diff options
Diffstat (limited to 'benchmarks/suites/__init__.py')
-rw-r--r-- | benchmarks/suites/__init__.py | 119 |
1 files changed, 0 insertions, 119 deletions
diff --git a/benchmarks/suites/__init__.py b/benchmarks/suites/__init__.py deleted file mode 100644 index 360736cc3..000000000 --- a/benchmarks/suites/__init__.py +++ /dev/null @@ -1,119 +0,0 @@ -# python3 -# Copyright 2019 Google LLC -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""Core benchmark annotations.""" - -import functools -import inspect -import types -from typing import List -from typing import Tuple - -BENCHMARK_METRICS = '__benchmark_metrics__' -BENCHMARK_MACHINES = '__benchmark_machines__' - - -def is_benchmark(func: types.FunctionType) -> bool: - """Returns true if the given function is a benchmark.""" - return isinstance(func, types.FunctionType) and \ - hasattr(func, BENCHMARK_METRICS) and \ - hasattr(func, BENCHMARK_MACHINES) - - -def benchmark_metrics(func: types.FunctionType) -> List[Tuple[str, str]]: - """Returns the list of available metrics.""" - return [(metric.__name__, metric.__doc__) - for metric in getattr(func, BENCHMARK_METRICS)] - - -def benchmark_machines(func: types.FunctionType) -> int: - """Returns the number of machines required.""" - return getattr(func, BENCHMARK_MACHINES) - - -# pylint: disable=unused-argument -def default(value, **kwargs): - """Returns the passed value.""" - return value - - -def benchmark(metrics: List[types.FunctionType] = None, - machines: int = 1) -> types.FunctionType: - """Define a benchmark function with metrics. - - Args: - metrics: A list of metric functions. - machines: The number of machines required. - - Returns: - A function that accepts the given number of machines, and iteratively - returns a set of (metric_name, metric_value) pairs when called repeatedly. - """ - if not metrics: - # The default passes through. - metrics = [default] - - def decorator(func: types.FunctionType) -> types.FunctionType: - """Decorator function.""" - # Every benchmark should accept at least two parameters: - # runtime: The runtime to use for the benchmark (str, required). - # metrics: The metrics to use, if not the default (str, optional). - @functools.wraps(func) - def wrapper(*args, runtime: str, metric: list = None, **kwargs): - """Wrapper function.""" - # First -- ensure that we marshall all types appropriately. In - # general, we will call this with only strings. These strings will - # need to be converted to their underlying types/classes. - sig = inspect.signature(func) - for param in sig.parameters.values(): - if param.annotation != inspect.Parameter.empty and \ - param.name in kwargs and not isinstance(kwargs[param.name], param.annotation): - try: - # Marshall to the appropriate type. - kwargs[param.name] = param.annotation(kwargs[param.name]) - except Exception as exc: - raise ValueError( - 'illegal type for %s(%s=%s): %s' % - (func.__name__, param.name, kwargs[param.name], exc)) - elif param.default != inspect.Parameter.empty and \ - param.name not in kwargs: - # Ensure that we have the value set, because it will - # be passed to the metric function for evaluation. - kwargs[param.name] = param.default - - # Next, figure out how to apply a metric. We do this prior to - # running the underlying function to prevent having to wait a few - # minutes for a result just to see some error. - if not metric: - # Return all metrics in the iterator. - result = func(*args, runtime=runtime, **kwargs) - for metric_func in metrics: - yield (metric_func.__name__, metric_func(result, **kwargs)) - else: - result = None - for single_metric in metric: - for metric_func in metrics: - # Is this a function that matches the name? - # Apply this function to the result. - if metric_func.__name__ == single_metric: - if not result: - # Lazy evaluation: only if metric matches. - result = func(*args, runtime=runtime, **kwargs) - yield single_metric, metric_func(result, **kwargs) - - # Set metadata on the benchmark (used above). - setattr(wrapper, BENCHMARK_METRICS, metrics) - setattr(wrapper, BENCHMARK_MACHINES, machines) - return wrapper - - return decorator |