summaryrefslogtreecommitdiffhomepage
path: root/pkg/waiter/waiter.go
diff options
context:
space:
mode:
authorGoogler <noreply@google.com>2018-04-27 10:37:02 -0700
committerAdin Scannell <ascannell@google.com>2018-04-28 01:44:26 -0400
commitd02b74a5dcfed4bfc8f2f8e545bca4d2afabb296 (patch)
tree54f95eef73aee6bacbfc736fffc631be2605ed53 /pkg/waiter/waiter.go
parentf70210e742919f40aa2f0934a22f1c9ba6dada62 (diff)
Check in gVisor.
PiperOrigin-RevId: 194583126 Change-Id: Ica1d8821a90f74e7e745962d71801c598c652463
Diffstat (limited to 'pkg/waiter/waiter.go')
-rw-r--r--pkg/waiter/waiter.go226
1 files changed, 226 insertions, 0 deletions
diff --git a/pkg/waiter/waiter.go b/pkg/waiter/waiter.go
new file mode 100644
index 000000000..56f53f9c3
--- /dev/null
+++ b/pkg/waiter/waiter.go
@@ -0,0 +1,226 @@
+// Copyright 2016 The Netstack Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package waiter provides the implementation of a wait queue, where waiters can
+// be enqueued to be notified when an event of interest happens.
+//
+// Becoming readable and/or writable are examples of events. Waiters are
+// expected to use a pattern similar to this to make a blocking function out of
+// a non-blocking one:
+//
+// func (o *object) blockingRead(...) error {
+// err := o.nonBlockingRead(...)
+// if err != ErrAgain {
+// // Completed with no need to wait!
+// return err
+// }
+//
+// e := createOrGetWaiterEntry(...)
+// o.EventRegister(&e, waiter.EventIn)
+// defer o.EventUnregister(&e)
+//
+// // We need to try to read again after registration because the
+// // object may have become readable between the last attempt to
+// // read and read registration.
+// err = o.nonBlockingRead(...)
+// for err == ErrAgain {
+// wait()
+// err = o.nonBlockingRead(...)
+// }
+//
+// return err
+// }
+//
+// Another goroutine needs to notify waiters when events happen. For example:
+//
+// func (o *object) Write(...) ... {
+// // Do write work.
+// [...]
+//
+// if oldDataAvailableSize == 0 && dataAvailableSize > 0 {
+// // If no data was available and now some data is
+// // available, the object became readable, so notify
+// // potential waiters about this.
+// o.Notify(waiter.EventIn)
+// }
+// }
+package waiter
+
+import (
+ "sync"
+
+ "gvisor.googlesource.com/gvisor/pkg/ilist"
+)
+
+// EventMask represents io events as used in the poll() syscall.
+type EventMask uint16
+
+// Events that waiters can wait on. The meaning is the same as those in the
+// poll() syscall.
+const (
+ EventIn EventMask = 0x01 // syscall.EPOLLIN
+ EventPri EventMask = 0x02 // syscall.EPOLLPRI
+ EventOut EventMask = 0x04 // syscall.EPOLLOUT
+ EventErr EventMask = 0x08 // syscall.EPOLLERR
+ EventHUp EventMask = 0x10 // syscall.EPOLLHUP
+ EventNVal EventMask = 0x20 // Not defined in syscall.
+)
+
+// Waitable contains the methods that need to be implemented by waitable
+// objects.
+type Waitable interface {
+ // Readiness returns what the object is currently ready for. If it's
+ // not ready for a desired purpose, the caller may use EventRegister and
+ // EventUnregister to get notifications once the object becomes ready.
+ //
+ // Implementations should allow for events like EventHUp and EventErr
+ // to be returned regardless of whether they are in the input EventMask.
+ Readiness(mask EventMask) EventMask
+
+ // EventRegister registers the given waiter entry to receive
+ // notifications when an event occurs that makes the object ready for
+ // at least one of the events in mask.
+ EventRegister(e *Entry, mask EventMask)
+
+ // EventUnregister unregisters a waiter entry previously registered with
+ // EventRegister().
+ EventUnregister(e *Entry)
+}
+
+// EntryCallback provides a notify callback.
+type EntryCallback interface {
+ // Callback is the function to be called when the waiter entry is
+ // notified. It is responsible for doing whatever is needed to wake up
+ // the waiter.
+ //
+ // The callback is supposed to perform minimal work, and cannot call
+ // any method on the queue itself because it will be locked while the
+ // callback is running.
+ Callback(e *Entry)
+}
+
+// Entry represents a waiter that can be add to the a wait queue. It can
+// only be in one queue at a time, and is added "intrusively" to the queue with
+// no extra memory allocations.
+type Entry struct {
+ // Context stores any state the waiter may wish to store in the entry
+ // itself, which may be used at wake up time.
+ //
+ // Note that use of this field is optional and state may alternatively be
+ // stored in the callback itself.
+ Context interface{}
+
+ Callback EntryCallback
+
+ // The following fields are protected by the queue lock.
+ mask EventMask
+ ilist.Entry
+}
+
+type channelCallback struct{}
+
+// Callback implements EntryCallback.Callback.
+func (*channelCallback) Callback(e *Entry) {
+ ch := e.Context.(chan struct{})
+ select {
+ case ch <- struct{}{}:
+ default:
+ }
+}
+
+// NewChannelEntry initializes a new Entry that does a non-blocking write to a
+// struct{} channel when the callback is called. It returns the new Entry
+// instance and the channel being used.
+//
+// If a channel isn't specified (i.e., if "c" is nil), then NewChannelEntry
+// allocates a new channel.
+func NewChannelEntry(c chan struct{}) (Entry, chan struct{}) {
+ if c == nil {
+ c = make(chan struct{}, 1)
+ }
+
+ return Entry{Context: c, Callback: &channelCallback{}}, c
+}
+
+// Queue represents the wait queue where waiters can be added and
+// notifiers can notify them when events happen.
+//
+// The zero value for waiter.Queue is an empty queue ready for use.
+type Queue struct {
+ list ilist.List `state:"zerovalue"`
+ mu sync.RWMutex `state:"nosave"`
+}
+
+// EventRegister adds a waiter to the wait queue; the waiter will be notified
+// when at least one of the events specified in mask happens.
+func (q *Queue) EventRegister(e *Entry, mask EventMask) {
+ q.mu.Lock()
+ e.mask = mask
+ q.list.PushBack(e)
+ q.mu.Unlock()
+}
+
+// EventUnregister removes the given waiter entry from the wait queue.
+func (q *Queue) EventUnregister(e *Entry) {
+ q.mu.Lock()
+ q.list.Remove(e)
+ q.mu.Unlock()
+}
+
+// Notify notifies all waiters in the queue whose masks have at least one bit
+// in common with the notification mask.
+func (q *Queue) Notify(mask EventMask) {
+ q.mu.RLock()
+ for it := q.list.Front(); it != nil; it = it.Next() {
+ e := it.(*Entry)
+ if (mask & e.mask) != 0 {
+ e.Callback.Callback(e)
+ }
+ }
+ q.mu.RUnlock()
+}
+
+// Events returns the set of events being waited on. It is the union of the
+// masks of all registered entries.
+func (q *Queue) Events() EventMask {
+ ret := EventMask(0)
+
+ q.mu.RLock()
+ for it := q.list.Front(); it != nil; it = it.Next() {
+ e := it.(*Entry)
+ ret |= e.mask
+ }
+ q.mu.RUnlock()
+
+ return ret
+}
+
+// IsEmpty returns if the wait queue is empty or not.
+func (q *Queue) IsEmpty() bool {
+ q.mu.Lock()
+ defer q.mu.Unlock()
+
+ return q.list.Front() == nil
+}
+
+// AlwaysReady implements the Waitable interface but is always ready. Embedding
+// this struct into another struct makes it implement the boilerplate empty
+// functions automatically.
+type AlwaysReady struct {
+}
+
+// Readiness always returns the input mask because this object is always ready.
+func (*AlwaysReady) Readiness(mask EventMask) EventMask {
+ return mask
+}
+
+// EventRegister doesn't do anything because this object doesn't need to issue
+// notifications because its readiness never changes.
+func (*AlwaysReady) EventRegister(*Entry, EventMask) {
+}
+
+// EventUnregister doesn't do anything because this object doesn't need to issue
+// notifications because its readiness never changes.
+func (*AlwaysReady) EventUnregister(e *Entry) {
+}