diff options
author | gVisor bot <gvisor-bot@google.com> | 2020-10-22 05:15:02 +0000 |
---|---|---|
committer | gVisor bot <gvisor-bot@google.com> | 2020-10-22 05:15:02 +0000 |
commit | 4aeb88453ff28369e76eefcd4957ad23bd216559 (patch) | |
tree | 078844d25f69fafd9c3cba00939c473aa053eb6f /pkg/tcpip | |
parent | 5e18bb6c3270315dda1ccbd2c3530f05c353120f (diff) | |
parent | 58a3c2d44f9596c22ef6b226cb6f2fa61617ba88 (diff) |
Merge release-20201019.0-29-g58a3c2d44 (automated)
Diffstat (limited to 'pkg/tcpip')
-rw-r--r-- | pkg/tcpip/header/ipv4.go | 7 | ||||
-rw-r--r-- | pkg/tcpip/header/ipv6.go | 6 | ||||
-rw-r--r-- | pkg/tcpip/network/fragmentation/fragmentation.go | 30 | ||||
-rw-r--r-- | pkg/tcpip/network/ipv4/icmp.go | 7 | ||||
-rw-r--r-- | pkg/tcpip/network/ipv4/ipv4.go | 82 | ||||
-rw-r--r-- | pkg/tcpip/network/ipv6/icmp.go | 7 | ||||
-rw-r--r-- | pkg/tcpip/network/ipv6/ipv6.go | 112 |
7 files changed, 158 insertions, 93 deletions
diff --git a/pkg/tcpip/header/ipv4.go b/pkg/tcpip/header/ipv4.go index 4c6e4be64..ee307d163 100644 --- a/pkg/tcpip/header/ipv4.go +++ b/pkg/tcpip/header/ipv4.go @@ -148,6 +148,13 @@ const ( // packet that every IPv4 capable host must be able to // process/reassemble. IPv4MinimumProcessableDatagramSize = 576 + + // IPv4MinimumMTU is the minimum MTU required by IPv4, per RFC 791, + // section 3.2: + // Every internet module must be able to forward a datagram of 68 octets + // without further fragmentation. This is because an internet header may be + // up to 60 octets, and the minimum fragment is 8 octets. + IPv4MinimumMTU = 68 ) // Flags that may be set in an IPv4 packet. diff --git a/pkg/tcpip/header/ipv6.go b/pkg/tcpip/header/ipv6.go index c5d8a3456..09cb153b1 100644 --- a/pkg/tcpip/header/ipv6.go +++ b/pkg/tcpip/header/ipv6.go @@ -101,8 +101,10 @@ const ( // The address is ff02::2. IPv6AllRoutersMulticastAddress tcpip.Address = "\xff\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02" - // IPv6MinimumMTU is the minimum MTU required by IPv6, per RFC 2460, - // section 5. + // IPv6MinimumMTU is the minimum MTU required by IPv6, per RFC 8200, + // section 5: + // IPv6 requires that every link in the Internet have an MTU of 1280 octets + // or greater. This is known as the IPv6 minimum link MTU. IPv6MinimumMTU = 1280 // IPv6Loopback is the IPv6 Loopback address. diff --git a/pkg/tcpip/network/fragmentation/fragmentation.go b/pkg/tcpip/network/fragmentation/fragmentation.go index ed502a473..bb31ef61a 100644 --- a/pkg/tcpip/network/fragmentation/fragmentation.go +++ b/pkg/tcpip/network/fragmentation/fragmentation.go @@ -244,25 +244,25 @@ func (f *Fragmentation) releaseReassemblersLocked() { // PacketFragmenter is the book-keeping struct for packet fragmentation. type PacketFragmenter struct { - transportHeader buffer.View - data buffer.VectorisedView - reserve int - innerMTU int - fragmentCount int - currentFragment int - fragmentOffset int + transportHeader buffer.View + data buffer.VectorisedView + reserve int + fragmentPayloadLen int + fragmentCount int + currentFragment int + fragmentOffset int } // MakePacketFragmenter prepares the struct needed for packet fragmentation. // // pkt is the packet to be fragmented. // -// innerMTU is the maximum number of bytes of fragmentable data a fragment can +// fragmentPayloadLen is the maximum number of bytes of fragmentable data a fragment can // have. // // reserve is the number of bytes that should be reserved for the headers in // each generated fragment. -func MakePacketFragmenter(pkt *stack.PacketBuffer, innerMTU int, reserve int) PacketFragmenter { +func MakePacketFragmenter(pkt *stack.PacketBuffer, fragmentPayloadLen uint32, reserve int) PacketFragmenter { // As per RFC 8200 Section 4.5, some IPv6 extension headers should not be // repeated in each fragment. However we do not currently support any header // of that kind yet, so the following computation is valid for both IPv4 and @@ -273,13 +273,13 @@ func MakePacketFragmenter(pkt *stack.PacketBuffer, innerMTU int, reserve int) Pa var fragmentableData buffer.VectorisedView fragmentableData.AppendView(pkt.TransportHeader().View()) fragmentableData.Append(pkt.Data) - fragmentCount := (fragmentableData.Size() + innerMTU - 1) / innerMTU + fragmentCount := (uint32(fragmentableData.Size()) + fragmentPayloadLen - 1) / fragmentPayloadLen return PacketFragmenter{ - data: fragmentableData, - reserve: reserve, - innerMTU: innerMTU, - fragmentCount: fragmentCount, + data: fragmentableData, + reserve: reserve, + fragmentPayloadLen: int(fragmentPayloadLen), + fragmentCount: int(fragmentCount), } } @@ -302,7 +302,7 @@ func (pf *PacketFragmenter) BuildNextFragment() (*stack.PacketBuffer, int, int, }) // Copy data for the fragment. - copied := pf.data.ReadToVV(&fragPkt.Data, pf.innerMTU) + copied := pf.data.ReadToVV(&fragPkt.Data, pf.fragmentPayloadLen) offset := pf.fragmentOffset pf.fragmentOffset += copied diff --git a/pkg/tcpip/network/ipv4/icmp.go b/pkg/tcpip/network/ipv4/icmp.go index 3407755ed..ac66403fa 100644 --- a/pkg/tcpip/network/ipv4/icmp.go +++ b/pkg/tcpip/network/ipv4/icmp.go @@ -182,8 +182,11 @@ func (e *endpoint) handleICMP(r *stack.Route, pkt *stack.PacketBuffer) { e.handleControl(stack.ControlPortUnreachable, 0, pkt) case header.ICMPv4FragmentationNeeded: - mtu := uint32(h.MTU()) - e.handleControl(stack.ControlPacketTooBig, calculateMTU(mtu), pkt) + networkMTU, err := calculateNetworkMTU(uint32(h.MTU()), header.IPv4MinimumSize) + if err != nil { + networkMTU = 0 + } + e.handleControl(stack.ControlPacketTooBig, networkMTU, pkt) } case header.ICMPv4SrcQuench: diff --git a/pkg/tcpip/network/ipv4/ipv4.go b/pkg/tcpip/network/ipv4/ipv4.go index e7c58ae0a..41e548c85 100644 --- a/pkg/tcpip/network/ipv4/ipv4.go +++ b/pkg/tcpip/network/ipv4/ipv4.go @@ -176,7 +176,11 @@ func (e *endpoint) DefaultTTL() uint8 { // MTU implements stack.NetworkEndpoint.MTU. It returns the link-layer MTU minus // the network layer max header length. func (e *endpoint) MTU() uint32 { - return calculateMTU(e.nic.MTU()) + networkMTU, err := calculateNetworkMTU(e.nic.MTU(), header.IPv4MinimumSize) + if err != nil { + return 0 + } + return networkMTU } // MaxHeaderLength returns the maximum length needed by ipv4 headers (and @@ -211,18 +215,15 @@ func (e *endpoint) addIPHeader(r *stack.Route, pkt *stack.PacketBuffer, params s pkt.NetworkProtocolNumber = ProtocolNumber } -func (e *endpoint) packetMustBeFragmented(pkt *stack.PacketBuffer, gso *stack.GSO) bool { - return (gso == nil || gso.Type == stack.GSONone) && pkt.Size() > int(e.nic.MTU()) -} - // handleFragments fragments pkt and calls the handler function on each // fragment. It returns the number of fragments handled and the number of // fragments left to be processed. The IP header must already be present in the -// original packet. The mtu is the maximum size of the packets. -func (e *endpoint) handleFragments(r *stack.Route, gso *stack.GSO, mtu uint32, pkt *stack.PacketBuffer, handler func(*stack.PacketBuffer) *tcpip.Error) (int, int, *tcpip.Error) { - fragMTU := int(calculateFragmentInnerMTU(mtu, pkt)) +// original packet. +func (e *endpoint) handleFragments(r *stack.Route, gso *stack.GSO, networkMTU uint32, pkt *stack.PacketBuffer, handler func(*stack.PacketBuffer) *tcpip.Error) (int, int, *tcpip.Error) { + // Round the MTU down to align to 8 bytes. + fragmentPayloadSize := networkMTU &^ 7 networkHeader := header.IPv4(pkt.NetworkHeader().View()) - pf := fragmentation.MakePacketFragmenter(pkt, fragMTU, pkt.AvailableHeaderBytes()+len(networkHeader)) + pf := fragmentation.MakePacketFragmenter(pkt, fragmentPayloadSize, pkt.AvailableHeaderBytes()+len(networkHeader)) var n int for { @@ -280,8 +281,14 @@ func (e *endpoint) writePacket(r *stack.Route, gso *stack.GSO, pkt *stack.Packet return nil } - if e.packetMustBeFragmented(pkt, gso) { - sent, remain, err := e.handleFragments(r, gso, e.nic.MTU(), pkt, func(fragPkt *stack.PacketBuffer) *tcpip.Error { + networkMTU, err := calculateNetworkMTU(e.nic.MTU(), uint32(pkt.NetworkHeader().View().Size())) + if err != nil { + r.Stats().IP.OutgoingPacketErrors.Increment() + return err + } + + if packetMustBeFragmented(pkt, networkMTU, gso) { + sent, remain, err := e.handleFragments(r, gso, networkMTU, pkt, func(fragPkt *stack.PacketBuffer) *tcpip.Error { // TODO(gvisor.dev/issue/3884): Evaluate whether we want to send each // fragment one by one using WritePacket() (current strategy) or if we // want to create a PacketBufferList from the fragments and feed it to @@ -292,6 +299,7 @@ func (e *endpoint) writePacket(r *stack.Route, gso *stack.GSO, pkt *stack.Packet r.Stats().IP.OutgoingPacketErrors.IncrementBy(uint64(remain)) return err } + if err := e.nic.WritePacket(r, gso, ProtocolNumber, pkt); err != nil { r.Stats().IP.OutgoingPacketErrors.Increment() return err @@ -311,17 +319,23 @@ func (e *endpoint) WritePackets(r *stack.Route, gso *stack.GSO, pkts stack.Packe for pkt := pkts.Front(); pkt != nil; pkt = pkt.Next() { e.addIPHeader(r, pkt, params) - if e.packetMustBeFragmented(pkt, gso) { + networkMTU, err := calculateNetworkMTU(e.nic.MTU(), uint32(pkt.NetworkHeader().View().Size())) + if err != nil { + r.Stats().IP.OutgoingPacketErrors.IncrementBy(uint64(pkts.Len())) + return 0, err + } + + if packetMustBeFragmented(pkt, networkMTU, gso) { // Keep track of the packet that is about to be fragmented so it can be // removed once the fragmentation is done. originalPkt := pkt - if _, _, err := e.handleFragments(r, gso, e.nic.MTU(), pkt, func(fragPkt *stack.PacketBuffer) *tcpip.Error { + if _, _, err := e.handleFragments(r, gso, networkMTU, pkt, func(fragPkt *stack.PacketBuffer) *tcpip.Error { // Modify the packet list in place with the new fragments. pkts.InsertAfter(pkt, fragPkt) pkt = fragPkt return nil }); err != nil { - panic(fmt.Sprintf("e.handleFragments(_, _, %d, _, _) = %s", e.nic.MTU(), err)) + panic(fmt.Sprintf("e.handleFragments(_, _, %d, _, _) = %s", networkMTU, err)) } // Remove the packet that was just fragmented and process the rest. pkts.Remove(originalPkt) @@ -778,26 +792,32 @@ func (p *protocol) SetForwarding(v bool) { } } -// calculateMTU calculates the network-layer payload MTU based on the link-layer -// payload mtu. -func calculateMTU(mtu uint32) uint32 { - if mtu > MaxTotalSize { - mtu = MaxTotalSize +// calculateNetworkMTU calculates the network-layer payload MTU based on the +// link-layer payload mtu. +func calculateNetworkMTU(linkMTU, networkHeaderSize uint32) (uint32, *tcpip.Error) { + if linkMTU < header.IPv4MinimumMTU { + return 0, tcpip.ErrInvalidEndpointState } - return mtu - header.IPv4MinimumSize -} -// calculateFragmentInnerMTU calculates the maximum number of bytes of -// fragmentable data a fragment can have, based on the link layer mtu and pkt's -// network header size. -func calculateFragmentInnerMTU(mtu uint32, pkt *stack.PacketBuffer) uint32 { - if mtu > MaxTotalSize { - mtu = MaxTotalSize + // As per RFC 791 section 3.1, an IPv4 header cannot exceed 60 bytes in + // length: + // The maximal internet header is 60 octets, and a typical internet header + // is 20 octets, allowing a margin for headers of higher level protocols. + if networkHeaderSize > header.IPv4MaximumHeaderSize { + return 0, tcpip.ErrMalformedHeader } - mtu -= uint32(pkt.NetworkHeader().View().Size()) - // Round the MTU down to align to 8 bytes. - mtu &^= 7 - return mtu + + networkMTU := linkMTU + if networkMTU > MaxTotalSize { + networkMTU = MaxTotalSize + } + + return networkMTU - uint32(networkHeaderSize), nil +} + +func packetMustBeFragmented(pkt *stack.PacketBuffer, networkMTU uint32, gso *stack.GSO) bool { + payload := pkt.TransportHeader().View().Size() + pkt.Data.Size() + return (gso == nil || gso.Type == stack.GSONone) && uint32(payload) > networkMTU } // addressToUint32 translates an IPv4 address into its little endian uint32 diff --git a/pkg/tcpip/network/ipv6/icmp.go b/pkg/tcpip/network/ipv6/icmp.go index ead6bedcb..40908ddaa 100644 --- a/pkg/tcpip/network/ipv6/icmp.go +++ b/pkg/tcpip/network/ipv6/icmp.go @@ -170,8 +170,11 @@ func (e *endpoint) handleICMP(r *stack.Route, pkt *stack.PacketBuffer, hasFragme return } pkt.Data.TrimFront(header.ICMPv6PacketTooBigMinimumSize) - mtu := header.ICMPv6(hdr).MTU() - e.handleControl(stack.ControlPacketTooBig, calculateMTU(mtu), pkt) + networkMTU, err := calculateNetworkMTU(header.ICMPv6(hdr).MTU(), header.IPv6MinimumSize) + if err != nil { + networkMTU = 0 + } + e.handleControl(stack.ControlPacketTooBig, networkMTU, pkt) case header.ICMPv6DstUnreachable: received.DstUnreachable.Increment() diff --git a/pkg/tcpip/network/ipv6/ipv6.go b/pkg/tcpip/network/ipv6/ipv6.go index 9670696c7..3c2578343 100644 --- a/pkg/tcpip/network/ipv6/ipv6.go +++ b/pkg/tcpip/network/ipv6/ipv6.go @@ -46,7 +46,7 @@ const ( // ProtocolNumber is the ipv6 protocol number. ProtocolNumber = header.IPv6ProtocolNumber - // maxTotalSize is maximum size that can be encoded in the 16-bit + // maxPayloadSize is the maximum size that can be encoded in the 16-bit // PayloadLength field of the ipv6 header. maxPayloadSize = 0xffff @@ -363,7 +363,11 @@ func (e *endpoint) DefaultTTL() uint8 { // MTU implements stack.NetworkEndpoint.MTU. It returns the link-layer MTU minus // the network layer max header length. func (e *endpoint) MTU() uint32 { - return calculateMTU(e.nic.MTU()) + networkMTU, err := calculateNetworkMTU(e.nic.MTU(), header.IPv6MinimumSize) + if err != nil { + return 0 + } + return networkMTU } // MaxHeaderLength returns the maximum length needed by ipv6 headers (and @@ -386,27 +390,40 @@ func (e *endpoint) addIPHeader(r *stack.Route, pkt *stack.PacketBuffer, params s pkt.NetworkProtocolNumber = ProtocolNumber } -func (e *endpoint) packetMustBeFragmented(pkt *stack.PacketBuffer, gso *stack.GSO) bool { - return (gso == nil || gso.Type == stack.GSONone) && pkt.Size() > int(e.nic.MTU()) +func packetMustBeFragmented(pkt *stack.PacketBuffer, networkMTU uint32, gso *stack.GSO) bool { + payload := pkt.TransportHeader().View().Size() + pkt.Data.Size() + return (gso == nil || gso.Type == stack.GSONone) && uint32(payload) > networkMTU } // handleFragments fragments pkt and calls the handler function on each // fragment. It returns the number of fragments handled and the number of // fragments left to be processed. The IP header must already be present in the -// original packet. The mtu is the maximum size of the packets. The transport -// header protocol number is required to avoid parsing the IPv6 extension -// headers. -func (e *endpoint) handleFragments(r *stack.Route, gso *stack.GSO, mtu uint32, pkt *stack.PacketBuffer, transProto tcpip.TransportProtocolNumber, handler func(*stack.PacketBuffer) *tcpip.Error) (int, int, *tcpip.Error) { - fragMTU := int(calculateFragmentInnerMTU(mtu, pkt)) - if fragMTU < pkt.TransportHeader().View().Size() { +// original packet. The transport header protocol number is required to avoid +// parsing the IPv6 extension headers. +func (e *endpoint) handleFragments(r *stack.Route, gso *stack.GSO, networkMTU uint32, pkt *stack.PacketBuffer, transProto tcpip.TransportProtocolNumber, handler func(*stack.PacketBuffer) *tcpip.Error) (int, int, *tcpip.Error) { + networkHeader := header.IPv6(pkt.NetworkHeader().View()) + + // TODO(gvisor.dev/issue/3912): Once the Authentication or ESP Headers are + // supported for outbound packets, their length should not affect the fragment + // maximum payload length because they should only be transmitted once. + fragmentPayloadLen := (networkMTU - header.IPv6FragmentHeaderSize) &^ 7 + if fragmentPayloadLen < header.IPv6FragmentExtHdrFragmentOffsetBytesPerUnit { + // We need at least 8 bytes of space left for the fragmentable part because + // the fragment payload must obviously be non-zero and must be a multiple + // of 8 as per RFC 8200 section 4.5: + // Each complete fragment, except possibly the last ("rightmost") one, is + // an integer multiple of 8 octets long. + return 0, 1, tcpip.ErrMessageTooLong + } + + if fragmentPayloadLen < uint32(pkt.TransportHeader().View().Size()) { // As per RFC 8200 Section 4.5, the Transport Header is expected to be small // enough to fit in the first fragment. return 0, 1, tcpip.ErrMessageTooLong } - pf := fragmentation.MakePacketFragmenter(pkt, fragMTU, calculateFragmentReserve(pkt)) + pf := fragmentation.MakePacketFragmenter(pkt, fragmentPayloadLen, calculateFragmentReserve(pkt)) id := atomic.AddUint32(&e.protocol.ids[hashRoute(r, e.protocol.hashIV)%buckets], 1) - networkHeader := header.IPv6(pkt.NetworkHeader().View()) var n int for { @@ -468,8 +485,14 @@ func (e *endpoint) writePacket(r *stack.Route, gso *stack.GSO, pkt *stack.Packet return nil } - if e.packetMustBeFragmented(pkt, gso) { - sent, remain, err := e.handleFragments(r, gso, e.nic.MTU(), pkt, protocol, func(fragPkt *stack.PacketBuffer) *tcpip.Error { + networkMTU, err := calculateNetworkMTU(e.nic.MTU(), uint32(pkt.NetworkHeader().View().Size())) + if err != nil { + r.Stats().IP.OutgoingPacketErrors.Increment() + return err + } + + if packetMustBeFragmented(pkt, networkMTU, gso) { + sent, remain, err := e.handleFragments(r, gso, networkMTU, pkt, protocol, func(fragPkt *stack.PacketBuffer) *tcpip.Error { // TODO(gvisor.dev/issue/3884): Evaluate whether we want to send each // fragment one by one using WritePacket() (current strategy) or if we // want to create a PacketBufferList from the fragments and feed it to @@ -499,13 +522,20 @@ func (e *endpoint) WritePackets(r *stack.Route, gso *stack.GSO, pkts stack.Packe return pkts.Len(), nil } + linkMTU := e.nic.MTU() for pb := pkts.Front(); pb != nil; pb = pb.Next() { e.addIPHeader(r, pb, params) - if e.packetMustBeFragmented(pb, gso) { + + networkMTU, err := calculateNetworkMTU(linkMTU, uint32(pb.NetworkHeader().View().Size())) + if err != nil { + r.Stats().IP.OutgoingPacketErrors.IncrementBy(uint64(pkts.Len())) + return 0, err + } + if packetMustBeFragmented(pb, networkMTU, gso) { // Keep track of the packet that is about to be fragmented so it can be // removed once the fragmentation is done. originalPkt := pb - if _, _, err := e.handleFragments(r, gso, e.nic.MTU(), pb, params.Protocol, func(fragPkt *stack.PacketBuffer) *tcpip.Error { + if _, _, err := e.handleFragments(r, gso, networkMTU, pb, params.Protocol, func(fragPkt *stack.PacketBuffer) *tcpip.Error { // Modify the packet list in place with the new fragments. pkts.InsertAfter(pb, fragPkt) pb = fragPkt @@ -569,7 +599,7 @@ func (e *endpoint) WritePackets(r *stack.Route, gso *stack.GSO, pkts stack.Packe return n + len(dropped), nil } -// WriteHeaderIncludedPacker implements stack.NetworkEndpoint. +// WriteHeaderIncludedPacket implements stack.NetworkEndpoint. func (e *endpoint) WriteHeaderIncludedPacket(r *stack.Route, pkt *stack.PacketBuffer) *tcpip.Error { // The packet already has an IP header, but there are a few required checks. h, ok := pkt.Data.PullUp(header.IPv6MinimumSize) @@ -1427,14 +1457,31 @@ func (p *protocol) SetForwarding(v bool) { } } -// calculateMTU calculates the network-layer payload MTU based on the link-layer -// payload mtu. -func calculateMTU(mtu uint32) uint32 { - mtu -= header.IPv6MinimumSize - if mtu <= maxPayloadSize { - return mtu +// calculateNetworkMTU calculates the network-layer payload MTU based on the +// link-layer payload MTU and the length of every IPv6 header. +// Note that this is different than the Payload Length field of the IPv6 header, +// which includes the length of the extension headers. +func calculateNetworkMTU(linkMTU, networkHeadersLen uint32) (uint32, *tcpip.Error) { + if linkMTU < header.IPv6MinimumMTU { + return 0, tcpip.ErrInvalidEndpointState + } + + // As per RFC 7112 section 5, we should discard packets if their IPv6 header + // is bigger than 1280 bytes (ie, the minimum link MTU) since we do not + // support PMTU discovery: + // Hosts that do not discover the Path MTU MUST limit the IPv6 Header Chain + // length to 1280 bytes. Limiting the IPv6 Header Chain length to 1280 + // bytes ensures that the header chain length does not exceed the IPv6 + // minimum MTU. + if networkHeadersLen > header.IPv6MinimumMTU { + return 0, tcpip.ErrMalformedHeader } - return maxPayloadSize + + networkMTU := linkMTU - uint32(networkHeadersLen) + if networkMTU > maxPayloadSize { + networkMTU = maxPayloadSize + } + return networkMTU, nil } // Options holds options to configure a new protocol. @@ -1509,23 +1556,6 @@ func NewProtocol(s *stack.Stack) stack.NetworkProtocol { return NewProtocolWithOptions(Options{})(s) } -// calculateFragmentInnerMTU calculates the maximum number of bytes of -// fragmentable data a fragment can have, based on the link layer mtu and pkt's -// network header size. -func calculateFragmentInnerMTU(mtu uint32, pkt *stack.PacketBuffer) uint32 { - // TODO(gvisor.dev/issue/3912): Once the Authentication or ESP Headers are - // supported for outbound packets, their length should not affect the fragment - // MTU because they should only be transmitted once. - mtu -= uint32(pkt.NetworkHeader().View().Size()) - mtu -= header.IPv6FragmentHeaderSize - // Round the MTU down to align to 8 bytes. - mtu &^= 7 - if mtu <= maxPayloadSize { - return mtu - } - return maxPayloadSize -} - func calculateFragmentReserve(pkt *stack.PacketBuffer) int { return pkt.AvailableHeaderBytes() + pkt.NetworkHeader().View().Size() + header.IPv6FragmentHeaderSize } |