diff options
author | gVisor bot <gvisor-bot@google.com> | 2020-01-06 19:55:51 +0000 |
---|---|---|
committer | gVisor bot <gvisor-bot@google.com> | 2020-01-06 19:55:51 +0000 |
commit | fc3664bf86b303d5b9426adf928a5e7b6753969e (patch) | |
tree | 3f20350ca49b7d2e421e8f3095a8e6afdd54bde3 /pkg/sentry/kernel/rseq.go | |
parent | c2ea432ade043b0c908ba546ddda91de8fa83eca (diff) | |
parent | 354a15a234c1270bcb9b902503f61835b2ccd2d0 (diff) |
Merge release-20191213.0-61-g354a15a (automated)
Diffstat (limited to 'pkg/sentry/kernel/rseq.go')
-rw-r--r-- | pkg/sentry/kernel/rseq.go | 383 |
1 files changed, 334 insertions, 49 deletions
diff --git a/pkg/sentry/kernel/rseq.go b/pkg/sentry/kernel/rseq.go index 24ea002ba..b14429854 100644 --- a/pkg/sentry/kernel/rseq.go +++ b/pkg/sentry/kernel/rseq.go @@ -15,17 +15,29 @@ package kernel import ( + "fmt" + + "gvisor.dev/gvisor/pkg/abi/linux" "gvisor.dev/gvisor/pkg/sentry/hostcpu" "gvisor.dev/gvisor/pkg/sentry/usermem" "gvisor.dev/gvisor/pkg/syserror" ) -// Restartable sequences, as described in https://lwn.net/Articles/650333/. +// Restartable sequences. +// +// We support two different APIs for restartable sequences. +// +// 1. The upstream interface added in v4.18. +// 2. The interface described in https://lwn.net/Articles/650333/. +// +// Throughout this file and other parts of the kernel, the latter is referred +// to as "old rseq". This interface was never merged upstream, but is supported +// for a limited set of applications that use it regardless. -// RSEQCriticalRegion describes a restartable sequence critical region. +// OldRSeqCriticalRegion describes an old rseq critical region. // // +stateify savable -type RSEQCriticalRegion struct { +type OldRSeqCriticalRegion struct { // When a task in this thread group has its CPU preempted (as defined by // platform.ErrContextCPUPreempted) or has a signal delivered to an // application handler while its instruction pointer is in CriticalSection, @@ -35,86 +47,359 @@ type RSEQCriticalRegion struct { Restart usermem.Addr } -// RSEQAvailable returns true if t supports restartable sequences. -func (t *Task) RSEQAvailable() bool { +// RSeqAvailable returns true if t supports (old and new) restartable sequences. +func (t *Task) RSeqAvailable() bool { return t.k.useHostCores && t.k.Platform.DetectsCPUPreemption() } -// RSEQCriticalRegion returns a copy of t's thread group's current restartable -// sequence. -func (t *Task) RSEQCriticalRegion() RSEQCriticalRegion { - return *t.tg.rscr.Load().(*RSEQCriticalRegion) +// SetRSeq registers addr as this thread's rseq structure. +// +// Preconditions: The caller must be running on the task goroutine. +func (t *Task) SetRSeq(addr usermem.Addr, length, signature uint32) error { + if t.rseqAddr != 0 { + if t.rseqAddr != addr { + return syserror.EINVAL + } + if t.rseqSignature != signature { + return syserror.EINVAL + } + return syserror.EBUSY + } + + // rseq must be aligned and correctly sized. + if addr&(linux.AlignOfRSeq-1) != 0 { + return syserror.EINVAL + } + if length != linux.SizeOfRSeq { + return syserror.EINVAL + } + if _, ok := t.MemoryManager().CheckIORange(addr, linux.SizeOfRSeq); !ok { + return syserror.EFAULT + } + + t.rseqAddr = addr + t.rseqSignature = signature + + // Initialize the CPUID. + // + // Linux implicitly does this on return from userspace, where failure + // would cause SIGSEGV. + if err := t.rseqUpdateCPU(); err != nil { + t.rseqAddr = 0 + t.rseqSignature = 0 + + t.Debugf("Failed to copy CPU to %#x for rseq: %v", t.rseqAddr, err) + t.forceSignal(linux.SIGSEGV, false /* unconditional */) + t.SendSignal(SignalInfoPriv(linux.SIGSEGV)) + return syserror.EFAULT + } + + return nil } -// SetRSEQCriticalRegion replaces t's thread group's restartable sequence. +// ClearRSeq unregisters addr as this thread's rseq structure. // -// Preconditions: t.RSEQAvailable() == true. -func (t *Task) SetRSEQCriticalRegion(rscr RSEQCriticalRegion) error { +// Preconditions: The caller must be running on the task goroutine. +func (t *Task) ClearRSeq(addr usermem.Addr, length, signature uint32) error { + if t.rseqAddr == 0 { + return syserror.EINVAL + } + if t.rseqAddr != addr { + return syserror.EINVAL + } + if length != linux.SizeOfRSeq { + return syserror.EINVAL + } + if t.rseqSignature != signature { + return syserror.EPERM + } + + if err := t.rseqClearCPU(); err != nil { + return err + } + + t.rseqAddr = 0 + t.rseqSignature = 0 + + if t.oldRSeqCPUAddr == 0 { + // rseqCPU no longer needed. + t.rseqCPU = -1 + } + + return nil +} + +// OldRSeqCriticalRegion returns a copy of t's thread group's current +// old restartable sequence. +func (t *Task) OldRSeqCriticalRegion() OldRSeqCriticalRegion { + return *t.tg.oldRSeqCritical.Load().(*OldRSeqCriticalRegion) +} + +// SetOldRSeqCriticalRegion replaces t's thread group's old restartable +// sequence. +// +// Preconditions: t.RSeqAvailable() == true. +func (t *Task) SetOldRSeqCriticalRegion(r OldRSeqCriticalRegion) error { // These checks are somewhat more lenient than in Linux, which (bizarrely) - // requires rscr.CriticalSection to be non-empty and rscr.Restart to be - // outside of rscr.CriticalSection, even if rscr.CriticalSection.Start == 0 + // requires r.CriticalSection to be non-empty and r.Restart to be + // outside of r.CriticalSection, even if r.CriticalSection.Start == 0 // (which disables the critical region). - if rscr.CriticalSection.Start == 0 { - rscr.CriticalSection.End = 0 - rscr.Restart = 0 - t.tg.rscr.Store(&rscr) + if r.CriticalSection.Start == 0 { + r.CriticalSection.End = 0 + r.Restart = 0 + t.tg.oldRSeqCritical.Store(&r) return nil } - if rscr.CriticalSection.Start >= rscr.CriticalSection.End { + if r.CriticalSection.Start >= r.CriticalSection.End { return syserror.EINVAL } - if rscr.CriticalSection.Contains(rscr.Restart) { + if r.CriticalSection.Contains(r.Restart) { return syserror.EINVAL } - // TODO(jamieliu): check that rscr.CriticalSection and rscr.Restart are in - // the application address range, for consistency with Linux - t.tg.rscr.Store(&rscr) + // TODO(jamieliu): check that r.CriticalSection and r.Restart are in + // the application address range, for consistency with Linux. + t.tg.oldRSeqCritical.Store(&r) return nil } -// RSEQCPUAddr returns the address that RSEQ will keep updated with t's CPU -// number. +// OldRSeqCPUAddr returns the address that old rseq will keep updated with t's +// CPU number. // // Preconditions: The caller must be running on the task goroutine. -func (t *Task) RSEQCPUAddr() usermem.Addr { - return t.rseqCPUAddr +func (t *Task) OldRSeqCPUAddr() usermem.Addr { + return t.oldRSeqCPUAddr } -// SetRSEQCPUAddr replaces the address that RSEQ will keep updated with t's CPU -// number. +// SetOldRSeqCPUAddr replaces the address that old rseq will keep updated with +// t's CPU number. // -// Preconditions: t.RSEQAvailable() == true. The caller must be running on the +// Preconditions: t.RSeqAvailable() == true. The caller must be running on the // task goroutine. t's AddressSpace must be active. -func (t *Task) SetRSEQCPUAddr(addr usermem.Addr) error { - t.rseqCPUAddr = addr - if addr != 0 { - t.rseqCPU = int32(hostcpu.GetCPU()) - if err := t.rseqCopyOutCPU(); err != nil { - t.rseqCPUAddr = 0 - t.rseqCPU = -1 - return syserror.EINVAL // yes, EINVAL, not err or EFAULT - } - } else { - t.rseqCPU = -1 +func (t *Task) SetOldRSeqCPUAddr(addr usermem.Addr) error { + t.oldRSeqCPUAddr = addr + + // Check that addr is writable. + // + // N.B. rseqUpdateCPU may fail on a bad t.rseqAddr as well. That's + // unfortunate, but unlikely in a correct program. + if err := t.rseqUpdateCPU(); err != nil { + t.oldRSeqCPUAddr = 0 + return syserror.EINVAL // yes, EINVAL, not err or EFAULT } return nil } // Preconditions: The caller must be running on the task goroutine. t's // AddressSpace must be active. -func (t *Task) rseqCopyOutCPU() error { +func (t *Task) rseqUpdateCPU() error { + if t.rseqAddr == 0 && t.oldRSeqCPUAddr == 0 { + t.rseqCPU = -1 + return nil + } + + t.rseqCPU = int32(hostcpu.GetCPU()) + + // Update both CPUs, even if one fails. + rerr := t.rseqCopyOutCPU() + oerr := t.oldRSeqCopyOutCPU() + + if rerr != nil { + return rerr + } + return oerr +} + +// Preconditions: The caller must be running on the task goroutine. t's +// AddressSpace must be active. +func (t *Task) oldRSeqCopyOutCPU() error { + if t.oldRSeqCPUAddr == 0 { + return nil + } + buf := t.CopyScratchBuffer(4) usermem.ByteOrder.PutUint32(buf, uint32(t.rseqCPU)) - _, err := t.CopyOutBytes(t.rseqCPUAddr, buf) + _, err := t.CopyOutBytes(t.oldRSeqCPUAddr, buf) + return err +} + +// Preconditions: The caller must be running on the task goroutine. t's +// AddressSpace must be active. +func (t *Task) rseqCopyOutCPU() error { + if t.rseqAddr == 0 { + return nil + } + + buf := t.CopyScratchBuffer(8) + // CPUIDStart and CPUID are the first two fields in linux.RSeq. + usermem.ByteOrder.PutUint32(buf, uint32(t.rseqCPU)) // CPUIDStart + usermem.ByteOrder.PutUint32(buf[4:], uint32(t.rseqCPU)) // CPUID + // N.B. This write is not atomic, but since this occurs on the task + // goroutine then as long as userspace uses a single-instruction read + // it can't see an invalid value. + _, err := t.CopyOutBytes(t.rseqAddr, buf) + return err +} + +// Preconditions: The caller must be running on the task goroutine. t's +// AddressSpace must be active. +func (t *Task) rseqClearCPU() error { + buf := t.CopyScratchBuffer(8) + // CPUIDStart and CPUID are the first two fields in linux.RSeq. + usermem.ByteOrder.PutUint32(buf, 0) // CPUIDStart + usermem.ByteOrder.PutUint32(buf[4:], linux.RSEQ_CPU_ID_UNINITIALIZED) // CPUID + // N.B. This write is not atomic, but since this occurs on the task + // goroutine then as long as userspace uses a single-instruction read + // it can't see an invalid value. + _, err := t.CopyOutBytes(t.rseqAddr, buf) return err } +// rseqAddrInterrupt checks if IP is in a critical section, and aborts if so. +// +// This is a bit complex since both the RSeq and RSeqCriticalSection structs +// are stored in userspace. So we must: +// +// 1. Copy in the address of RSeqCriticalSection from RSeq. +// 2. Copy in RSeqCriticalSection itself. +// 3. Validate critical section struct version, address range, abort address. +// 4. Validate the abort signature (4 bytes preceding abort IP match expected +// signature). +// 5. Clear address of RSeqCriticalSection from RSeq. +// 6. Finally, conditionally abort. +// +// See kernel/rseq.c:rseq_ip_fixup for reference. +// +// Preconditions: The caller must be running on the task goroutine. t's +// AddressSpace must be active. +func (t *Task) rseqAddrInterrupt() { + if t.rseqAddr == 0 { + return + } + + critAddrAddr, ok := t.rseqAddr.AddLength(linux.OffsetOfRSeqCriticalSection) + if !ok { + // SetRSeq should validate this. + panic(fmt.Sprintf("t.rseqAddr (%#x) not large enough", t.rseqAddr)) + } + + if t.Arch().Width() != 8 { + // We only handle 64-bit for now. + t.Debugf("Only 64-bit rseq supported.") + t.forceSignal(linux.SIGSEGV, false /* unconditional */) + t.SendSignal(SignalInfoPriv(linux.SIGSEGV)) + return + } + + buf := t.CopyScratchBuffer(8) + if _, err := t.CopyInBytes(critAddrAddr, buf); err != nil { + t.Debugf("Failed to copy critical section address from %#x for rseq: %v", critAddrAddr, err) + t.forceSignal(linux.SIGSEGV, false /* unconditional */) + t.SendSignal(SignalInfoPriv(linux.SIGSEGV)) + return + } + + critAddr := usermem.Addr(usermem.ByteOrder.Uint64(buf)) + if critAddr == 0 { + return + } + + buf = t.CopyScratchBuffer(linux.SizeOfRSeqCriticalSection) + if _, err := t.CopyInBytes(critAddr, buf); err != nil { + t.Debugf("Failed to copy critical section from %#x for rseq: %v", critAddr, err) + t.forceSignal(linux.SIGSEGV, false /* unconditional */) + t.SendSignal(SignalInfoPriv(linux.SIGSEGV)) + return + } + + // Manually marshal RSeqCriticalSection as this is in the hot path when + // rseq is enabled. It must be as fast as possible. + // + // TODO(b/130243041): Replace with go_marshal. + cs := linux.RSeqCriticalSection{ + Version: usermem.ByteOrder.Uint32(buf[0:4]), + Flags: usermem.ByteOrder.Uint32(buf[4:8]), + Start: usermem.ByteOrder.Uint64(buf[8:16]), + PostCommitOffset: usermem.ByteOrder.Uint64(buf[16:24]), + Abort: usermem.ByteOrder.Uint64(buf[24:32]), + } + + if cs.Version != 0 { + t.Debugf("Unknown version in %+v", cs) + t.forceSignal(linux.SIGSEGV, false /* unconditional */) + t.SendSignal(SignalInfoPriv(linux.SIGSEGV)) + return + } + + start := usermem.Addr(cs.Start) + critRange, ok := start.ToRange(cs.PostCommitOffset) + if !ok { + t.Debugf("Invalid start and offset in %+v", cs) + t.forceSignal(linux.SIGSEGV, false /* unconditional */) + t.SendSignal(SignalInfoPriv(linux.SIGSEGV)) + return + } + + abort := usermem.Addr(cs.Abort) + if critRange.Contains(abort) { + t.Debugf("Abort in critical section in %+v", cs) + t.forceSignal(linux.SIGSEGV, false /* unconditional */) + t.SendSignal(SignalInfoPriv(linux.SIGSEGV)) + return + } + + // Verify signature. + sigAddr := abort - linux.SizeOfRSeqSignature + + buf = t.CopyScratchBuffer(linux.SizeOfRSeqSignature) + if _, err := t.CopyInBytes(sigAddr, buf); err != nil { + t.Debugf("Failed to copy critical section signature from %#x for rseq: %v", sigAddr, err) + t.forceSignal(linux.SIGSEGV, false /* unconditional */) + t.SendSignal(SignalInfoPriv(linux.SIGSEGV)) + return + } + + sig := usermem.ByteOrder.Uint32(buf) + if sig != t.rseqSignature { + t.Debugf("Mismatched rseq signature %d != %d", sig, t.rseqSignature) + t.forceSignal(linux.SIGSEGV, false /* unconditional */) + t.SendSignal(SignalInfoPriv(linux.SIGSEGV)) + return + } + + // Clear the critical section address. + // + // NOTE(b/143949567): We don't support any rseq flags, so we always + // restart if we are in the critical section, and thus *always* clear + // critAddrAddr. + if _, err := t.MemoryManager().ZeroOut(t, critAddrAddr, int64(t.Arch().Width()), usermem.IOOpts{ + AddressSpaceActive: true, + }); err != nil { + t.Debugf("Failed to clear critical section address from %#x for rseq: %v", critAddrAddr, err) + t.forceSignal(linux.SIGSEGV, false /* unconditional */) + t.SendSignal(SignalInfoPriv(linux.SIGSEGV)) + return + } + + // Finally we can actually decide whether or not to restart. + if !critRange.Contains(usermem.Addr(t.Arch().IP())) { + return + } + + t.Arch().SetIP(uintptr(cs.Abort)) +} + // Preconditions: The caller must be running on the task goroutine. -func (t *Task) rseqInterrupt() { - rscr := t.tg.rscr.Load().(*RSEQCriticalRegion) - if ip := t.Arch().IP(); rscr.CriticalSection.Contains(usermem.Addr(ip)) { - t.Debugf("Interrupted RSEQ critical section at %#x; restarting at %#x", ip, rscr.Restart) - t.Arch().SetIP(uintptr(rscr.Restart)) - t.Arch().SetRSEQInterruptedIP(ip) +func (t *Task) oldRSeqInterrupt() { + r := t.tg.oldRSeqCritical.Load().(*OldRSeqCriticalRegion) + if ip := t.Arch().IP(); r.CriticalSection.Contains(usermem.Addr(ip)) { + t.Debugf("Interrupted rseq critical section at %#x; restarting at %#x", ip, r.Restart) + t.Arch().SetIP(uintptr(r.Restart)) + t.Arch().SetOldRSeqInterruptedIP(ip) } } + +// Preconditions: The caller must be running on the task goroutine. +func (t *Task) rseqInterrupt() { + t.rseqAddrInterrupt() + t.oldRSeqInterrupt() +} |