
- n.parent.children[i].parentIndex = i
- }
- sibling := &node{
- nrSegments: minDegree - 1,
- parent: n.parent,
- parentIndex: n.parentIndex + 1,
- hasChildren: n.hasChildren,
- }
- n.parent.children[n.parentIndex+1] = sibling
- n.parent.nrSegments++
- copy(sibling.keys[:minDegree-1], n.keys[minDegree:])
- copy(sibling.values[:minDegree-1], n.values[minDegree:])
- zeroValueSlice(n.values[minDegree-1:])
- if n.hasChildren {
- copy(sibling.children[:minDegree], n.children[minDegree:])
- zeroNodeSlice(n.children[minDegree:])
- for i := 0; i < minDegree; i++ {
- sibling.children[i].parent = sibling
- sibling.children[i].parentIndex = i
- }
- }
- n.nrSegments = minDegree - 1
- // MaxGap of n's parent is not violated because the segments within is not changed.
- // n and its sibling's maxGap need to be updated locally as they are two new nodes split from old n.
- if trackGaps != 0 {
- n.updateMaxGapLocal()
- sibling.updateMaxGapLocal()
- }
- // gap.node can't be n.parent because gaps are always in leaf nodes.
- if gap.node != n {
- return gap
- }
- if gap.index < minDegree {
- return gap
- }
- return GapIterator{sibling, gap.index - minDegree}
-}
-
-// rebalanceAfterRemove "unsplits" n and its ancestors if they are deficient
-// (contain fewer segments than required by B-tree invariants), as required for
-// removal, and returns an updated iterator to the position represented by gap.
-//
-// Precondition: n is the only node in the tree that may currently violate a
-// B-tree invariant.
-func (n *node) rebalanceAfterRemove(gap GapIterator) GapIterator {
- for {
- if n.nrSegments >= minDegree-1 {
- return gap
- }
- if n.parent == nil {
- // Root is allowed to be deficient.
- return gap
- }
- // There's one other thing we can do before resorting to unsplitting.
- // If either sibling node has at least minDegree segments, rotate that
- // sibling's closest segment through the segment in the parent that
- // separates us. That is, given:
- //
- // ... D ...
- // / \
- // ... B C] [E ...
- //
- // where the node containing E is deficient, end up with:
- //
- // ... C ...
- // / \
- // ... B] [D E ...
- //
- // As in Set.Remove, prefer rotating from the end of the sibling to the
- // left: by precondition, n.node has fewer segments (to memcpy) than
- // the sibling does.
- if sibling := n.prevSibling(); sibling != nil && sibling.nrSegments >= minDegree {
- copy(n.keys[1:], n.keys[:n.nrSegments])
- copy(n.values[1:], n.values[:n.nrSegments])
- n.keys[0] = n.parent.keys[n.parentIndex-1]
- n.values[0] = n.parent.values[n.parentIndex-1]
- n.parent.keys[n.parentIndex-1] = sibling.keys[sibling.nrSegments-1]
- n.parent.values[n.parentIndex-1] = sibling.values[sibling.nrSegments-1]
- Functions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
- if n.hasChildren {
- copy(n.children[1:], n.children[:n.nrSegments+1])
- n.children[0] = sibling.children[sibling.nrSegments]
- sibling.children[sibling.nrSegments] = nil
- n.children[0].parent = n
- n.children[0].parentIndex = 0
- for i := 1; i < n.nrSegments+2; i++ {
- n.children[i].parentIndex = i
- }
- }
- n.nrSegments++
- sibling.nrSegments--
- // n's parent's maxGap does not need to be updated as its content is unmodified.
- // n and its sibling must be updated with (new) maxGap because of the shift of keys.
- if trackGaps != 0 {
- n.updateMaxGapLocal()
- sibling.updateMaxGapLocal()
- }
- if gap.node == sibling && gap.index == sibling.nrSegments {
- return GapIterator{n, 0}
- }
- if gap.node == n {
- return GapIterator{n, gap.index + 1}
- }
- return gap
- }
- if sibling := n.nextSibling(); sibling != nil && sibling.nrSegments >= minDegree {
- n.keys[n.nrSegments] = n.parent.keys[n.parentIndex]
- n.values[n.nrSegments] = n.parent.values[n.parentIndex]
- n.parent.keys[n.parentIndex] = sibling.keys[0]
- n.parent.values[n.parentIndex] = sibling.values[0]
- copy(sibling.keys[:sibling.nrSegments-1], sibling.keys[1:])
- copy(sibling.values[:sibling.nrSegments-1], sibling.values[1:])
- Functions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
- if n.hasChildren {
- n.children[n.nrSegments+1] = sibling.children[0]
- copy(sibling.children[:sibling.nrSegments], sibling.children[1:])
- sibling.children[sibling.nrSegments] = nil
- n.children[n.nrSegments+1].parent = n
- n.children[n.nrSegments+1].parentIndex = n.nrSegments + 1
- for i := 0; i < sibling.nrSegments; i++ {
- sibling.children[i].parentIndex = i
- }
- }
- n.nrSegments++
- sibling.nrSegments--
- // n's parent's maxGap does not need to be updated as its content is unmodified.
- // n and its sibling must be updated with (new) maxGap because of the shift of keys.
- if trackGaps != 0 {
- n.updateMaxGapLocal()
- sibling.updateMaxGapLocal()
- }
- if gap.node == sibling {
- if gap.index == 0 {
- return GapIterator{n, n.nrSegments}
- }
- return GapIterator{sibling, gap.index - 1}
- }
- return gap
- }
- // Otherwise, we must unsplit.
- p := n.parent
- if p.nrSegments == 1 {
- // Merge all segments in both n and its sibling back into n.parent.
- // This is the reverse of the root splitting case in
- // node.rebalanceBeforeInsert. (Because we require minDegree >= 3,
- // only root can have 1 segment in this path, so this reduces the
- // height of the tree by 1, without violating the constraint that
- // all leaf nodes remain at the same depth.)
- left, right := p.children[0], p.children[1]
- p.nrSegments = left.nrSegments + right.nrSegments + 1
- p.hasChildren = left.hasChildren
- p.keys[left.nrSegments] = p.keys[0]
- p.values[left.nrSegments] = p.values[0]
- copy(p.keys[:left.nrSegments], left.keys[:left.nrSegments])
- copy(p.values[:left.nrSegments], left.values[:left.nrSegments])
- copy(p.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
- copy(p.values[left.nrSegments+1:], right.values[:right.nrSegments])
- if left.hasChildren {
- copy(p.children[:left.nrSegments+1], left.children[:left.nrSegments+1])
- copy(p.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
- for i := 0; i < p.nrSegments+1; i++ {
- p.children[i].parent = p
- p.children[i].parentIndex = i
- }
- } else {
- p.children[0] = nil
- p.children[1] = nil
- }
- // No need to update maxGap of p as its content is not changed.
- if gap.node == left {
- return GapIterator{p, gap.index}
- }
- if gap.node == right {
- return GapIterator{p, gap.index + left.nrSegments + 1}
- }
- return gap
- }
- // Merge n and either sibling, along with the segment separating the
- // two, into whichever of the two nodes comes first. This is the
- // reverse of the non-root splitting case in
- // node.rebalanceBeforeInsert.
- var left, right *node
- if n.parentIndex > 0 {
- left = n.prevSibling()
- right = n
- } else {
- left = n
- right = n.nextSibling()
- }
- // Fix up gap first since we need the old left.nrSegments, which
- // merging will change.
- if gap.node == right {
- gap = GapIterator{left, gap.index + left.nrSegments + 1}
- }
- left.keys[left.nrSegments] = p.keys[left.parentIndex]
- left.values[left.nrSegments] = p.values[left.parentIndex]
- copy(left.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
- copy(left.values[left.nrSegments+1:], right.values[:right.nrSegments])
- if left.hasChildren {
- copy(left.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
- for i := left.nrSegments + 1; i < left.nrSegments+right.nrSegments+2; i++ {
- left.children[i].parent = left
- left.children[i].parentIndex = i
- }
- }
- left.nrSegments += right.nrSegments + 1
- copy(p.keys[left.parentIndex:], p.keys[left.parentIndex+1:p.nrSegments])
- copy(p.values[left.parentIndex:], p.values[left.parentIndex+1:p.nrSegments])
- Functions{}.ClearValue(&p.values[p.nrSegments-1])
- copy(p.children[left.parentIndex+1:], p.children[left.parentIndex+2:p.nrSegments+1])
- for i := 0; i < p.nrSegments; i++ {
- p.children[i].parentIndex = i
- }
- p.children[p.nrSegments] = nil
- p.nrSegments--
- // Update maxGap of left locally, no need to change p and right because
- // p's contents is not changed and right is already invalid.
- if trackGaps != 0 {
- left.updateMaxGapLocal()
- }
- // This process robs p of one segment, so recurse into rebalancing p.
- n = p
- }
-}
-
-// updateMaxGapLeaf updates maxGap bottom-up from the calling leaf until no
-// necessary update.
-//
-// Preconditions: n must be a leaf node, trackGaps must be 1.
-func (n *node) updateMaxGapLeaf() {
- if n.hasChildren {
- panic(fmt.Sprintf("updateMaxGapLeaf should always be called on leaf node: %v", n))
- }
- max := n.calculateMaxGapLeaf()
- if max == n.maxGap.Get() {
- // If new max equals the old maxGap, no update is needed.
- return
- }
- oldMax := n.maxGap.Get()
- n.maxGap.Set(max)
- if max > oldMax {
- // Grow ancestor maxGaps.
- for p := n.parent; p != nil; p = p.parent {
- if p.maxGap.Get() >= max {
- // p and its ancestors already contain an equal or larger gap.
- break
- }
- // Only if new maxGap is larger than parent's
- // old maxGap, propagate this update to parent.
- p.maxGap.Set(max)
- }
- return
- }
- // Shrink ancestor maxGaps.
- for p := n.parent; p != nil; p = p.parent {
- if p.maxGap.Get() > oldMax {
- // p and its ancestors still contain a larger gap.
- break
- }
- // If new max is smaller than the old maxGap, and this gap used
- // to be the maxGap of its parent, iterate parent's children
- // and calculate parent's new maxGap.(It's probable that parent
- // has two children with the old maxGap, but we need to check it anyway.)
- parentNewMax := p.calculateMaxGapInternal()
- if p.maxGap.Get() == parentNewMax {
- // p and its ancestors still contain a gap of at least equal size.
- break
- }
- // If p's new maxGap differs from the old one, propagate this update.
- p.maxGap.Set(parentNewMax)
- }
-}
-
-// updateMaxGapLocal updates maxGap of the calling node solely with no
-// propagation to ancestor nodes.
-//
-// Precondition: trackGaps must be 1.
-func (n *node) updateMaxGapLocal() {
- if !n.hasChildren {
- // Leaf node iterates its gaps.
- n.maxGap.Set(n.calculateMaxGapLeaf())
- } else {
- // Non-leaf node iterates its children.
- n.maxGap.Set(n.calculateMaxGapInternal())
- }
-}
-
-// calculateMaxGapLeaf iterates the gaps within a leaf node and calculate the
-// max.
-//
-// Preconditions: n must be a leaf node.
-func (n *node) calculateMaxGapLeaf() Key {
- max := GapIterator{n, 0}.Range().Length()
- for i := 1; i <= n.nrSegments; i++ {
- if current := (GapIterator{n, i}).Range().Length(); current > max {
- max = current
- }
- }
- return max
-}
-
-// calculateMaxGapInternal iterates children's maxGap within an internal node n
-// and calculate the max.
-//
-// Preconditions: n must be a non-leaf node.
-func (n *node) calculateMaxGapInternal() Key {
- max := n.children[0].maxGap.Get()
- for i := 1; i <= n.nrSegments; i++ {
- if current := n.children[i].maxGap.Get(); current > max {
- max = current
- }
- }
- return max
-}
-
-// searchFirstLargeEnoughGap returns the first gap having at least minSize length
-// in the subtree rooted by n. If not found, return a terminal gap iterator.
-func (n *node) searchFirstLargeEnoughGap(minSize Key) GapIterator {
- if n.maxGap.Get() < minSize {
- return GapIterator{}
- }
- if n.hasChildren {
- for i := 0; i <= n.nrSegments; i++ {
- if largeEnoughGap := n.children[i].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() {
- return largeEnoughGap
- }
- }
- } else {
- for i := 0; i <= n.nrSegments; i++ {
- currentGap := GapIterator{n, i}
- if currentGap.Range().Length() >= minSize {
- return currentGap
- }
- }
- }
- panic(fmt.Sprintf("invalid maxGap in %v", n))
-}
-
-// searchLastLargeEnoughGap returns the last gap having at least minSize length
-// in the subtree rooted by n. If not found, return a terminal gap iterator.
-func (n *node) searchLastLargeEnoughGap(minSize Key) GapIterator {
- if n.maxGap.Get() < minSize {
- return GapIterator{}
- }
- if n.hasChildren {
- for i := n.nrSegments; i >= 0; i-- {
- if largeEnoughGap := n.children[i].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() {
- return largeEnoughGap
- }
- }
- } else {
- for i := n.nrSegments; i >= 0; i-- {
- currentGap := GapIterator{n, i}
- if currentGap.Range().Length() >= minSize {
- return currentGap
- }
- }
- }
- panic(fmt.Sprintf("invalid maxGap in %v", n))
-}
-
-// A Iterator is conceptually one of:
-//
-// - A pointer to a segment in a set; or
-//
-// - A terminal iterator, which is a sentinel indicating that the end of
-// iteration has been reached.
-//
-// Iterators are copyable values and are meaningfully equality-comparable. The
-// zero value of Iterator is a terminal iterator.
-//
-// Unless otherwise specified, any mutation of a set invalidates all existing
-// iterators into the set.
-type Iterator struct {
- // node is the node containing the iterated segment. If the iterator is
- // terminal, node is nil.
- node *node
-
- // index is the index of the segment in node.keys/values.
- index int
-}
-
-// Ok returns true if the iterator is not terminal. All other methods are only
-// valid for non-terminal iterators.
-func (seg Iterator) Ok() bool {
- return seg.node != nil
-}
-
-// Range returns the iterated segment's range key.
-func (seg Iterator) Range() Range {
- return seg.node.keys[seg.index]
-}
-
-// Start is equivalent to Range().Start, but should be preferred if only the
-// start of the range is needed.
-func (seg Iterator) Start() Key {
- return seg.node.keys[seg.index].Start
-}
-
-// End is equivalent to Range().End, but should be preferred if only the end of
-// the range is needed.
-func (seg Iterator) End() Key {
- return seg.node.keys[seg.index].End
-}
-
-// SetRangeUnchecked mutates the iterated segment's range key. This operation
-// does not invalidate any iterators.
-//
-// Preconditions:
-// * r.Length() > 0.
-// * The new range must not overlap an existing one:
-// * If seg.NextSegment().Ok(), then r.end <= seg.NextSegment().Start().
-// * If seg.PrevSegment().Ok(), then r.start >= seg.PrevSegment().End().
-func (seg Iterator) SetRangeUnchecked(r Range) {
- seg.node.keys[seg.index] = r
-}
-
-// SetRange mutates the iterated segment's range key. If the new range would
-// cause the iterated segment to overlap another segment, or if the new range
-// is invalid, SetRange panics. This operation does not invalidate any
-// iterators.
-func (seg Iterator) SetRange(r Range) {
- if r.Length() <= 0 {
- panic(fmt.Sprintf("invalid segment range %v", r))
- }
- if prev := seg.PrevSegment(); prev.Ok() && r.Start < prev.End() {
- panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, prev.Range()))
- }
- if next := seg.NextSegment(); next.Ok() && r.End > next.Start() {
- panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, next.Range()))
- }
- seg.SetRangeUnchecked(r)
-}
-
-// SetStartUnchecked mutates the iterated segment's start. This operation does
-// not invalidate any iterators.
-//
-// Preconditions: The new start must be valid:
-// * start < seg.End()
-// * If seg.PrevSegment().Ok(), then start >= seg.PrevSegment().End().
-func (seg Iterator) SetStartUnchecked(start Key) {
- seg.node.keys[seg.index].Start = start
-}
-
-// SetStart mutates the iterated segment's start. If the new start value would
-// cause the iterated segment to overlap another segment, or would result in an
-// invalid range, SetStart panics. This operation does not invalidate any
-// iterators.
-func (seg Iterator) SetStart(start Key) {
- if start >= seg.End() {
- panic(fmt.Sprintf("new start %v would invalidate segment range %v", start, seg.Range()))
- }
- if prev := seg.PrevSegment(); prev.Ok() && start < prev.End() {
- panic(fmt.Sprintf("new start %v would cause segment range %v to overlap segment range %v", start, seg.Range(), prev.Range()))
- }
- seg.SetStartUnchecked(start)
-}
-
-// SetEndUnchecked mutates the iterated segment's end. This operation does not
-// invalidate any iterators.
-//
-// Preconditions: The new end must be valid:
-// * end > seg.Start().
-// * If seg.NextSegment().Ok(), then end <= seg.NextSegment().Start().
-func (seg Iterator) SetEndUnchecked(end Key) {
- seg.node.keys[seg.index].End = end
-}
-
-// SetEnd mutates the iterated segment's end. If the new end value would cause
-// the iterated segment to overlap another segment, or would result in an
-// invalid range, SetEnd panics. This operation does not invalidate any
-// iterators.
-func (seg Iterator) SetEnd(end Key) {
- if end <= seg.Start() {
- panic(fmt.Sprintf("new end %v would invalidate segment range %v", end, seg.Range()))
- }
- if next := seg.NextSegment(); next.Ok() && end > next.Start() {
- panic(fmt.Sprintf("new end %v would cause segment range %v to overlap segment range %v", end, seg.Range(), next.Range()))
- }
- seg.SetEndUnchecked(end)
-}
-
-// Value returns a copy of the iterated segment's value.
-func (seg Iterator) Value() Value {
- return seg.node.values[seg.index]
-}
-
-// ValuePtr returns a pointer to the iterated segment's value. The pointer is
-// invalidated if the iterator is invalidated. This operation does not
-// invalidate any iterators.
-func (seg Iterator) ValuePtr() *Value {
- return &seg.node.values[seg.index]
-}
-
-// SetValue mutates the iterated segment's value. This operation does not
-// invalidate any iterators.
-func (seg Iterator) SetValue(val Value) {
- seg.node.values[seg.index] = val
-}
-
-// PrevSegment returns the iterated segment's predecessor. If there is no
-// preceding segment, PrevSegment returns a terminal iterator.
-func (seg Iterator) PrevSegment() Iterator {
- if seg.node.hasChildren {
- return seg.node.children[seg.index].lastSegment()
- }
- if seg.index > 0 {
- return Iterator{seg.node, seg.index - 1}
- }
- if seg.node.parent == nil {
- return Iterator{}
- }
- return segmentBeforePosition(seg.node.parent, seg.node.parentIndex)
-}
-
-// NextSegment returns the iterated segment's successor. If there is no
-// succeeding segment, NextSegment returns a terminal iterator.
-func (seg Iterator) NextSegment() Iterator {
- if seg.node.hasChildren {
- return seg.node.children[seg.index+1].firstSegment()
- }
- if seg.index < seg.node.nrSegments-1 {
- return Iterator{seg.node, seg.index + 1}
- }
- if seg.node.parent == nil {
- return Iterator{}
- }
- return segmentAfterPosition(seg.node.parent, seg.node.parentIndex)
-}
-
-// PrevGap returns the gap immediately before the iterated segment.
-func (seg Iterator) PrevGap() GapIterator {
- if seg.node.hasChildren {
- // Note that this isn't recursive because the last segment in a subtree
- // must be in a leaf node.
- return seg.node.children[seg.index].lastSegment().NextGap()
- }
- return GapIterator{seg.node, seg.index}
-}
-
-// NextGap returns the gap immediately after the iterated segment.
-func (seg Iterator) NextGap() GapIterator {
- if seg.node.hasChildren {
- return seg.node.children[seg.index+1].firstSegment().PrevGap()
- }
- return GapIterator{seg.node, seg.index + 1}
-}
-
-// PrevNonEmpty returns the iterated segment's predecessor if it is adjacent,
-// or the gap before the iterated segment otherwise. If seg.Start() ==
-// Functions.MinKey(), PrevNonEmpty will return two terminal iterators.
-// Otherwise, exactly one of the iterators returned by PrevNonEmpty will be
-// non-terminal.
-func (seg Iterator) PrevNonEmpty() (Iterator, GapIterator) {
- gap := seg.PrevGap()
- if gap.Range().Length() != 0 {
- return Iterator{}, gap
- }
- return gap.PrevSegment(), GapIterator{}
-}
-
-// NextNonEmpty returns the iterated segment's successor if it is adjacent, or
-// the gap after the iterated segment otherwise. If seg.End() ==
-// Functions.MaxKey(), NextNonEmpty will return two terminal iterators.
-// Otherwise, exactly one of the iterators returned by NextNonEmpty will be
-// non-terminal.
-func (seg Iterator) NextNonEmpty() (Iterator, GapIterator) {
- gap := seg.NextGap()
- if gap.Range().Length() != 0 {
- return Iterator{}, gap
- }
- return gap.NextSegment(), GapIterator{}
-}
-
-// A GapIterator is conceptually one of:
-//
-// - A pointer to a position between two segments, before the first segment, or
-// after the last segment in a set, called a *gap*; or
-//
-// - A terminal iterator, which is a sentinel indicating that the end of
-// iteration has been reached.
-//
-// Note that the gap between two adjacent segments exists (iterators to it are
-// non-terminal), but has a length of zero. GapIterator.IsEmpty returns true
-// for such gaps. An empty set contains a single gap, spanning the entire range
-// of the set's keys.
-//
-// GapIterators are copyable values and are meaningfully equality-comparable.
-// The zero value of GapIterator is a terminal iterator.
-//
-// Unless otherwise specified, any mutation of a set invalidates all existing
-// iterators into the set.
-type GapIterator struct {
- // The representation of a GapIterator is identical to that of an Iterator,
- // except that index corresponds to positions between segments in the same
- // way as for node.children (see comment for node.nrSegments).
- node *node
- index int
-}
-
-// Ok returns true if the iterator is not terminal. All other methods are only
-// valid for non-terminal iterators.
-func (gap GapIterator) Ok() bool {
- return gap.node != nil
-}
-
-// Range returns the range spanned by the iterated gap.
-func (gap GapIterator) Range() Range {
- return Range{gap.Start(), gap.End()}
-}
-
-// Start is equivalent to Range().Start, but should be preferred if only the
-// start of the range is needed.
-func (gap GapIterator) Start() Key {
- if ps := gap.PrevSegment(); ps.Ok() {
- return ps.End()
- }
- return Functions{}.MinKey()
-}
-
-// End is equivalent to Range().End, but should be preferred if only the end of
-// the range is needed.
-func (gap GapIterator) End() Key {
- if ns := gap.NextSegment(); ns.Ok() {
- return ns.Start()
- }
- return Functions{}.MaxKey()
-}
-
-// IsEmpty returns true if the iterated gap is empty (that is, the "gap" is
-// between two adjacent segments.)
-func (gap GapIterator) IsEmpty() bool {
- return gap.Range().Length() == 0
-}
-
-// PrevSegment returns the segment immediately before the iterated gap. If no
-// such segment exists, PrevSegment returns a terminal iterator.
-func (gap GapIterator) PrevSegment() Iterator {
- return segmentBeforePosition(gap.node, gap.index)
-}
-
-// NextSegment returns the segment immediately after the iterated gap. If no
-// such segment exists, NextSegment returns a terminal iterator.
-func (gap GapIterator) NextSegment() Iterator {
- return segmentAfterPosition(gap.node, gap.index)
-}
-
-// PrevGap returns the iterated gap's predecessor. If no such gap exists,
-// PrevGap returns a terminal iterator.
-func (gap GapIterator) PrevGap() GapIterator {
- seg := gap.PrevSegment()
- if !seg.Ok() {
- return GapIterator{}
- }
- return seg.PrevGap()
-}
-
-// NextGap returns the iterated gap's successor. If no such gap exists, NextGap
-// returns a terminal iterator.
-func (gap GapIterator) NextGap() GapIterator {
- seg := gap.NextSegment()
- if !seg.Ok() {
- return GapIterator{}
- }
- return seg.NextGap()
-}
-
-// NextLargeEnoughGap returns the iterated gap's first next gap with larger
-// length than minSize. If not found, return a terminal gap iterator (does NOT
-// include this gap itself).
-//
-// Precondition: trackGaps must be 1.
-func (gap GapIterator) NextLargeEnoughGap(minSize Key) GapIterator {
- if trackGaps != 1 {
- panic("set is not tracking gaps")
- }
- if gap.node != nil && gap.node.hasChildren && gap.index == gap.node.nrSegments {
- // If gap is the trailing gap of an non-leaf node,
- // translate it to the equivalent gap on leaf level.
- gap.node = gap.NextSegment().node
- gap.index = 0
- return gap.nextLargeEnoughGapHelper(minSize)
- }
- return gap.nextLargeEnoughGapHelper(minSize)
-}
-
-// nextLargeEnoughGapHelper is the helper function used by NextLargeEnoughGap
-// to do the real recursions.
-//
-// Preconditions: gap is NOT the trailing gap of a non-leaf node.
-func (gap GapIterator) nextLargeEnoughGapHelper(minSize Key) GapIterator {
- // Crawl up the tree if no large enough gap in current node or the
- // current gap is the trailing one on leaf level.
- for gap.node != nil &&
- (gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == gap.node.nrSegments)) {
- gap.node, gap.index = gap.node.parent, gap.node.parentIndex
- }
- // If no large enough gap throughout the whole set, return a terminal
- // gap iterator.
- if gap.node == nil {
- return GapIterator{}
- }
- // Iterate subsequent gaps.
- gap.index++
- for gap.index <= gap.node.nrSegments {
- if gap.node.hasChildren {
- if largeEnoughGap := gap.node.children[gap.index].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() {
- return largeEnoughGap
- }
- } else {
- if gap.Range().Length() >= minSize {
- return gap
- }
- }
- gap.index++
- }
- gap.node, gap.index = gap.node.parent, gap.node.parentIndex
- if gap.node != nil && gap.index == gap.node.nrSegments {
- // If gap is the trailing gap of a non-leaf node, crawl up to
- // parent again and do recursion.
- gap.node, gap.index = gap.node.parent, gap.node.parentIndex
- }
- return gap.nextLargeEnoughGapHelper(minSize)
-}
-
-// PrevLargeEnoughGap returns the iterated gap's first prev gap with larger or
-// equal length than minSize. If not found, return a terminal gap iterator
-// (does NOT include this gap itself).
-//
-// Precondition: trackGaps must be 1.
-func (gap GapIterator) PrevLargeEnoughGap(minSize Key) GapIterator {
- if trackGaps != 1 {
- panic("set is not tracking gaps")
- }
- if gap.node != nil && gap.node.hasChildren && gap.index == 0 {
- // If gap is the first gap of an non-leaf node,
- // translate it to the equivalent gap on leaf level.
- gap.node = gap.PrevSegment().node
- gap.index = gap.node.nrSegments
- return gap.prevLargeEnoughGapHelper(minSize)
- }
- return gap.prevLargeEnoughGapHelper(minSize)
-}
-
-// prevLargeEnoughGapHelper is the helper function used by PrevLargeEnoughGap
-// to do the real recursions.
-//
-// Preconditions: gap is NOT the first gap of a non-leaf node.
-func (gap GapIterator) prevLargeEnoughGapHelper(minSize Key) GapIterator {
- // Crawl up the tree if no large enough gap in current node or the
- // current gap is the first one on leaf level.
- for gap.node != nil &&
- (gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == 0)) {
- gap.node, gap.index = gap.node.parent, gap.node.parentIndex
- }
- // If no large enough gap throughout the whole set, return a terminal
- // gap iterator.
- if gap.node == nil {
- return GapIterator{}
- }
- // Iterate previous gaps.
- gap.index--
- for gap.index >= 0 {
- if gap.node.hasChildren {
- if largeEnoughGap := gap.node.children[gap.index].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() {
- return largeEnoughGap
- }
- } else {
- if gap.Range().Length() >= minSize {
- return gap
- }
- }
- gap.index--
- }
- gap.node, gap.index = gap.node.parent, gap.node.parentIndex
- if gap.node != nil && gap.index == 0 {
- // If gap is the first gap of a non-leaf node, crawl up to
- // parent again and do recursion.
- gap.node, gap.index = gap.node.parent, gap.node.parentIndex
- }
- return gap.prevLargeEnoughGapHelper(minSize)
-}
-
-// segmentBeforePosition returns the predecessor segment of the position given
-// by n.children[i], which may or may not contain a child. If no such segment
-// exists, segmentBeforePosition returns a terminal iterator.
-func segmentBeforePosition(n *node, i int) Iterator {
- for i == 0 {
- if n.parent == nil {
- return Iterator{}
- }
- n, i = n.parent, n.parentIndex
- }
- return Iterator{n, i - 1}
-}
-
-// segmentAfterPosition returns the successor segment of the position given by
-// n.children[i], which may or may not contain a child. If no such segment
-// exists, segmentAfterPosition returns a terminal iterator.
-func segmentAfterPosition(n *node, i int) Iterator {
- for i == n.nrSegments {
- if n.parent == nil {
- return Iterator{}
- }
- n, i = n.parent, n.parentIndex
- }
- return Iterator{n, i}
-}
-
-func zeroValueSlice(slice []Value) {
- // TODO(jamieliu): check if Go is actually smart enough to optimize a
- // ClearValue that assigns nil to a memset here.
- for i := range slice {
- Functions{}.ClearValue(&slice[i])
- }
-}
-
-func zeroNodeSlice(slice []*node) {
- for i := range slice {
- slice[i] = nil
- }
-}
-
-// String stringifies a Set for debugging.
-func (s *Set) String() string {
- return s.root.String()
-}
-
-// String stringifies a node (and all of its children) for debugging.
-func (n *node) String() string {
- var buf bytes.Buffer
- n.writeDebugString(&buf, "")
- return buf.String()
-}
-
-func (n *node) writeDebugString(buf *bytes.Buffer, prefix string) {
- if n.hasChildren != (n.nrSegments > 0 && n.children[0] != nil) {
- buf.WriteString(prefix)
- buf.WriteString(fmt.Sprintf("WARNING: inconsistent value of hasChildren: got %v, want %v\n", n.hasChildren, !n.hasChildren))
- }
- for i := 0; i < n.nrSegments; i++ {
- if child := n.children[i]; child != nil {
- cprefix := fmt.Sprintf("%s- % 3d ", prefix, i)
- if child.parent != n || child.parentIndex != i {
- buf.WriteString(cprefix)
- buf.WriteString(fmt.Sprintf("WARNING: inconsistent linkage to parent: got (%p, %d), want (%p, %d)\n", child.parent, child.parentIndex, n, i))
- }
- child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i))
- }
- buf.WriteString(prefix)
- if n.hasChildren {
- if trackGaps != 0 {
- buf.WriteString(fmt.Sprintf("- % 3d: %v => %v, maxGap: %d\n", i, n.keys[i], n.values[i], n.maxGap.Get()))
- } else {
- buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i]))
- }
- } else {
- buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i]))
- }
- }
- if child := n.children[n.nrSegments]; child != nil {
- child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments))
- }
-}
-
-// SegmentDataSlices represents segments from a set as slices of start, end, and
-// values. SegmentDataSlices is primarily used as an intermediate representation
-// for save/restore and the layout here is optimized for that.
-//
-// +stateify savable
-type SegmentDataSlices struct {
- Start []Key
- End []Key
- Values []Value
-}
-
-// ExportSortedSlices returns a copy of all segments in the given set, in
-// ascending key order.
-func (s *Set) ExportSortedSlices() *SegmentDataSlices {
- var sds SegmentDataSlices
- for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
- sds.Start = append(sds.Start, seg.Start())
- sds.End = append(sds.End, seg.End())
- sds.Values = append(sds.Values, seg.Value())
- }
- sds.Start = sds.Start[:len(sds.Start):len(sds.Start)]
- sds.End = sds.End[:len(sds.End):len(sds.End)]
- sds.Values = sds.Values[:len(sds.Values):len(sds.Values)]
- return &sds
-}
-
-// ImportSortedSlices initializes the given set from the given slice.
-//
-// Preconditions:
-// * s must be empty.
-// * sds must represent a valid set (the segments in sds must have valid
-// lengths that do not overlap).
-// * The segments in sds must be sorted in ascending key order.
-func (s *Set) ImportSortedSlices(sds *SegmentDataSlices) error {
- if !s.IsEmpty() {
- return fmt.Errorf("cannot import into non-empty set %v", s)
- }
- gap := s.FirstGap()
- for i := range sds.Start {
- r := Range{sds.Start[i], sds.End[i]}
- if !gap.Range().IsSupersetOf(r) {
- return fmt.Errorf("segment overlaps a preceding segment or is incorrectly sorted: [%d, %d) => %v", sds.Start[i], sds.End[i], sds.Values[i])
- }
- gap = s.InsertWithoutMerging(gap, r, sds.Values[i]).NextGap()
- }
- return nil
-}
-
-// segmentTestCheck returns an error if s is incorrectly sorted, does not
-// contain exactly expectedSegments segments, or contains a segment which
-// fails the passed check.
-//
-// This should be used only for testing, and has been added to this package for
-// templating convenience.
-func (s *Set) segmentTestCheck(expectedSegments int, segFunc func(int, Range, Value) error) error {
- havePrev := false
- prev := Key(0)
- nrSegments := 0
- for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
- next := seg.Start()
- if havePrev && prev >= next {
- return fmt.Errorf("incorrect order: key %d (segment %d) >= key %d (segment %d)", prev, nrSegments-1, next, nrSegments)
- }
- if segFunc != nil {
- if err := segFunc(nrSegments, seg.Range(), seg.Value()); err != nil {
- return err
- }
- }
- prev = next
- havePrev = true
- nrSegments++
- }
- if nrSegments != expectedSegments {
- return fmt.Errorf("incorrect number of segments: got %d, wanted %d", nrSegments, expectedSegments)
- }
- return nil
-}
-
-// countSegments counts the number of segments in the set.
-//
-// Similar to Check, this should only be used for testing.
-func (s *Set) countSegments() (segments int) {
- for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
- segments++
- }
- return segments
-}