diff options
Diffstat (limited to 'benchmarks/runner/__init__.py')
-rw-r--r-- | benchmarks/runner/__init__.py | 308 |
1 files changed, 308 insertions, 0 deletions
diff --git a/benchmarks/runner/__init__.py b/benchmarks/runner/__init__.py new file mode 100644 index 000000000..fc59cf505 --- /dev/null +++ b/benchmarks/runner/__init__.py @@ -0,0 +1,308 @@ +# python3 +# Copyright 2019 The gVisor Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""High-level benchmark utility.""" + +import copy +import csv +import logging +import pkgutil +import pydoc +import re +import subprocess +import sys +import types +from typing import List +from typing import Tuple + +import click + +from benchmarks import harness +from benchmarks import suites +from benchmarks.harness import benchmark_driver +from benchmarks.harness.machine_producers import gcloud_producer +from benchmarks.harness.machine_producers import machine_producer +from benchmarks.harness.machine_producers import mock_producer +from benchmarks.harness.machine_producers import yaml_producer +from benchmarks.runner import commands + + +@click.group() +@click.option( + "--verbose/--no-verbose", default=False, help="Enable verbose logging.") +@click.option("--debug/--no-debug", default=False, help="Enable debug logging.") +def runner(verbose: bool = False, debug: bool = False): + """Run distributed benchmarks. + + See the run and list commands for details. + + Args: + verbose: Enable verbose logging. + debug: Enable debug logging (supercedes verbose). + """ + if debug: + logging.basicConfig(level=logging.DEBUG) + elif verbose: + logging.basicConfig(level=logging.INFO) + + +def find_benchmarks( + regex: str) -> List[Tuple[str, types.ModuleType, types.FunctionType]]: + """Finds all available benchmarks. + + Args: + regex: A regular expression to match. + + Returns: + A (short_name, module, function) tuple for each match. + """ + pkgs = pkgutil.walk_packages(suites.__path__, suites.__name__ + ".") + found = [] + for _, name, _ in pkgs: + mod = pydoc.locate(name) + funcs = [ + getattr(mod, x) + for x in dir(mod) + if suites.is_benchmark(getattr(mod, x)) + ] + for func in funcs: + # Use the short_name with the benchmarks. prefix stripped. + prefix_len = len(suites.__name__ + ".") + short_name = mod.__name__[prefix_len:] + "." + func.__name__ + # Add to the list if a pattern is provided. + if re.compile(regex).match(short_name): + found.append((short_name, mod, func)) + return found + + +@runner.command("list") +@click.argument("method", nargs=-1) +def list_all(method): + """Lists available benchmarks.""" + if not method: + method = ".*" + else: + method = "(" + ",".join(method) + ")" + for (short_name, _, func) in find_benchmarks(method): + print("Benchmark %s:" % short_name) + metrics = suites.benchmark_metrics(func) + if func.__doc__: + print(" " + func.__doc__.lstrip().rstrip()) + if metrics: + print("\n Metrics:") + for metric in metrics: + print("\t{name}: {doc}".format(name=metric[0], doc=metric[1])) + print("\n") + + +@runner.command("run-local", commands.LocalCommand) +@click.pass_context +def run_local(ctx, limit: float, **kwargs): + """Runs benchmarks locally.""" + run(ctx, machine_producer.LocalMachineProducer(limit=limit), **kwargs) + + +@runner.command("run-mock", commands.RunCommand) +@click.pass_context +def run_mock(ctx, **kwargs): + """Runs benchmarks on Mock machines. Used for testing.""" + run(ctx, mock_producer.MockMachineProducer(), **kwargs) + + +@runner.command("run-gcp", commands.GCPCommand) +@click.pass_context +def run_gcp(ctx, image_file: str, zone_file: str, internal: bool, + machine_type: str, installers: List[str], **kwargs): + """Runs all benchmarks on GCP instances.""" + + # Resolve all files. + image = subprocess.check_output([image_file]).rstrip() + zone = subprocess.check_output([zone_file]).rstrip() + key_file = harness.make_key() + + producer = gcloud_producer.GCloudProducer( + image, + zone, + machine_type, + installers, + ssh_key_file=key_file, + ssh_user=harness.DEFAULT_USER, + ssh_password="", + internal=internal) + + try: + run(ctx, producer, **kwargs) + finally: + harness.delete_key() + + +def run(ctx, producer: machine_producer.MachineProducer, method: str, runs: int, + runtime: List[str], metric: List[str], stat: str, **kwargs): + """Runs arbitrary benchmarks. + + All unknown command line flags are passed through to the underlying benchmark + method. Flags may be specified multiple times, in which case it is considered + a "dimension" for the test, and a comma-separated table will be emitted + instead of a single result. + + See the output of list to see available metrics for any given benchmark + method. The method parameter is a regular expression that will match against + available benchmarks. If multiple benchmarks match, then that is considered a + distinct "dimension" for the test. + + All benchmarks are run in parallel where possible, but have exclusive + ownership over the individual machines. + + Every benchmark method will be run the times indicated by --runs. + + Args: + ctx: Click context. + producer: A Machine Producer from which to get Machines. + method: A regular expression for methods to be run. + runs: Number of runs. + runtime: A list of runtimes to test. + metric: A list of metrics to extract. + stat: The class of statistics to extract. + **kwargs: Dimensions to test. + """ + # First, calculate additional arguments. + # + # This essentially calculates any arguments that appear multiple times, and + # moves those to the "dimensions" dictionary, which maps to lists. These + # dimensions are then iterated over to generate the relevant csv output. + dimensions = {} + + if stat not in ["median", "all", "meanstd"]: + raise ValueError("Illegal value for --result, see help.") + + def squish(key: str, value: str): + """Collapse an argument into kwargs or dimensions.""" + if key in dimensions: + # Extend an existing dimension. + dimensions[key].append(value) + elif key in kwargs: + # Create a new dimension. + dimensions[key] = [kwargs[key], value] + del kwargs[key] + else: + # A single value. + kwargs[key] = value + + for item in ctx.args: + if "=" in method: + # This must be the method. The method is simply set to the first + # non-matching argument, which we're also parsing here. + item, method = method, item + if "=" not in item: + logging.error("illegal argument: %s", item) + sys.exit(1) + (key, value) = item.lstrip("-").split("=", 1) + squish(key, value) + + # Convert runtime and metric to dimensions. + # + # They exist only in the arguments above for documentation purposes. + # Essentially here we are treating them like anything else. Note however, + # that an empty set here will result in a dimension. This is important for + # metrics, where an empty set actually means all metrics. + def fold(key: str, value, allow_flatten=False): + """Collapse a list value into kwargs or dimensions.""" + if len(value) == 1 and allow_flatten: + kwargs[key] = value[0] + else: + dimensions[key] = value + + fold("runtime", runtime, allow_flatten=True) + fold("metric", metric) + + # Lookup the methods. + # + # We match the method parameter to a regular expression. This allows you to + # do things like `run --mock .*` for a broad test. Note that we track the + # short_names in the dimensions here, and look up again in the recursion. + methods = { + short_name: func for (short_name, _, func) in find_benchmarks(method) + } + if not methods: + # Must match at least one method. + logging.error("no matching benchmarks for %s: try list.", method) + sys.exit(1) + fold("method", list(methods.keys()), allow_flatten=True) + + # Spin up the drivers. + # + # We ensure that metric is the last entry, because we have special behavior. + # They actually run the test once and the benchmark is a generator that + # produces all viable metrics. + dimension_keys = list(dimensions.keys()) + if "metric" in dimension_keys: + dimension_keys.remove("metric") + dimension_keys.append("metric") + drivers = [] + + def _start(keywords, finished, left): + """Runs a test across dimensions recursively.""" + # Resolve the method fully, it starts as a string. + if "method" in keywords and isinstance(keywords["method"], str): + keywords["method"] = methods[keywords["method"]] + # Is this a non-recursive case? + if not left: + driver = benchmark_driver.BenchmarkDriver(producer, runs=runs, **keywords) + driver.start() + drivers.append((finished, driver)) + else: + # Recurse on the next dimension. + current, left = left[0], left[1:] + keywords = copy.deepcopy(keywords) + if current == "metric": + # We use a generator, popped below. Note that metric is + # guaranteed to be the last element here, and we will provide + # the value for 'done' below when generating the csv. + keywords[current] = dimensions[current] + _start(keywords, finished, left) + else: + # Generate manually. + for value in dimensions[current]: + keywords[current] = value + _start(keywords, finished + [value], left) + + # Start all the drivers, recursively. + _start(kwargs, [], dimension_keys) + + # Finish all tests, write results. + output = csv.writer(sys.stdout) + output.writerow(dimension_keys + ["result"]) + for (done, driver) in drivers: + driver.join() + for (metric_name, result) in getattr(driver, stat)(): + output.writerow([ # Collapse the method name. + hasattr(x, "__name__") and x.__name__ or x for x in done + ] + [metric_name] + result) + + +@runner.command() +@click.argument("env") +@click.option( + "--cmd", default="uname -a", help="command to run on all found machines") +@click.option( + "--workload", default="true", help="workload to run all found machines") +def validate(env, cmd, workload): + """Validates an environment described by yaml file.""" + producer = yaml_producer.YamlMachineProducer(env) + for machine in producer.machines: + print("Machine %s:" % machine) + stdout, _ = machine.run(cmd) + print(" Output of '%s': %s" % (cmd, stdout.lstrip().rstrip())) + image = machine.pull(workload) + stdout = machine.container(image).run() + print(" Container %s: %s" % (workload, stdout.lstrip().rstrip())) |