diff options
author | Adin Scannell <ascannell@google.com> | 2020-06-23 23:32:23 -0700 |
---|---|---|
committer | gVisor bot <gvisor-bot@google.com> | 2020-06-23 23:34:06 -0700 |
commit | 364ac92baf83f2352f78b718090472639bd92a76 (patch) | |
tree | 306c99770deb6872c04fa0a6c29c5c6f322b9b55 /pkg/state/decode.go | |
parent | 399c52888db609296fd1341ed0daa994ad2d02b0 (diff) |
Support for saving pointers to fields in the state package.
Previously, it was not possible to encode/decode an object graph which
contained a pointer to a field within another type. This was because the
encoder was previously unable to disambiguate a pointer to an object and a
pointer within the object.
This CL remedies this by constructing an address map tracking the full memory
range object occupy. The encoded Refvalue message has been extended to allow
references to children objects within another object. Because the encoding
process may learn about object structure over time, we cannot encode any
objects under the entire graph has been generated.
This CL also updates the state package to use standard interfaces intead of
reflection-based dispatch in order to improve performance overall. This
includes a custom wire protocol to significantly reduce the number of
allocations and take advantage of structure packing.
As part of these changes, there are a small number of minor changes in other
places of the code base:
* The lists used during encoding are changed to use intrusive lists with the
objectEncodeState directly, which required that the ilist Len() method is
updated to work properly with the ElementMapper mechanism.
* A bug is fixed in the list code wherein Remove() called on an element that is
already removed can corrupt the list (removing the element if there's only a
single element). Now the behavior is correct.
* Standard error wrapping is introduced.
* Compressio was updated to implement the new wire.Reader and wire.Writer
inteface methods directly. The lack of a ReadByte and WriteByte caused issues
not due to interface dispatch, but because underlying slices for a Read or
Write call through an interface would always escape to the heap!
* Statify has been updated to support the new APIs.
See README.md for a description of how the new mechanism works.
PiperOrigin-RevId: 318010298
Diffstat (limited to 'pkg/state/decode.go')
-rw-r--r-- | pkg/state/decode.go | 918 |
1 files changed, 517 insertions, 401 deletions
diff --git a/pkg/state/decode.go b/pkg/state/decode.go index 590c241a3..c9971cdf6 100644 --- a/pkg/state/decode.go +++ b/pkg/state/decode.go @@ -17,28 +17,49 @@ package state import ( "bytes" "context" - "encoding/binary" - "errors" "fmt" - "io" + "math" "reflect" - "sort" - "github.com/golang/protobuf/proto" - pb "gvisor.dev/gvisor/pkg/state/object_go_proto" + "gvisor.dev/gvisor/pkg/state/wire" ) -// objectState represents an object that may be in the process of being +// internalCallback is a interface called on object completion. +// +// There are two implementations: objectDecodeState & userCallback. +type internalCallback interface { + // source returns the dependent object. May be nil. + source() *objectDecodeState + + // callbackRun executes the callback. + callbackRun() +} + +// userCallback is an implementation of internalCallback. +type userCallback func() + +// source implements internalCallback.source. +func (userCallback) source() *objectDecodeState { + return nil +} + +// callbackRun implements internalCallback.callbackRun. +func (uc userCallback) callbackRun() { + uc() +} + +// objectDecodeState represents an object that may be in the process of being // decoded. Specifically, it represents either a decoded object, or an an // interest in a future object that will be decoded. When that interest is // registered (via register), the storage for the object will be created, but // it will not be decoded until the object is encountered in the stream. -type objectState struct { +type objectDecodeState struct { // id is the id for this object. - // - // If this field is zero, then this is an anonymous (unregistered, - // non-reference primitive) object. This is immutable. - id uint64 + id objectID + + // typ is the id for this typeID. This may be zero if this is not a + // type-registered structure. + typ typeID // obj is the object. This may or may not be valid yet, depending on // whether complete returns true. However, regardless of whether the @@ -57,69 +78,52 @@ type objectState struct { // blockedBy is the number of dependencies this object has. blockedBy int - // blocking is a list of the objects blocked by this one. - blocking []*objectState + // callbacksInline is inline storage for callbacks. + callbacksInline [2]internalCallback // callbacks is a set of callbacks to execute on load. - callbacks []func() - - // path is the decoding path to the object. - path recoverable -} - -// complete indicates the object is complete. -func (os *objectState) complete() bool { - return os.blockedBy == 0 && len(os.callbacks) == 0 -} - -// checkComplete checks for completion. If the object is complete, pending -// callbacks will be executed and checkComplete will be called on downstream -// objects (those depending on this one). -func (os *objectState) checkComplete(stats *Stats) { - if os.blockedBy > 0 { - return - } - stats.Start(os.obj) + callbacks []internalCallback - // Fire all callbacks. - for _, fn := range os.callbacks { - fn() - } - os.callbacks = nil - - // Clear all blocked objects. - for _, other := range os.blocking { - other.blockedBy-- - other.checkComplete(stats) - } - os.blocking = nil - stats.Done() + completeEntry } -// waitFor queues a dependency on the given object. -func (os *objectState) waitFor(other *objectState, callback func()) { - os.blockedBy++ - other.blocking = append(other.blocking, os) - if callback != nil { - other.callbacks = append(other.callbacks, callback) +// addCallback adds a callback to the objectDecodeState. +func (ods *objectDecodeState) addCallback(ic internalCallback) { + if ods.callbacks == nil { + ods.callbacks = ods.callbacksInline[:0] } + ods.callbacks = append(ods.callbacks, ic) } // findCycleFor returns when the given object is found in the blocking set. -func (os *objectState) findCycleFor(target *objectState) []*objectState { - for _, other := range os.blocking { - if other == target { - return []*objectState{target} +func (ods *objectDecodeState) findCycleFor(target *objectDecodeState) []*objectDecodeState { + for _, ic := range ods.callbacks { + other := ic.source() + if other != nil && other == target { + return []*objectDecodeState{target} } else if childList := other.findCycleFor(target); childList != nil { return append(childList, other) } } - return nil + + // This should not occur. + Failf("no deadlock found?") + panic("unreachable") } // findCycle finds a dependency cycle. -func (os *objectState) findCycle() []*objectState { - return append(os.findCycleFor(os), os) +func (ods *objectDecodeState) findCycle() []*objectDecodeState { + return append(ods.findCycleFor(ods), ods) +} + +// source implements internalCallback.source. +func (ods *objectDecodeState) source() *objectDecodeState { + return ods +} + +// callbackRun implements internalCallback.callbackRun. +func (ods *objectDecodeState) callbackRun() { + ods.blockedBy-- } // decodeState is a graph of objects in the process of being decoded. @@ -137,30 +141,66 @@ type decodeState struct { // ctx is the decode context. ctx context.Context + // r is the input stream. + r wire.Reader + + // types is the type database. + types typeDecodeDatabase + // objectByID is the set of objects in progress. - objectsByID map[uint64]*objectState + objectsByID []*objectDecodeState // deferred are objects that have been read, by no interest has been // registered yet. These will be decoded once interest in registered. - deferred map[uint64]*pb.Object + deferred map[objectID]wire.Object - // outstanding is the number of outstanding objects. - outstanding uint32 + // pending is the set of objects that are not yet complete. + pending completeList - // r is the input stream. - r io.Reader - - // stats is the passed stats object. - stats *Stats - - // recoverable is the panic recover facility. - recoverable + // stats tracks time data. + stats Stats } // lookup looks up an object in decodeState or returns nil if no such object // has been previously registered. -func (ds *decodeState) lookup(id uint64) *objectState { - return ds.objectsByID[id] +func (ds *decodeState) lookup(id objectID) *objectDecodeState { + if len(ds.objectsByID) < int(id) { + return nil + } + return ds.objectsByID[id-1] +} + +// checkComplete checks for completion. +func (ds *decodeState) checkComplete(ods *objectDecodeState) bool { + // Still blocked? + if ods.blockedBy > 0 { + return false + } + + // Track stats if relevant. + if ods.callbacks != nil && ods.typ != 0 { + ds.stats.start(ods.typ) + defer ds.stats.done() + } + + // Fire all callbacks. + for _, ic := range ods.callbacks { + ic.callbackRun() + } + + // Mark completed. + cbs := ods.callbacks + ods.callbacks = nil + ds.pending.Remove(ods) + + // Recursively check others. + for _, ic := range cbs { + if other := ic.source(); other != nil && other.blockedBy == 0 { + ds.checkComplete(other) + } + } + + return true // All set. } // wait registers a dependency on an object. @@ -168,11 +208,8 @@ func (ds *decodeState) lookup(id uint64) *objectState { // As a special case, we always allow _useable_ references back to the first // decoding object because it may have fields that are already decoded. We also // allow trivial self reference, since they can be handled internally. -func (ds *decodeState) wait(waiter *objectState, id uint64, callback func()) { +func (ds *decodeState) wait(waiter *objectDecodeState, id objectID, callback func()) { switch id { - case 0: - // Nil pointer; nothing to wait for. - fallthrough case waiter.id: // Trivial self reference. fallthrough @@ -184,107 +221,188 @@ func (ds *decodeState) wait(waiter *objectState, id uint64, callback func()) { return } + // Mark as blocked. + waiter.blockedBy++ + // No nil can be returned here. - waiter.waitFor(ds.lookup(id), callback) + other := ds.lookup(id) + if callback != nil { + // Add the additional user callback. + other.addCallback(userCallback(callback)) + } + + // Mark waiter as unblocked. + other.addCallback(waiter) } // waitObject notes a blocking relationship. -func (ds *decodeState) waitObject(os *objectState, p *pb.Object, callback func()) { - if rv, ok := p.Value.(*pb.Object_RefValue); ok { +func (ds *decodeState) waitObject(ods *objectDecodeState, encoded wire.Object, callback func()) { + if rv, ok := encoded.(*wire.Ref); ok && rv.Root != 0 { // Refs can encode pointers and maps. - ds.wait(os, rv.RefValue, callback) - } else if sv, ok := p.Value.(*pb.Object_SliceValue); ok { + ds.wait(ods, objectID(rv.Root), callback) + } else if sv, ok := encoded.(*wire.Slice); ok && sv.Ref.Root != 0 { // See decodeObject; we need to wait for the array (if non-nil). - ds.wait(os, sv.SliceValue.RefValue, callback) - } else if iv, ok := p.Value.(*pb.Object_InterfaceValue); ok { + ds.wait(ods, objectID(sv.Ref.Root), callback) + } else if iv, ok := encoded.(*wire.Interface); ok { // It's an interface (wait recurisvely). - ds.waitObject(os, iv.InterfaceValue.Value, callback) + ds.waitObject(ods, iv.Value, callback) } else if callback != nil { // Nothing to wait for: execute the callback immediately. callback() } } +// walkChild returns a child object from obj, given an accessor path. This is +// the decode-side equivalent to traverse in encode.go. +// +// For the purposes of this function, a child object is either a field within a +// struct or an array element, with one such indirection per element in +// path. The returned value may be an unexported field, so it may not be +// directly assignable. See unsafePointerTo. +func walkChild(path []wire.Dot, obj reflect.Value) reflect.Value { + // See wire.Ref.Dots. The path here is specified in reverse order. + for i := len(path) - 1; i >= 0; i-- { + switch pc := path[i].(type) { + case *wire.FieldName: // Must be a pointer. + if obj.Kind() != reflect.Struct { + Failf("next component in child path is a field name, but the current object is not a struct. Path: %v, current obj: %#v", path, obj) + } + obj = obj.FieldByName(string(*pc)) + case wire.Index: // Embedded. + if obj.Kind() != reflect.Array { + Failf("next component in child path is an array index, but the current object is not an array. Path: %v, current obj: %#v", path, obj) + } + obj = obj.Index(int(pc)) + default: + panic("unreachable: switch should be exhaustive") + } + } + return obj +} + // register registers a decode with a type. // // This type is only used to instantiate a new object if it has not been -// registered previously. -func (ds *decodeState) register(id uint64, typ reflect.Type) *objectState { - os, ok := ds.objectsByID[id] - if ok { - return os +// registered previously. This depends on the type provided if none is +// available in the object itself. +func (ds *decodeState) register(r *wire.Ref, typ reflect.Type) reflect.Value { + // Grow the objectsByID slice. + id := objectID(r.Root) + if len(ds.objectsByID) < int(id) { + ds.objectsByID = append(ds.objectsByID, make([]*objectDecodeState, int(id)-len(ds.objectsByID))...) + } + + // Does this object already exist? + ods := ds.objectsByID[id-1] + if ods != nil { + return walkChild(r.Dots, ods.obj) + } + + // Create the object. + if len(r.Dots) != 0 { + typ = ds.findType(r.Type) } + v := reflect.New(typ) + ods = &objectDecodeState{ + id: id, + obj: v.Elem(), + } + ds.objectsByID[id-1] = ods + ds.pending.PushBack(ods) - // Record in the object index. - if typ.Kind() == reflect.Map { - os = &objectState{id: id, obj: reflect.MakeMap(typ), path: ds.recoverable.copy()} - } else { - os = &objectState{id: id, obj: reflect.New(typ).Elem(), path: ds.recoverable.copy()} + // Process any deferred objects & callbacks. + if encoded, ok := ds.deferred[id]; ok { + delete(ds.deferred, id) + ds.decodeObject(ods, ods.obj, encoded) } - ds.objectsByID[id] = os - if o, ok := ds.deferred[id]; ok { - // There is a deferred object. - delete(ds.deferred, id) // Free memory. - ds.decodeObject(os, os.obj, o, "", nil) - } else { - // There is no deferred object. - ds.outstanding++ + return walkChild(r.Dots, ods.obj) +} + +// objectDecoder is for decoding structs. +type objectDecoder struct { + // ds is decodeState. + ds *decodeState + + // ods is current object being decoded. + ods *objectDecodeState + + // reconciledTypeEntry is the reconciled type information. + rte *reconciledTypeEntry + + // encoded is the encoded object state. + encoded *wire.Struct +} + +// load is helper for the public methods on Source. +func (od *objectDecoder) load(slot int, objPtr reflect.Value, wait bool, fn func()) { + // Note that we have reconciled the type and may remap the fields here + // to match what's expected by the decoder. The "slot" parameter here + // is in terms of the local type, where the fields in the encoded + // object are in terms of the wire object's type, which might be in a + // different order (but will have the same fields). + v := *od.encoded.Field(od.rte.FieldOrder[slot]) + od.ds.decodeObject(od.ods, objPtr.Elem(), v) + if wait { + // Mark this individual object a blocker. + od.ds.waitObject(od.ods, v, fn) } +} - return os +// aterLoad implements Source.AfterLoad. +func (od *objectDecoder) afterLoad(fn func()) { + // Queue the local callback; this will execute when all of the above + // data dependencies have been cleared. + od.ods.addCallback(userCallback(fn)) } // decodeStruct decodes a struct value. -func (ds *decodeState) decodeStruct(os *objectState, obj reflect.Value, s *pb.Struct) { - // Set the fields. - m := Map{newInternalMap(nil, ds, os)} - defer internalMapPool.Put(m.internalMap) - for _, field := range s.Fields { - m.data = append(m.data, entry{ - name: field.Name, - object: field.Value, - }) - } - - // Sort the fields for efficient searching. - // - // Technically, these should already appear in sorted order in the - // state ordering, so this cost is effectively a single scan to ensure - // that the order is correct. - if len(m.data) > 1 { - sort.Slice(m.data, func(i, j int) bool { - return m.data[i].name < m.data[j].name - }) - } - - // Invoke the load; this will recursively decode other objects. - fns, ok := registeredTypes.lookupFns(obj.Addr().Type()) - if ok { - // Invoke the loader. - fns.invokeLoad(obj.Addr(), m) - } else if obj.NumField() == 0 { - // Allow anonymous empty structs. - return - } else { +func (ds *decodeState) decodeStruct(ods *objectDecodeState, obj reflect.Value, encoded *wire.Struct) { + if encoded.TypeID == 0 { + // Allow anonymous empty structs, but only if the encoded + // object also has no fields. + if encoded.Fields() == 0 && obj.NumField() == 0 { + return + } + // Propagate an error. - panic(fmt.Errorf("unregistered type %s", obj.Type())) + Failf("empty struct on wire %#v has field mismatch with type %q", encoded, obj.Type().Name()) + } + + // Lookup the object type. + rte := ds.types.Lookup(typeID(encoded.TypeID), obj.Type()) + ods.typ = typeID(encoded.TypeID) + + // Invoke the loader. + od := objectDecoder{ + ds: ds, + ods: ods, + rte: rte, + encoded: encoded, + } + ds.stats.start(ods.typ) + defer ds.stats.done() + if sl, ok := obj.Addr().Interface().(SaverLoader); ok { + // Note: may be a registered empty struct which does not + // implement the saver/loader interfaces. + sl.StateLoad(Source{internal: od}) } } // decodeMap decodes a map value. -func (ds *decodeState) decodeMap(os *objectState, obj reflect.Value, m *pb.Map) { +func (ds *decodeState) decodeMap(ods *objectDecodeState, obj reflect.Value, encoded *wire.Map) { if obj.IsNil() { + // See pointerTo. obj.Set(reflect.MakeMap(obj.Type())) } - for i := 0; i < len(m.Keys); i++ { + for i := 0; i < len(encoded.Keys); i++ { // Decode the objects. kv := reflect.New(obj.Type().Key()).Elem() vv := reflect.New(obj.Type().Elem()).Elem() - ds.decodeObject(os, kv, m.Keys[i], ".(key %d)", i) - ds.decodeObject(os, vv, m.Values[i], "[%#v]", kv.Interface()) - ds.waitObject(os, m.Keys[i], nil) - ds.waitObject(os, m.Values[i], nil) + ds.decodeObject(ods, kv, encoded.Keys[i]) + ds.decodeObject(ods, vv, encoded.Values[i]) + ds.waitObject(ods, encoded.Keys[i], nil) + ds.waitObject(ods, encoded.Values[i], nil) // Set in the map. obj.SetMapIndex(kv, vv) @@ -292,271 +410,294 @@ func (ds *decodeState) decodeMap(os *objectState, obj reflect.Value, m *pb.Map) } // decodeArray decodes an array value. -func (ds *decodeState) decodeArray(os *objectState, obj reflect.Value, a *pb.Array) { - if len(a.Contents) != obj.Len() { - panic(fmt.Errorf("mismatching array length expect=%d, actual=%d", obj.Len(), len(a.Contents))) +func (ds *decodeState) decodeArray(ods *objectDecodeState, obj reflect.Value, encoded *wire.Array) { + if len(encoded.Contents) != obj.Len() { + Failf("mismatching array length expect=%d, actual=%d", obj.Len(), len(encoded.Contents)) } // Decode the contents into the array. - for i := 0; i < len(a.Contents); i++ { - ds.decodeObject(os, obj.Index(i), a.Contents[i], "[%d]", i) - ds.waitObject(os, a.Contents[i], nil) + for i := 0; i < len(encoded.Contents); i++ { + ds.decodeObject(ods, obj.Index(i), encoded.Contents[i]) + ds.waitObject(ods, encoded.Contents[i], nil) } } -// decodeInterface decodes an interface value. -func (ds *decodeState) decodeInterface(os *objectState, obj reflect.Value, i *pb.Interface) { - // Is this a nil value? - if i.Type == "" { - return // Just leave obj alone. +// findType finds the type for the given wire.TypeSpecs. +func (ds *decodeState) findType(t wire.TypeSpec) reflect.Type { + switch x := t.(type) { + case wire.TypeID: + typ := ds.types.LookupType(typeID(x)) + rte := ds.types.Lookup(typeID(x), typ) + return rte.LocalType + case *wire.TypeSpecPointer: + return reflect.PtrTo(ds.findType(x.Type)) + case *wire.TypeSpecArray: + return reflect.ArrayOf(int(x.Count), ds.findType(x.Type)) + case *wire.TypeSpecSlice: + return reflect.SliceOf(ds.findType(x.Type)) + case *wire.TypeSpecMap: + return reflect.MapOf(ds.findType(x.Key), ds.findType(x.Value)) + default: + // Should not happen. + Failf("unknown type %#v", t) } + panic("unreachable") +} - // Get the dispatchable type. This may not be used if the given - // reference has already been resolved, but if not we need to know the - // type to create. - t, ok := registeredTypes.lookupType(i.Type) - if !ok { - panic(fmt.Errorf("no valid type for %q", i.Type)) +// decodeInterface decodes an interface value. +func (ds *decodeState) decodeInterface(ods *objectDecodeState, obj reflect.Value, encoded *wire.Interface) { + if _, ok := encoded.Type.(wire.TypeSpecNil); ok { + // Special case; the nil object. Just decode directly, which + // will read nil from the wire (if encoded correctly). + ds.decodeObject(ods, obj, encoded.Value) + return } - if obj.Kind() != reflect.Map { - // Set the obj to be the given typed value; this actually sets - // obj to be a non-zero value -- namely, it inserts type - // information. There's no need to do this for maps. - obj.Set(reflect.Zero(t)) + // We now need to resolve the actual type. + typ := ds.findType(encoded.Type) + + // We need to imbue type information here, then we can proceed to + // decode normally. In order to avoid issues with setting value-types, + // we create a new non-interface version of this object. We will then + // set the interface object to be equal to whatever we decode. + origObj := obj + obj = reflect.New(typ).Elem() + defer origObj.Set(obj) + + // With the object now having sufficient type information to actually + // have Set called on it, we can proceed to decode the value. + ds.decodeObject(ods, obj, encoded.Value) +} + +// isFloatEq determines if x and y represent the same value. +func isFloatEq(x float64, y float64) bool { + switch { + case math.IsNaN(x): + return math.IsNaN(y) + case math.IsInf(x, 1): + return math.IsInf(y, 1) + case math.IsInf(x, -1): + return math.IsInf(y, -1) + default: + return x == y } +} - // Decode the dereferenced element; there is no need to wait here, as - // the interface object shares the current object state. - ds.decodeObject(os, obj, i.Value, ".(%s)", i.Type) +// isComplexEq determines if x and y represent the same value. +func isComplexEq(x complex128, y complex128) bool { + return isFloatEq(real(x), real(y)) && isFloatEq(imag(x), imag(y)) } // decodeObject decodes a object value. -func (ds *decodeState) decodeObject(os *objectState, obj reflect.Value, object *pb.Object, format string, param interface{}) { - ds.push(false, format, param) - ds.stats.Add(obj) - ds.stats.Start(obj) - - switch x := object.GetValue().(type) { - case *pb.Object_BoolValue: - obj.SetBool(x.BoolValue) - case *pb.Object_StringValue: - obj.SetString(string(x.StringValue)) - case *pb.Object_Int64Value: - obj.SetInt(x.Int64Value) - if obj.Int() != x.Int64Value { - panic(fmt.Errorf("signed integer truncated in %v for %s", object, obj.Type())) +func (ds *decodeState) decodeObject(ods *objectDecodeState, obj reflect.Value, encoded wire.Object) { + switch x := encoded.(type) { + case wire.Nil: // Fast path: first. + // We leave obj alone here. That's because if obj represents an + // interface, it may have been imbued with type information in + // decodeInterface, and we don't want to destroy that. + case *wire.Ref: + // Nil pointers may be encoded in a "forceValue" context. For + // those we just leave it alone as the value will already be + // correct (nil). + if id := objectID(x.Root); id == 0 { + return } - case *pb.Object_Uint64Value: - obj.SetUint(x.Uint64Value) - if obj.Uint() != x.Uint64Value { - panic(fmt.Errorf("unsigned integer truncated in %v for %s", object, obj.Type())) - } - case *pb.Object_DoubleValue: - obj.SetFloat(x.DoubleValue) - if obj.Float() != x.DoubleValue { - panic(fmt.Errorf("float truncated in %v for %s", object, obj.Type())) - } - case *pb.Object_RefValue: - // Resolve the pointer itself, even though the object may not - // be decoded yet. You need to use wait() in order to ensure - // that is the case. See wait above, and Map.Barrier. - if id := x.RefValue; id != 0 { - // Decoding the interface should have imparted type - // information, so from this point it's safe to resolve - // and use this dynamic information for actually - // creating the object in register. - // - // (For non-interfaces this is a no-op). - dyntyp := reflect.TypeOf(obj.Interface()) - if dyntyp.Kind() == reflect.Map { - // Remove the map object count here to avoid - // double counting, as this object will be - // counted again when it gets processed later. - // We do not add a reference count as the - // reference is artificial. - ds.stats.Remove(obj) - obj.Set(ds.register(id, dyntyp).obj) - } else if dyntyp.Kind() == reflect.Ptr { - ds.push(true /* dereference */, "", nil) - obj.Set(ds.register(id, dyntyp.Elem()).obj.Addr()) - ds.pop() - } else { - obj.Set(ds.register(id, dyntyp.Elem()).obj.Addr()) + + // Note that if this is a map type, we go through a level of + // indirection to allow for map aliasing. + if obj.Kind() == reflect.Map { + v := ds.register(x, obj.Type()) + if v.IsNil() { + // Note that we don't want to clobber the map + // if has already been decoded by decodeMap. We + // just make it so that we have a consistent + // reference when that eventually does happen. + v.Set(reflect.MakeMap(v.Type())) } - } else { - // We leave obj alone here. That's because if obj - // represents an interface, it may have been embued - // with type information in decodeInterface, and we - // don't want to destroy that information. + obj.Set(v) + return } - case *pb.Object_SliceValue: - // It's okay to slice the array here, since the contents will - // still be provided later on. These semantics are a bit - // strange but they are handled in the Map.Barrier properly. - // - // The special semantics of zero ref apply here too. - if id := x.SliceValue.RefValue; id != 0 && x.SliceValue.Capacity > 0 { - v := reflect.ArrayOf(int(x.SliceValue.Capacity), obj.Type().Elem()) - obj.Set(ds.register(id, v).obj.Slice3(0, int(x.SliceValue.Length), int(x.SliceValue.Capacity))) + + // Normal assignment: authoritative only if no dots. + v := ds.register(x, obj.Type().Elem()) + if v.IsValid() { + obj.Set(unsafePointerTo(v)) } - case *pb.Object_ArrayValue: - ds.decodeArray(os, obj, x.ArrayValue) - case *pb.Object_StructValue: - ds.decodeStruct(os, obj, x.StructValue) - case *pb.Object_MapValue: - ds.decodeMap(os, obj, x.MapValue) - case *pb.Object_InterfaceValue: - ds.decodeInterface(os, obj, x.InterfaceValue) - case *pb.Object_ByteArrayValue: - copyArray(obj, reflect.ValueOf(x.ByteArrayValue)) - case *pb.Object_Uint16ArrayValue: - // 16-bit slices are serialized as 32-bit slices. - // See object.proto for details. - s := x.Uint16ArrayValue.Values - t := obj.Slice(0, obj.Len()).Interface().([]uint16) - if len(t) != len(s) { - panic(fmt.Errorf("mismatching array length expect=%d, actual=%d", len(t), len(s))) + case wire.Bool: + obj.SetBool(bool(x)) + case wire.Int: + obj.SetInt(int64(x)) + if obj.Int() != int64(x) { + Failf("signed integer truncated from %v to %v", int64(x), obj.Int()) } - for i := range s { - t[i] = uint16(s[i]) + case wire.Uint: + obj.SetUint(uint64(x)) + if obj.Uint() != uint64(x) { + Failf("unsigned integer truncated from %v to %v", uint64(x), obj.Uint()) } - case *pb.Object_Uint32ArrayValue: - copyArray(obj, reflect.ValueOf(x.Uint32ArrayValue.Values)) - case *pb.Object_Uint64ArrayValue: - copyArray(obj, reflect.ValueOf(x.Uint64ArrayValue.Values)) - case *pb.Object_UintptrArrayValue: - copyArray(obj, castSlice(reflect.ValueOf(x.UintptrArrayValue.Values), reflect.TypeOf(uintptr(0)))) - case *pb.Object_Int8ArrayValue: - copyArray(obj, castSlice(reflect.ValueOf(x.Int8ArrayValue.Values), reflect.TypeOf(int8(0)))) - case *pb.Object_Int16ArrayValue: - // 16-bit slices are serialized as 32-bit slices. - // See object.proto for details. - s := x.Int16ArrayValue.Values - t := obj.Slice(0, obj.Len()).Interface().([]int16) - if len(t) != len(s) { - panic(fmt.Errorf("mismatching array length expect=%d, actual=%d", len(t), len(s))) + case wire.Float32: + obj.SetFloat(float64(x)) + case wire.Float64: + obj.SetFloat(float64(x)) + if !isFloatEq(obj.Float(), float64(x)) { + Failf("floating point number truncated from %v to %v", float64(x), obj.Float()) } - for i := range s { - t[i] = int16(s[i]) + case *wire.Complex64: + obj.SetComplex(complex128(*x)) + case *wire.Complex128: + obj.SetComplex(complex128(*x)) + if !isComplexEq(obj.Complex(), complex128(*x)) { + Failf("complex number truncated from %v to %v", complex128(*x), obj.Complex()) } - case *pb.Object_Int32ArrayValue: - copyArray(obj, reflect.ValueOf(x.Int32ArrayValue.Values)) - case *pb.Object_Int64ArrayValue: - copyArray(obj, reflect.ValueOf(x.Int64ArrayValue.Values)) - case *pb.Object_BoolArrayValue: - copyArray(obj, reflect.ValueOf(x.BoolArrayValue.Values)) - case *pb.Object_Float64ArrayValue: - copyArray(obj, reflect.ValueOf(x.Float64ArrayValue.Values)) - case *pb.Object_Float32ArrayValue: - copyArray(obj, reflect.ValueOf(x.Float32ArrayValue.Values)) + case *wire.String: + obj.SetString(string(*x)) + case *wire.Slice: + // See *wire.Ref above; same applies. + if id := objectID(x.Ref.Root); id == 0 { + return + } + // Note that it's fine to slice the array here and assume that + // contents will still be filled in later on. + typ := reflect.ArrayOf(int(x.Capacity), obj.Type().Elem()) // The object type. + v := ds.register(&x.Ref, typ) + obj.Set(v.Slice3(0, int(x.Length), int(x.Capacity))) + case *wire.Array: + ds.decodeArray(ods, obj, x) + case *wire.Struct: + ds.decodeStruct(ods, obj, x) + case *wire.Map: + ds.decodeMap(ods, obj, x) + case *wire.Interface: + ds.decodeInterface(ods, obj, x) default: // Shoud not happen, not propagated as an error. - panic(fmt.Sprintf("unknown object %v for %s", object, obj.Type())) - } - - ds.stats.Done() - ds.pop() -} - -func copyArray(dest reflect.Value, src reflect.Value) { - if dest.Len() != src.Len() { - panic(fmt.Errorf("mismatching array length expect=%d, actual=%d", dest.Len(), src.Len())) + Failf("unknown object %#v for %q", encoded, obj.Type().Name()) } - reflect.Copy(dest, castSlice(src, dest.Type().Elem())) } -// Deserialize deserializes the object state. +// Load deserializes the object graph rooted at obj. // // This function may panic and should be run in safely(). -func (ds *decodeState) Deserialize(obj reflect.Value) { - ds.objectsByID[1] = &objectState{id: 1, obj: obj, path: ds.recoverable.copy()} - ds.outstanding = 1 // The root object. +func (ds *decodeState) Load(obj reflect.Value) { + ds.stats.init() + defer ds.stats.fini(func(id typeID) string { + return ds.types.LookupName(id) + }) + + // Create the root object. + ds.objectsByID = append(ds.objectsByID, &objectDecodeState{ + id: 1, + obj: obj, + }) + + // Read the number of objects. + lastID, object, err := ReadHeader(ds.r) + if err != nil { + Failf("header error: %w", err) + } + if !object { + Failf("object missing") + } + + // Decode all objects. + var ( + encoded wire.Object + ods *objectDecodeState + id = objectID(1) + tid = typeID(1) + ) + if err := safely(func() { + // Decode all objects in the stream. + // + // Note that the structure of this decoding loop should match + // the raw decoding loop in printer.go. + for id <= objectID(lastID) { + // Unmarshal the object. + encoded = wire.Load(ds.r) + + // Is this a type object? Handle inline. + if wt, ok := encoded.(*wire.Type); ok { + ds.types.Register(wt) + tid++ + encoded = nil + continue + } - // Decode all objects in the stream. - // - // See above, we never process objects while we have no outstanding - // interests (other than the very first object). - for id := uint64(1); ds.outstanding > 0; id++ { - os := ds.lookup(id) - ds.stats.Start(os.obj) - - o, err := ds.readObject() - if err != nil { - panic(err) - } + // Actually resolve the object. + ods = ds.lookup(id) + if ods != nil { + // Decode the object. + ds.decodeObject(ods, ods.obj, encoded) + } else { + // If an object hasn't had interest registered + // previously or isn't yet valid, we deferred + // decoding until interest is registered. + ds.deferred[id] = encoded + } - if os != nil { - // Decode the object. - ds.from = &os.path - ds.decodeObject(os, os.obj, o, "", nil) - ds.outstanding-- + // For error handling. + ods = nil + encoded = nil + id++ + } + }); err != nil { + // Include as much information as we can, taking into account + // the possible state transitions above. + if ods != nil { + Failf("error decoding object ID %d (%T) from %#v: %w", id, ods.obj.Interface(), encoded, err) + } else if encoded != nil { + Failf("lookup error decoding object ID %d from %#v: %w", id, encoded, err) } else { - // If an object hasn't had interest registered - // previously, we deferred decoding until interest is - // registered. - ds.deferred[id] = o + Failf("general decoding error: %w", err) } - - ds.stats.Done() - } - - // Check the zero-length header at the end. - length, object, err := ReadHeader(ds.r) - if err != nil { - panic(err) - } - if length != 0 { - panic(fmt.Sprintf("expected zero-length terminal, got %d", length)) - } - if object { - panic("expected non-object terminal") } // Check if we have any deferred objects. - if count := len(ds.deferred); count > 0 { - // Shoud not happen, not propagated as an error. - panic(fmt.Sprintf("still have %d deferred objects", count)) - } - - // Scan and fire all callbacks. - for _, os := range ds.objectsByID { - os.checkComplete(ds.stats) + for id, encoded := range ds.deferred { + // Shoud never happen, the graph was bogus. + Failf("still have deferred objects: one is ID %d, %#v", id, encoded) } - // Check if we have any remaining dependency cycles. - for _, os := range ds.objectsByID { - if !os.complete() { - // This must be the result of a dependency cycle. - cycle := os.findCycle() - var buf bytes.Buffer - buf.WriteString("dependency cycle: {") - for i, cycleOS := range cycle { - if i > 0 { - buf.WriteString(" => ") + // Scan and fire all callbacks. We iterate over the list of incomplete + // objects until all have been finished. We stop iterating if no + // objects become complete (there is a dependency cycle). + // + // Note that we iterate backwards here, because there will be a strong + // tendendcy for blocking relationships to go from earlier objects to + // later (deeper) objects in the graph. This will reduce the number of + // iterations required to finish all objects. + if err := safely(func() { + for ds.pending.Back() != nil { + thisCycle := false + for ods = ds.pending.Back(); ods != nil; { + if ds.checkComplete(ods) { + thisCycle = true + break } - buf.WriteString(fmt.Sprintf("%s", cycleOS.obj.Type())) + ods = ods.Prev() + } + if !thisCycle { + break } - buf.WriteString("}") - // Panic as an error; propagate to the caller. - panic(errors.New(string(buf.Bytes()))) } - } -} - -type byteReader struct { - io.Reader -} - -// ReadByte implements io.ByteReader. -func (br byteReader) ReadByte() (byte, error) { - var b [1]byte - n, err := br.Reader.Read(b[:]) - if n > 0 { - return b[0], nil - } else if err != nil { - return 0, err - } else { - return 0, io.ErrUnexpectedEOF + }); err != nil { + Failf("error executing callbacks for %#v: %w", ods.obj.Interface(), err) + } + + // Check if we have any remaining dependency cycles. If there are any + // objects left in the pending list, then it must be due to a cycle. + if ods := ds.pending.Front(); ods != nil { + // This must be the result of a dependency cycle. + cycle := ods.findCycle() + var buf bytes.Buffer + buf.WriteString("dependency cycle: {") + for i, cycleOS := range cycle { + if i > 0 { + buf.WriteString(" => ") + } + fmt.Fprintf(&buf, "%q", cycleOS.obj.Type()) + } + buf.WriteString("}") + Failf("incomplete graph: %s", string(buf.Bytes())) } } @@ -565,45 +706,20 @@ func (br byteReader) ReadByte() (byte, error) { // Each object written to the statefile is prefixed with a header. See // WriteHeader for more information; these functions are exported to allow // non-state writes to the file to play nice with debugging tools. -func ReadHeader(r io.Reader) (length uint64, object bool, err error) { +func ReadHeader(r wire.Reader) (length uint64, object bool, err error) { // Read the header. - length, err = binary.ReadUvarint(byteReader{r}) + err = safely(func() { + length = wire.LoadUint(r) + }) if err != nil { - return + // On the header, pass raw I/O errors. + if sErr, ok := err.(*ErrState); ok { + return 0, false, sErr.Unwrap() + } } // Decode whether the object is valid. - object = length&0x1 != 0 - length = length >> 1 + object = length&objectFlag != 0 + length &^= objectFlag return } - -// readObject reads an object from the stream. -func (ds *decodeState) readObject() (*pb.Object, error) { - // Read the header. - length, object, err := ReadHeader(ds.r) - if err != nil { - return nil, err - } - if !object { - return nil, fmt.Errorf("invalid object header") - } - - // Read the object. - buf := make([]byte, length) - for done := 0; done < len(buf); { - n, err := ds.r.Read(buf[done:]) - done += n - if n == 0 && err != nil { - return nil, err - } - } - - // Unmarshal. - obj := new(pb.Object) - if err := proto.Unmarshal(buf, obj); err != nil { - return nil, err - } - - return obj, nil -} |