summaryrefslogtreecommitdiffhomepage
path: root/benchmarks/runner/__init__.py
diff options
context:
space:
mode:
Diffstat (limited to 'benchmarks/runner/__init__.py')
-rw-r--r--benchmarks/runner/__init__.py307
1 files changed, 0 insertions, 307 deletions
diff --git a/benchmarks/runner/__init__.py b/benchmarks/runner/__init__.py
deleted file mode 100644
index ba27dc69f..000000000
--- a/benchmarks/runner/__init__.py
+++ /dev/null
@@ -1,307 +0,0 @@
-# python3
-# Copyright 2019 The gVisor Authors.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-"""High-level benchmark utility."""
-
-import copy
-import csv
-import logging
-import pkgutil
-import pydoc
-import re
-import sys
-import types
-from typing import List
-from typing import Tuple
-
-import click
-
-from benchmarks import harness
-from benchmarks import suites
-from benchmarks.harness import benchmark_driver
-from benchmarks.harness.machine_producers import gcloud_producer
-from benchmarks.harness.machine_producers import machine_producer
-from benchmarks.harness.machine_producers import mock_producer
-from benchmarks.harness.machine_producers import yaml_producer
-from benchmarks.runner import commands
-
-
-@click.group()
-@click.option(
- "--verbose/--no-verbose", default=False, help="Enable verbose logging.")
-@click.option("--debug/--no-debug", default=False, help="Enable debug logging.")
-def runner(verbose: bool = False, debug: bool = False):
- """Run distributed benchmarks.
-
- See the run and list commands for details.
-
- Args:
- verbose: Enable verbose logging.
- debug: Enable debug logging (supercedes verbose).
- """
- if debug:
- logging.basicConfig(level=logging.DEBUG)
- elif verbose:
- logging.basicConfig(level=logging.INFO)
-
-
-def find_benchmarks(
- regex: str) -> List[Tuple[str, types.ModuleType, types.FunctionType]]:
- """Finds all available benchmarks.
-
- Args:
- regex: A regular expression to match.
-
- Returns:
- A (short_name, module, function) tuple for each match.
- """
- pkgs = pkgutil.walk_packages(suites.__path__, suites.__name__ + ".")
- found = []
- for _, name, _ in pkgs:
- mod = pydoc.locate(name)
- funcs = [
- getattr(mod, x)
- for x in dir(mod)
- if suites.is_benchmark(getattr(mod, x))
- ]
- for func in funcs:
- # Use the short_name with the benchmarks. prefix stripped.
- prefix_len = len(suites.__name__ + ".")
- short_name = mod.__name__[prefix_len:] + "." + func.__name__
- # Add to the list if a pattern is provided.
- if re.compile(regex).match(short_name):
- found.append((short_name, mod, func))
- return found
-
-
-@runner.command("list")
-@click.argument("method", nargs=-1)
-def list_all(method):
- """Lists available benchmarks."""
- if not method:
- method = ".*"
- else:
- method = "(" + ",".join(method) + ")"
- for (short_name, _, func) in find_benchmarks(method):
- print("Benchmark %s:" % short_name)
- metrics = suites.benchmark_metrics(func)
- if func.__doc__:
- print(" " + func.__doc__.lstrip().rstrip())
- if metrics:
- print("\n Metrics:")
- for metric in metrics:
- print("\t{name}: {doc}".format(name=metric[0], doc=metric[1]))
- print("\n")
-
-
-@runner.command("run-local", commands.LocalCommand)
-@click.pass_context
-def run_local(ctx, limit: float, **kwargs):
- """Runs benchmarks locally."""
- run(ctx, machine_producer.LocalMachineProducer(limit=limit), **kwargs)
-
-
-@runner.command("run-mock", commands.RunCommand)
-@click.pass_context
-def run_mock(ctx, **kwargs):
- """Runs benchmarks on Mock machines. Used for testing."""
- run(ctx, mock_producer.MockMachineProducer(), **kwargs)
-
-
-@runner.command("run-gcp", commands.GCPCommand)
-@click.pass_context
-def run_gcp(ctx, image_file: str, zone_file: str, machine_type: str,
- installers: List[str], **kwargs):
- """Runs all benchmarks on GCP instances."""
-
- # Resolve all files.
- image = open(image_file).read().rstrip()
- zone = open(zone_file).read().rstrip()
-
- key_file = harness.make_key()
-
- producer = gcloud_producer.GCloudProducer(
- image,
- zone,
- machine_type,
- installers,
- ssh_key_file=key_file,
- ssh_user=harness.DEFAULT_USER,
- ssh_password="")
-
- try:
- run(ctx, producer, **kwargs)
- finally:
- harness.delete_key()
-
-
-def run(ctx, producer: machine_producer.MachineProducer, method: str, runs: int,
- runtime: List[str], metric: List[str], stat: str, **kwargs):
- """Runs arbitrary benchmarks.
-
- All unknown command line flags are passed through to the underlying benchmark
- method. Flags may be specified multiple times, in which case it is considered
- a "dimension" for the test, and a comma-separated table will be emitted
- instead of a single result.
-
- See the output of list to see available metrics for any given benchmark
- method. The method parameter is a regular expression that will match against
- available benchmarks. If multiple benchmarks match, then that is considered a
- distinct "dimension" for the test.
-
- All benchmarks are run in parallel where possible, but have exclusive
- ownership over the individual machines.
-
- Every benchmark method will be run the times indicated by --runs.
-
- Args:
- ctx: Click context.
- producer: A Machine Producer from which to get Machines.
- method: A regular expression for methods to be run.
- runs: Number of runs.
- runtime: A list of runtimes to test.
- metric: A list of metrics to extract.
- stat: The class of statistics to extract.
- **kwargs: Dimensions to test.
- """
- # First, calculate additional arguments.
- #
- # This essentially calculates any arguments that appear multiple times, and
- # moves those to the "dimensions" dictionary, which maps to lists. These
- # dimensions are then iterated over to generate the relevant csv output.
- dimensions = {}
-
- if stat not in ["median", "all", "meanstd"]:
- raise ValueError("Illegal value for --result, see help.")
-
- def squish(key: str, value: str):
- """Collapse an argument into kwargs or dimensions."""
- if key in dimensions:
- # Extend an existing dimension.
- dimensions[key].append(value)
- elif key in kwargs:
- # Create a new dimension.
- dimensions[key] = [kwargs[key], value]
- del kwargs[key]
- else:
- # A single value.
- kwargs[key] = value
-
- for item in ctx.args:
- if "=" in method:
- # This must be the method. The method is simply set to the first
- # non-matching argument, which we're also parsing here.
- item, method = method, item
- if "=" not in item:
- logging.error("illegal argument: %s", item)
- sys.exit(1)
- (key, value) = item.lstrip("-").split("=", 1)
- squish(key, value)
-
- # Convert runtime and metric to dimensions.
- #
- # They exist only in the arguments above for documentation purposes.
- # Essentially here we are treating them like anything else. Note however,
- # that an empty set here will result in a dimension. This is important for
- # metrics, where an empty set actually means all metrics.
- def fold(key: str, value, allow_flatten=False):
- """Collapse a list value into kwargs or dimensions."""
- if len(value) == 1 and allow_flatten:
- kwargs[key] = value[0]
- else:
- dimensions[key] = value
-
- fold("runtime", runtime, allow_flatten=True)
- fold("metric", metric)
-
- # Lookup the methods.
- #
- # We match the method parameter to a regular expression. This allows you to
- # do things like `run --mock .*` for a broad test. Note that we track the
- # short_names in the dimensions here, and look up again in the recursion.
- methods = {
- short_name: func for (short_name, _, func) in find_benchmarks(method)
- }
- if not methods:
- # Must match at least one method.
- logging.error("no matching benchmarks for %s: try list.", method)
- sys.exit(1)
- fold("method", list(methods.keys()), allow_flatten=True)
-
- # Spin up the drivers.
- #
- # We ensure that metric is the last entry, because we have special behavior.
- # They actually run the test once and the benchmark is a generator that
- # produces all viable metrics.
- dimension_keys = list(dimensions.keys())
- if "metric" in dimension_keys:
- dimension_keys.remove("metric")
- dimension_keys.append("metric")
- drivers = []
-
- def _start(keywords, finished, left):
- """Runs a test across dimensions recursively."""
- # Resolve the method fully, it starts as a string.
- if "method" in keywords and isinstance(keywords["method"], str):
- keywords["method"] = methods[keywords["method"]]
- # Is this a non-recursive case?
- if not left:
- driver = benchmark_driver.BenchmarkDriver(producer, runs=runs, **keywords)
- driver.start()
- drivers.append((finished, driver))
- else:
- # Recurse on the next dimension.
- current, left = left[0], left[1:]
- keywords = copy.deepcopy(keywords)
- if current == "metric":
- # We use a generator, popped below. Note that metric is
- # guaranteed to be the last element here, and we will provide
- # the value for 'done' below when generating the csv.
- keywords[current] = dimensions[current]
- _start(keywords, finished, left)
- else:
- # Generate manually.
- for value in dimensions[current]:
- keywords[current] = value
- _start(keywords, finished + [value], left)
-
- # Start all the drivers, recursively.
- _start(kwargs, [], dimension_keys)
-
- # Finish all tests, write results.
- output = csv.writer(sys.stdout)
- output.writerow(dimension_keys + ["result"])
- for (done, driver) in drivers:
- driver.join()
- for (metric_name, result) in getattr(driver, stat)():
- output.writerow([ # Collapse the method name.
- hasattr(x, "__name__") and x.__name__ or x for x in done
- ] + [metric_name] + result)
-
-
-@runner.command()
-@click.argument("env")
-@click.option(
- "--cmd", default="uname -a", help="command to run on all found machines")
-@click.option(
- "--workload", default="true", help="workload to run all found machines")
-def validate(env, cmd, workload):
- """Validates an environment described by yaml file."""
- producer = yaml_producer.YamlMachineProducer(env)
- for machine in producer.machines:
- print("Machine %s:" % machine)
- stdout, _ = machine.run(cmd)
- print(" Output of '%s': %s" % (cmd, stdout.lstrip().rstrip()))
- image = machine.pull(workload)
- stdout = machine.container(image).run()
- print(" Container %s: %s" % (workload, stdout.lstrip().rstrip()))