summaryrefslogtreecommitdiffhomepage
path: root/tools/go_marshal/marshal
diff options
context:
space:
mode:
authorRahat Mahmood <rahat@google.com>2020-03-31 22:54:50 -0700
committergVisor bot <gvisor-bot@google.com>2020-03-31 22:56:09 -0700
commit840980aeba0b5224b13bcaadf5785ac5305a5230 (patch)
treef65dad402f0b5925a6c8baa1040c2fd067c671b2 /tools/go_marshal/marshal
parentd25036ad17a3ada7fa6ce9900f20e246e07acd2f (diff)
Implement automated marshalling for slices of Marshallable types.
PiperOrigin-RevId: 304119255
Diffstat (limited to 'tools/go_marshal/marshal')
-rw-r--r--tools/go_marshal/marshal/marshal.go103
1 files changed, 94 insertions, 9 deletions
diff --git a/tools/go_marshal/marshal/marshal.go b/tools/go_marshal/marshal/marshal.go
index f129788e0..cb2166252 100644
--- a/tools/go_marshal/marshal/marshal.go
+++ b/tools/go_marshal/marshal/marshal.go
@@ -42,7 +42,11 @@ type Task interface {
CopyInBytes(addr usermem.Addr, b []byte) (int, error)
}
-// Marshallable represents a type that can be marshalled to and from memory.
+// Marshallable represents operations on a type that can be marshalled to and
+// from memory.
+//
+// go-marshal automatically generates implementations for this interface for
+// types marked as '+marshal'.
type Marshallable interface {
io.WriterTo
@@ -54,12 +58,18 @@ type Marshallable interface {
// likely make use of the type of these fields).
SizeBytes() int
- // MarshalBytes serializes a copy of a type to dst. dst must be at least
- // SizeBytes() long.
+ // MarshalBytes serializes a copy of a type to dst. dst may be smaller than
+ // SizeBytes(), which results in a part of the struct being marshalled. Note
+ // that this may have unexpected results for non-packed types, as implicit
+ // padding needs to be taken into account when reasoning about how much of
+ // the type is serialized.
MarshalBytes(dst []byte)
- // UnmarshalBytes deserializes a type from src. src must be at least
- // SizeBytes() long.
+ // UnmarshalBytes deserializes a type from src. src may be smaller than
+ // SizeBytes(), which results in a partially deserialized struct. Note that
+ // this may have unexpected results for non-packed types, as implicit
+ // padding needs to be taken into account when reasoning about how much of
+ // the type is deserialized.
UnmarshalBytes(src []byte)
// Packed returns true if the marshalled size of the type is the same as the
@@ -67,13 +77,20 @@ type Marshallable interface {
// starting at unaligned addresses (should always be true by default for ABI
// structs, verified by automatically generated tests when using
// go_marshal), and has no fields marked `marshal:"unaligned"`.
+ //
+ // Packed must return the same result for all possible values of the type
+ // implementing it. Violating this constraint implies the type doesn't have
+ // a static memory layout, and will lead to memory corruption.
+ // Go-marshal-generated code reuses the result of Packed for multiple values
+ // of the same type.
Packed() bool
// MarshalUnsafe serializes a type by bulk copying its in-memory
// representation to the dst buffer. This is only safe to do when the type
// has no implicit padding, see Marshallable.Packed. When Packed would
// return false, MarshalUnsafe should fall back to the safer but slower
- // MarshalBytes.
+ // MarshalBytes. dst may be smaller than SizeBytes(), see comment for
+ // MarshalBytes for implications.
MarshalUnsafe(dst []byte)
// UnmarshalUnsafe deserializes a type by directly copying to the underlying
@@ -82,7 +99,8 @@ type Marshallable interface {
// This allows much faster unmarshalling of types which have no implicit
// padding, see Marshallable.Packed. When Packed would return false,
// UnmarshalUnsafe should fall back to the safer but slower unmarshal
- // mechanism implemented in UnmarshalBytes.
+ // mechanism implemented in UnmarshalBytes. src may be smaller than
+ // SizeBytes(), see comment for UnmarshalBytes for implications.
UnmarshalUnsafe(src []byte)
// CopyIn deserializes a Marshallable type from a task's memory. This may
@@ -91,12 +109,79 @@ type Marshallable interface {
// marshalled does not escape. The implementation should avoid creating
// extra copies in memory by directly deserializing to the object's
// underlying memory.
- CopyIn(task Task, addr usermem.Addr) error
+ //
+ // If the copy-in from the task memory is only partially successful, CopyIn
+ // should still attempt to deserialize as much data as possible. See comment
+ // for UnmarshalBytes.
+ CopyIn(task Task, addr usermem.Addr) (int, error)
// CopyOut serializes a Marshallable type to a task's memory. This may only
// be called from a task goroutine. This is more efficient than calling
// MarshalUnsafe on Marshallable.Packed types, as the type being serialized
// does not escape. The implementation should avoid creating extra copies in
// memory by directly serializing from the object's underlying memory.
- CopyOut(task Task, addr usermem.Addr) error
+ //
+ // The copy-out to the task memory may be partially successful, in which
+ // case CopyOut returns how much data was serialized. See comment for
+ // MarshalBytes for implications.
+ CopyOut(task Task, addr usermem.Addr) (int, error)
+
+ // CopyOutN is like CopyOut, but explicitly requests a partial
+ // copy-out. Note that this may yield unexpected results for non-packed
+ // types and the caller may only want to allow this for packed types. See
+ // comment on MarshalBytes.
+ //
+ // The limit must be less than or equal to SizeBytes().
+ CopyOutN(task Task, addr usermem.Addr, limit int) (int, error)
}
+
+// go-marshal generates additional functions for a type based on additional
+// clauses to the +marshal directive. They are documented below.
+//
+// Slice API
+// =========
+//
+// Adding a "slice" clause to the +marshal directive for structs or newtypes on
+// primitives like this:
+//
+// // +marshal slice:FooSlice
+// type Foo struct { ... }
+//
+// Generates four additional functions for marshalling slices of Foos like this:
+//
+// // MarshalUnsafeFooSlice is like Foo.MarshalUnsafe, buf for a []Foo. It's
+// // more efficient that repeatedly calling calling Foo.MarshalUnsafe over a
+// // []Foo in a loop.
+// func MarshalUnsafeFooSlice(src []Foo, dst []byte) (int, error) { ... }
+//
+// // UnmarshalUnsafeFooSlice is like Foo.UnmarshalUnsafe, buf for a []Foo. It's
+// // more efficient that repeatedly calling calling Foo.UnmarshalUnsafe over a
+// // []Foo in a loop.
+// func UnmarshalUnsafeFooSlice(dst []Foo, src []byte) (int, error) { ... }
+//
+// // CopyFooSliceIn copies in a slice of Foo objects from the task's memory.
+// func CopyFooSliceIn(task marshal.Task, addr usermem.Addr, dst []Foo) (int, error) { ... }
+//
+// // CopyFooSliceIn copies out a slice of Foo objects to the task's memory.
+// func CopyFooSliceOut(task marshal.Task, addr usermem.Addr, src []Foo) (int, error) { ... }
+//
+// The name of the functions are of the format "Copy%sIn" and "Copy%sOut", where
+// %s is the first argument to the slice clause. This directive is not supported
+// for newtypes on arrays.
+//
+// The slice clause also takes an optional second argument, which must be the
+// value "inner":
+//
+// // +marshal slice:Int32Slice:inner
+// type Int32 int32
+//
+// This is only valid on newtypes on primitives, and causes the generated
+// functions to accept slices of the inner type instead:
+//
+// func CopyInt32SliceIn(task marshal.Task, addr usermem.Addr, dst []int32) (int, error) { ... }
+//
+// Without "inner", they would instead be:
+//
+// func CopyInt32SliceIn(task marshal.Task, addr usermem.Addr, dst []Int32) (int, error) { ... }
+//
+// This may help avoid a cast depending on how the generated functions are used.