summaryrefslogtreecommitdiffhomepage
path: root/benchmarks/runner/__init__.py
diff options
context:
space:
mode:
Diffstat (limited to 'benchmarks/runner/__init__.py')
-rw-r--r--benchmarks/runner/__init__.py308
1 files changed, 308 insertions, 0 deletions
diff --git a/benchmarks/runner/__init__.py b/benchmarks/runner/__init__.py
new file mode 100644
index 000000000..fc59cf505
--- /dev/null
+++ b/benchmarks/runner/__init__.py
@@ -0,0 +1,308 @@
+# python3
+# Copyright 2019 The gVisor Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""High-level benchmark utility."""
+
+import copy
+import csv
+import logging
+import pkgutil
+import pydoc
+import re
+import subprocess
+import sys
+import types
+from typing import List
+from typing import Tuple
+
+import click
+
+from benchmarks import harness
+from benchmarks import suites
+from benchmarks.harness import benchmark_driver
+from benchmarks.harness.machine_producers import gcloud_producer
+from benchmarks.harness.machine_producers import machine_producer
+from benchmarks.harness.machine_producers import mock_producer
+from benchmarks.harness.machine_producers import yaml_producer
+from benchmarks.runner import commands
+
+
+@click.group()
+@click.option(
+ "--verbose/--no-verbose", default=False, help="Enable verbose logging.")
+@click.option("--debug/--no-debug", default=False, help="Enable debug logging.")
+def runner(verbose: bool = False, debug: bool = False):
+ """Run distributed benchmarks.
+
+ See the run and list commands for details.
+
+ Args:
+ verbose: Enable verbose logging.
+ debug: Enable debug logging (supercedes verbose).
+ """
+ if debug:
+ logging.basicConfig(level=logging.DEBUG)
+ elif verbose:
+ logging.basicConfig(level=logging.INFO)
+
+
+def find_benchmarks(
+ regex: str) -> List[Tuple[str, types.ModuleType, types.FunctionType]]:
+ """Finds all available benchmarks.
+
+ Args:
+ regex: A regular expression to match.
+
+ Returns:
+ A (short_name, module, function) tuple for each match.
+ """
+ pkgs = pkgutil.walk_packages(suites.__path__, suites.__name__ + ".")
+ found = []
+ for _, name, _ in pkgs:
+ mod = pydoc.locate(name)
+ funcs = [
+ getattr(mod, x)
+ for x in dir(mod)
+ if suites.is_benchmark(getattr(mod, x))
+ ]
+ for func in funcs:
+ # Use the short_name with the benchmarks. prefix stripped.
+ prefix_len = len(suites.__name__ + ".")
+ short_name = mod.__name__[prefix_len:] + "." + func.__name__
+ # Add to the list if a pattern is provided.
+ if re.compile(regex).match(short_name):
+ found.append((short_name, mod, func))
+ return found
+
+
+@runner.command("list")
+@click.argument("method", nargs=-1)
+def list_all(method):
+ """Lists available benchmarks."""
+ if not method:
+ method = ".*"
+ else:
+ method = "(" + ",".join(method) + ")"
+ for (short_name, _, func) in find_benchmarks(method):
+ print("Benchmark %s:" % short_name)
+ metrics = suites.benchmark_metrics(func)
+ if func.__doc__:
+ print(" " + func.__doc__.lstrip().rstrip())
+ if metrics:
+ print("\n Metrics:")
+ for metric in metrics:
+ print("\t{name}: {doc}".format(name=metric[0], doc=metric[1]))
+ print("\n")
+
+
+@runner.command("run-local", commands.LocalCommand)
+@click.pass_context
+def run_local(ctx, limit: float, **kwargs):
+ """Runs benchmarks locally."""
+ run(ctx, machine_producer.LocalMachineProducer(limit=limit), **kwargs)
+
+
+@runner.command("run-mock", commands.RunCommand)
+@click.pass_context
+def run_mock(ctx, **kwargs):
+ """Runs benchmarks on Mock machines. Used for testing."""
+ run(ctx, mock_producer.MockMachineProducer(), **kwargs)
+
+
+@runner.command("run-gcp", commands.GCPCommand)
+@click.pass_context
+def run_gcp(ctx, image_file: str, zone_file: str, internal: bool,
+ machine_type: str, installers: List[str], **kwargs):
+ """Runs all benchmarks on GCP instances."""
+
+ # Resolve all files.
+ image = subprocess.check_output([image_file]).rstrip()
+ zone = subprocess.check_output([zone_file]).rstrip()
+ key_file = harness.make_key()
+
+ producer = gcloud_producer.GCloudProducer(
+ image,
+ zone,
+ machine_type,
+ installers,
+ ssh_key_file=key_file,
+ ssh_user=harness.DEFAULT_USER,
+ ssh_password="",
+ internal=internal)
+
+ try:
+ run(ctx, producer, **kwargs)
+ finally:
+ harness.delete_key()
+
+
+def run(ctx, producer: machine_producer.MachineProducer, method: str, runs: int,
+ runtime: List[str], metric: List[str], stat: str, **kwargs):
+ """Runs arbitrary benchmarks.
+
+ All unknown command line flags are passed through to the underlying benchmark
+ method. Flags may be specified multiple times, in which case it is considered
+ a "dimension" for the test, and a comma-separated table will be emitted
+ instead of a single result.
+
+ See the output of list to see available metrics for any given benchmark
+ method. The method parameter is a regular expression that will match against
+ available benchmarks. If multiple benchmarks match, then that is considered a
+ distinct "dimension" for the test.
+
+ All benchmarks are run in parallel where possible, but have exclusive
+ ownership over the individual machines.
+
+ Every benchmark method will be run the times indicated by --runs.
+
+ Args:
+ ctx: Click context.
+ producer: A Machine Producer from which to get Machines.
+ method: A regular expression for methods to be run.
+ runs: Number of runs.
+ runtime: A list of runtimes to test.
+ metric: A list of metrics to extract.
+ stat: The class of statistics to extract.
+ **kwargs: Dimensions to test.
+ """
+ # First, calculate additional arguments.
+ #
+ # This essentially calculates any arguments that appear multiple times, and
+ # moves those to the "dimensions" dictionary, which maps to lists. These
+ # dimensions are then iterated over to generate the relevant csv output.
+ dimensions = {}
+
+ if stat not in ["median", "all", "meanstd"]:
+ raise ValueError("Illegal value for --result, see help.")
+
+ def squish(key: str, value: str):
+ """Collapse an argument into kwargs or dimensions."""
+ if key in dimensions:
+ # Extend an existing dimension.
+ dimensions[key].append(value)
+ elif key in kwargs:
+ # Create a new dimension.
+ dimensions[key] = [kwargs[key], value]
+ del kwargs[key]
+ else:
+ # A single value.
+ kwargs[key] = value
+
+ for item in ctx.args:
+ if "=" in method:
+ # This must be the method. The method is simply set to the first
+ # non-matching argument, which we're also parsing here.
+ item, method = method, item
+ if "=" not in item:
+ logging.error("illegal argument: %s", item)
+ sys.exit(1)
+ (key, value) = item.lstrip("-").split("=", 1)
+ squish(key, value)
+
+ # Convert runtime and metric to dimensions.
+ #
+ # They exist only in the arguments above for documentation purposes.
+ # Essentially here we are treating them like anything else. Note however,
+ # that an empty set here will result in a dimension. This is important for
+ # metrics, where an empty set actually means all metrics.
+ def fold(key: str, value, allow_flatten=False):
+ """Collapse a list value into kwargs or dimensions."""
+ if len(value) == 1 and allow_flatten:
+ kwargs[key] = value[0]
+ else:
+ dimensions[key] = value
+
+ fold("runtime", runtime, allow_flatten=True)
+ fold("metric", metric)
+
+ # Lookup the methods.
+ #
+ # We match the method parameter to a regular expression. This allows you to
+ # do things like `run --mock .*` for a broad test. Note that we track the
+ # short_names in the dimensions here, and look up again in the recursion.
+ methods = {
+ short_name: func for (short_name, _, func) in find_benchmarks(method)
+ }
+ if not methods:
+ # Must match at least one method.
+ logging.error("no matching benchmarks for %s: try list.", method)
+ sys.exit(1)
+ fold("method", list(methods.keys()), allow_flatten=True)
+
+ # Spin up the drivers.
+ #
+ # We ensure that metric is the last entry, because we have special behavior.
+ # They actually run the test once and the benchmark is a generator that
+ # produces all viable metrics.
+ dimension_keys = list(dimensions.keys())
+ if "metric" in dimension_keys:
+ dimension_keys.remove("metric")
+ dimension_keys.append("metric")
+ drivers = []
+
+ def _start(keywords, finished, left):
+ """Runs a test across dimensions recursively."""
+ # Resolve the method fully, it starts as a string.
+ if "method" in keywords and isinstance(keywords["method"], str):
+ keywords["method"] = methods[keywords["method"]]
+ # Is this a non-recursive case?
+ if not left:
+ driver = benchmark_driver.BenchmarkDriver(producer, runs=runs, **keywords)
+ driver.start()
+ drivers.append((finished, driver))
+ else:
+ # Recurse on the next dimension.
+ current, left = left[0], left[1:]
+ keywords = copy.deepcopy(keywords)
+ if current == "metric":
+ # We use a generator, popped below. Note that metric is
+ # guaranteed to be the last element here, and we will provide
+ # the value for 'done' below when generating the csv.
+ keywords[current] = dimensions[current]
+ _start(keywords, finished, left)
+ else:
+ # Generate manually.
+ for value in dimensions[current]:
+ keywords[current] = value
+ _start(keywords, finished + [value], left)
+
+ # Start all the drivers, recursively.
+ _start(kwargs, [], dimension_keys)
+
+ # Finish all tests, write results.
+ output = csv.writer(sys.stdout)
+ output.writerow(dimension_keys + ["result"])
+ for (done, driver) in drivers:
+ driver.join()
+ for (metric_name, result) in getattr(driver, stat)():
+ output.writerow([ # Collapse the method name.
+ hasattr(x, "__name__") and x.__name__ or x for x in done
+ ] + [metric_name] + result)
+
+
+@runner.command()
+@click.argument("env")
+@click.option(
+ "--cmd", default="uname -a", help="command to run on all found machines")
+@click.option(
+ "--workload", default="true", help="workload to run all found machines")
+def validate(env, cmd, workload):
+ """Validates an environment described by yaml file."""
+ producer = yaml_producer.YamlMachineProducer(env)
+ for machine in producer.machines:
+ print("Machine %s:" % machine)
+ stdout, _ = machine.run(cmd)
+ print(" Output of '%s': %s" % (cmd, stdout.lstrip().rstrip()))
+ image = machine.pull(workload)
+ stdout = machine.container(image).run()
+ print(" Container %s: %s" % (workload, stdout.lstrip().rstrip()))