summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/kernel/rseq.go
diff options
context:
space:
mode:
authorMichael Pratt <mpratt@google.com>2020-01-06 11:41:13 -0800
committergVisor bot <gvisor-bot@google.com>2020-01-06 11:42:44 -0800
commit354a15a234c1270bcb9b902503f61835b2ccd2d0 (patch)
treeb89f444cf19d8feca8c6a4366f153609af08b72d /pkg/sentry/kernel/rseq.go
parent6410387ff9b4f0dbe88325ea0e30776f5f3efd5d (diff)
Implement rseq(2)
PiperOrigin-RevId: 288342928
Diffstat (limited to 'pkg/sentry/kernel/rseq.go')
-rw-r--r--pkg/sentry/kernel/rseq.go383
1 files changed, 334 insertions, 49 deletions
diff --git a/pkg/sentry/kernel/rseq.go b/pkg/sentry/kernel/rseq.go
index 24ea002ba..b14429854 100644
--- a/pkg/sentry/kernel/rseq.go
+++ b/pkg/sentry/kernel/rseq.go
@@ -15,17 +15,29 @@
package kernel
import (
+ "fmt"
+
+ "gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/sentry/hostcpu"
"gvisor.dev/gvisor/pkg/sentry/usermem"
"gvisor.dev/gvisor/pkg/syserror"
)
-// Restartable sequences, as described in https://lwn.net/Articles/650333/.
+// Restartable sequences.
+//
+// We support two different APIs for restartable sequences.
+//
+// 1. The upstream interface added in v4.18.
+// 2. The interface described in https://lwn.net/Articles/650333/.
+//
+// Throughout this file and other parts of the kernel, the latter is referred
+// to as "old rseq". This interface was never merged upstream, but is supported
+// for a limited set of applications that use it regardless.
-// RSEQCriticalRegion describes a restartable sequence critical region.
+// OldRSeqCriticalRegion describes an old rseq critical region.
//
// +stateify savable
-type RSEQCriticalRegion struct {
+type OldRSeqCriticalRegion struct {
// When a task in this thread group has its CPU preempted (as defined by
// platform.ErrContextCPUPreempted) or has a signal delivered to an
// application handler while its instruction pointer is in CriticalSection,
@@ -35,86 +47,359 @@ type RSEQCriticalRegion struct {
Restart usermem.Addr
}
-// RSEQAvailable returns true if t supports restartable sequences.
-func (t *Task) RSEQAvailable() bool {
+// RSeqAvailable returns true if t supports (old and new) restartable sequences.
+func (t *Task) RSeqAvailable() bool {
return t.k.useHostCores && t.k.Platform.DetectsCPUPreemption()
}
-// RSEQCriticalRegion returns a copy of t's thread group's current restartable
-// sequence.
-func (t *Task) RSEQCriticalRegion() RSEQCriticalRegion {
- return *t.tg.rscr.Load().(*RSEQCriticalRegion)
+// SetRSeq registers addr as this thread's rseq structure.
+//
+// Preconditions: The caller must be running on the task goroutine.
+func (t *Task) SetRSeq(addr usermem.Addr, length, signature uint32) error {
+ if t.rseqAddr != 0 {
+ if t.rseqAddr != addr {
+ return syserror.EINVAL
+ }
+ if t.rseqSignature != signature {
+ return syserror.EINVAL
+ }
+ return syserror.EBUSY
+ }
+
+ // rseq must be aligned and correctly sized.
+ if addr&(linux.AlignOfRSeq-1) != 0 {
+ return syserror.EINVAL
+ }
+ if length != linux.SizeOfRSeq {
+ return syserror.EINVAL
+ }
+ if _, ok := t.MemoryManager().CheckIORange(addr, linux.SizeOfRSeq); !ok {
+ return syserror.EFAULT
+ }
+
+ t.rseqAddr = addr
+ t.rseqSignature = signature
+
+ // Initialize the CPUID.
+ //
+ // Linux implicitly does this on return from userspace, where failure
+ // would cause SIGSEGV.
+ if err := t.rseqUpdateCPU(); err != nil {
+ t.rseqAddr = 0
+ t.rseqSignature = 0
+
+ t.Debugf("Failed to copy CPU to %#x for rseq: %v", t.rseqAddr, err)
+ t.forceSignal(linux.SIGSEGV, false /* unconditional */)
+ t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
+ return syserror.EFAULT
+ }
+
+ return nil
}
-// SetRSEQCriticalRegion replaces t's thread group's restartable sequence.
+// ClearRSeq unregisters addr as this thread's rseq structure.
//
-// Preconditions: t.RSEQAvailable() == true.
-func (t *Task) SetRSEQCriticalRegion(rscr RSEQCriticalRegion) error {
+// Preconditions: The caller must be running on the task goroutine.
+func (t *Task) ClearRSeq(addr usermem.Addr, length, signature uint32) error {
+ if t.rseqAddr == 0 {
+ return syserror.EINVAL
+ }
+ if t.rseqAddr != addr {
+ return syserror.EINVAL
+ }
+ if length != linux.SizeOfRSeq {
+ return syserror.EINVAL
+ }
+ if t.rseqSignature != signature {
+ return syserror.EPERM
+ }
+
+ if err := t.rseqClearCPU(); err != nil {
+ return err
+ }
+
+ t.rseqAddr = 0
+ t.rseqSignature = 0
+
+ if t.oldRSeqCPUAddr == 0 {
+ // rseqCPU no longer needed.
+ t.rseqCPU = -1
+ }
+
+ return nil
+}
+
+// OldRSeqCriticalRegion returns a copy of t's thread group's current
+// old restartable sequence.
+func (t *Task) OldRSeqCriticalRegion() OldRSeqCriticalRegion {
+ return *t.tg.oldRSeqCritical.Load().(*OldRSeqCriticalRegion)
+}
+
+// SetOldRSeqCriticalRegion replaces t's thread group's old restartable
+// sequence.
+//
+// Preconditions: t.RSeqAvailable() == true.
+func (t *Task) SetOldRSeqCriticalRegion(r OldRSeqCriticalRegion) error {
// These checks are somewhat more lenient than in Linux, which (bizarrely)
- // requires rscr.CriticalSection to be non-empty and rscr.Restart to be
- // outside of rscr.CriticalSection, even if rscr.CriticalSection.Start == 0
+ // requires r.CriticalSection to be non-empty and r.Restart to be
+ // outside of r.CriticalSection, even if r.CriticalSection.Start == 0
// (which disables the critical region).
- if rscr.CriticalSection.Start == 0 {
- rscr.CriticalSection.End = 0
- rscr.Restart = 0
- t.tg.rscr.Store(&rscr)
+ if r.CriticalSection.Start == 0 {
+ r.CriticalSection.End = 0
+ r.Restart = 0
+ t.tg.oldRSeqCritical.Store(&r)
return nil
}
- if rscr.CriticalSection.Start >= rscr.CriticalSection.End {
+ if r.CriticalSection.Start >= r.CriticalSection.End {
return syserror.EINVAL
}
- if rscr.CriticalSection.Contains(rscr.Restart) {
+ if r.CriticalSection.Contains(r.Restart) {
return syserror.EINVAL
}
- // TODO(jamieliu): check that rscr.CriticalSection and rscr.Restart are in
- // the application address range, for consistency with Linux
- t.tg.rscr.Store(&rscr)
+ // TODO(jamieliu): check that r.CriticalSection and r.Restart are in
+ // the application address range, for consistency with Linux.
+ t.tg.oldRSeqCritical.Store(&r)
return nil
}
-// RSEQCPUAddr returns the address that RSEQ will keep updated with t's CPU
-// number.
+// OldRSeqCPUAddr returns the address that old rseq will keep updated with t's
+// CPU number.
//
// Preconditions: The caller must be running on the task goroutine.
-func (t *Task) RSEQCPUAddr() usermem.Addr {
- return t.rseqCPUAddr
+func (t *Task) OldRSeqCPUAddr() usermem.Addr {
+ return t.oldRSeqCPUAddr
}
-// SetRSEQCPUAddr replaces the address that RSEQ will keep updated with t's CPU
-// number.
+// SetOldRSeqCPUAddr replaces the address that old rseq will keep updated with
+// t's CPU number.
//
-// Preconditions: t.RSEQAvailable() == true. The caller must be running on the
+// Preconditions: t.RSeqAvailable() == true. The caller must be running on the
// task goroutine. t's AddressSpace must be active.
-func (t *Task) SetRSEQCPUAddr(addr usermem.Addr) error {
- t.rseqCPUAddr = addr
- if addr != 0 {
- t.rseqCPU = int32(hostcpu.GetCPU())
- if err := t.rseqCopyOutCPU(); err != nil {
- t.rseqCPUAddr = 0
- t.rseqCPU = -1
- return syserror.EINVAL // yes, EINVAL, not err or EFAULT
- }
- } else {
- t.rseqCPU = -1
+func (t *Task) SetOldRSeqCPUAddr(addr usermem.Addr) error {
+ t.oldRSeqCPUAddr = addr
+
+ // Check that addr is writable.
+ //
+ // N.B. rseqUpdateCPU may fail on a bad t.rseqAddr as well. That's
+ // unfortunate, but unlikely in a correct program.
+ if err := t.rseqUpdateCPU(); err != nil {
+ t.oldRSeqCPUAddr = 0
+ return syserror.EINVAL // yes, EINVAL, not err or EFAULT
}
return nil
}
// Preconditions: The caller must be running on the task goroutine. t's
// AddressSpace must be active.
-func (t *Task) rseqCopyOutCPU() error {
+func (t *Task) rseqUpdateCPU() error {
+ if t.rseqAddr == 0 && t.oldRSeqCPUAddr == 0 {
+ t.rseqCPU = -1
+ return nil
+ }
+
+ t.rseqCPU = int32(hostcpu.GetCPU())
+
+ // Update both CPUs, even if one fails.
+ rerr := t.rseqCopyOutCPU()
+ oerr := t.oldRSeqCopyOutCPU()
+
+ if rerr != nil {
+ return rerr
+ }
+ return oerr
+}
+
+// Preconditions: The caller must be running on the task goroutine. t's
+// AddressSpace must be active.
+func (t *Task) oldRSeqCopyOutCPU() error {
+ if t.oldRSeqCPUAddr == 0 {
+ return nil
+ }
+
buf := t.CopyScratchBuffer(4)
usermem.ByteOrder.PutUint32(buf, uint32(t.rseqCPU))
- _, err := t.CopyOutBytes(t.rseqCPUAddr, buf)
+ _, err := t.CopyOutBytes(t.oldRSeqCPUAddr, buf)
+ return err
+}
+
+// Preconditions: The caller must be running on the task goroutine. t's
+// AddressSpace must be active.
+func (t *Task) rseqCopyOutCPU() error {
+ if t.rseqAddr == 0 {
+ return nil
+ }
+
+ buf := t.CopyScratchBuffer(8)
+ // CPUIDStart and CPUID are the first two fields in linux.RSeq.
+ usermem.ByteOrder.PutUint32(buf, uint32(t.rseqCPU)) // CPUIDStart
+ usermem.ByteOrder.PutUint32(buf[4:], uint32(t.rseqCPU)) // CPUID
+ // N.B. This write is not atomic, but since this occurs on the task
+ // goroutine then as long as userspace uses a single-instruction read
+ // it can't see an invalid value.
+ _, err := t.CopyOutBytes(t.rseqAddr, buf)
+ return err
+}
+
+// Preconditions: The caller must be running on the task goroutine. t's
+// AddressSpace must be active.
+func (t *Task) rseqClearCPU() error {
+ buf := t.CopyScratchBuffer(8)
+ // CPUIDStart and CPUID are the first two fields in linux.RSeq.
+ usermem.ByteOrder.PutUint32(buf, 0) // CPUIDStart
+ usermem.ByteOrder.PutUint32(buf[4:], linux.RSEQ_CPU_ID_UNINITIALIZED) // CPUID
+ // N.B. This write is not atomic, but since this occurs on the task
+ // goroutine then as long as userspace uses a single-instruction read
+ // it can't see an invalid value.
+ _, err := t.CopyOutBytes(t.rseqAddr, buf)
return err
}
+// rseqAddrInterrupt checks if IP is in a critical section, and aborts if so.
+//
+// This is a bit complex since both the RSeq and RSeqCriticalSection structs
+// are stored in userspace. So we must:
+//
+// 1. Copy in the address of RSeqCriticalSection from RSeq.
+// 2. Copy in RSeqCriticalSection itself.
+// 3. Validate critical section struct version, address range, abort address.
+// 4. Validate the abort signature (4 bytes preceding abort IP match expected
+// signature).
+// 5. Clear address of RSeqCriticalSection from RSeq.
+// 6. Finally, conditionally abort.
+//
+// See kernel/rseq.c:rseq_ip_fixup for reference.
+//
+// Preconditions: The caller must be running on the task goroutine. t's
+// AddressSpace must be active.
+func (t *Task) rseqAddrInterrupt() {
+ if t.rseqAddr == 0 {
+ return
+ }
+
+ critAddrAddr, ok := t.rseqAddr.AddLength(linux.OffsetOfRSeqCriticalSection)
+ if !ok {
+ // SetRSeq should validate this.
+ panic(fmt.Sprintf("t.rseqAddr (%#x) not large enough", t.rseqAddr))
+ }
+
+ if t.Arch().Width() != 8 {
+ // We only handle 64-bit for now.
+ t.Debugf("Only 64-bit rseq supported.")
+ t.forceSignal(linux.SIGSEGV, false /* unconditional */)
+ t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
+ return
+ }
+
+ buf := t.CopyScratchBuffer(8)
+ if _, err := t.CopyInBytes(critAddrAddr, buf); err != nil {
+ t.Debugf("Failed to copy critical section address from %#x for rseq: %v", critAddrAddr, err)
+ t.forceSignal(linux.SIGSEGV, false /* unconditional */)
+ t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
+ return
+ }
+
+ critAddr := usermem.Addr(usermem.ByteOrder.Uint64(buf))
+ if critAddr == 0 {
+ return
+ }
+
+ buf = t.CopyScratchBuffer(linux.SizeOfRSeqCriticalSection)
+ if _, err := t.CopyInBytes(critAddr, buf); err != nil {
+ t.Debugf("Failed to copy critical section from %#x for rseq: %v", critAddr, err)
+ t.forceSignal(linux.SIGSEGV, false /* unconditional */)
+ t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
+ return
+ }
+
+ // Manually marshal RSeqCriticalSection as this is in the hot path when
+ // rseq is enabled. It must be as fast as possible.
+ //
+ // TODO(b/130243041): Replace with go_marshal.
+ cs := linux.RSeqCriticalSection{
+ Version: usermem.ByteOrder.Uint32(buf[0:4]),
+ Flags: usermem.ByteOrder.Uint32(buf[4:8]),
+ Start: usermem.ByteOrder.Uint64(buf[8:16]),
+ PostCommitOffset: usermem.ByteOrder.Uint64(buf[16:24]),
+ Abort: usermem.ByteOrder.Uint64(buf[24:32]),
+ }
+
+ if cs.Version != 0 {
+ t.Debugf("Unknown version in %+v", cs)
+ t.forceSignal(linux.SIGSEGV, false /* unconditional */)
+ t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
+ return
+ }
+
+ start := usermem.Addr(cs.Start)
+ critRange, ok := start.ToRange(cs.PostCommitOffset)
+ if !ok {
+ t.Debugf("Invalid start and offset in %+v", cs)
+ t.forceSignal(linux.SIGSEGV, false /* unconditional */)
+ t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
+ return
+ }
+
+ abort := usermem.Addr(cs.Abort)
+ if critRange.Contains(abort) {
+ t.Debugf("Abort in critical section in %+v", cs)
+ t.forceSignal(linux.SIGSEGV, false /* unconditional */)
+ t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
+ return
+ }
+
+ // Verify signature.
+ sigAddr := abort - linux.SizeOfRSeqSignature
+
+ buf = t.CopyScratchBuffer(linux.SizeOfRSeqSignature)
+ if _, err := t.CopyInBytes(sigAddr, buf); err != nil {
+ t.Debugf("Failed to copy critical section signature from %#x for rseq: %v", sigAddr, err)
+ t.forceSignal(linux.SIGSEGV, false /* unconditional */)
+ t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
+ return
+ }
+
+ sig := usermem.ByteOrder.Uint32(buf)
+ if sig != t.rseqSignature {
+ t.Debugf("Mismatched rseq signature %d != %d", sig, t.rseqSignature)
+ t.forceSignal(linux.SIGSEGV, false /* unconditional */)
+ t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
+ return
+ }
+
+ // Clear the critical section address.
+ //
+ // NOTE(b/143949567): We don't support any rseq flags, so we always
+ // restart if we are in the critical section, and thus *always* clear
+ // critAddrAddr.
+ if _, err := t.MemoryManager().ZeroOut(t, critAddrAddr, int64(t.Arch().Width()), usermem.IOOpts{
+ AddressSpaceActive: true,
+ }); err != nil {
+ t.Debugf("Failed to clear critical section address from %#x for rseq: %v", critAddrAddr, err)
+ t.forceSignal(linux.SIGSEGV, false /* unconditional */)
+ t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
+ return
+ }
+
+ // Finally we can actually decide whether or not to restart.
+ if !critRange.Contains(usermem.Addr(t.Arch().IP())) {
+ return
+ }
+
+ t.Arch().SetIP(uintptr(cs.Abort))
+}
+
// Preconditions: The caller must be running on the task goroutine.
-func (t *Task) rseqInterrupt() {
- rscr := t.tg.rscr.Load().(*RSEQCriticalRegion)
- if ip := t.Arch().IP(); rscr.CriticalSection.Contains(usermem.Addr(ip)) {
- t.Debugf("Interrupted RSEQ critical section at %#x; restarting at %#x", ip, rscr.Restart)
- t.Arch().SetIP(uintptr(rscr.Restart))
- t.Arch().SetRSEQInterruptedIP(ip)
+func (t *Task) oldRSeqInterrupt() {
+ r := t.tg.oldRSeqCritical.Load().(*OldRSeqCriticalRegion)
+ if ip := t.Arch().IP(); r.CriticalSection.Contains(usermem.Addr(ip)) {
+ t.Debugf("Interrupted rseq critical section at %#x; restarting at %#x", ip, r.Restart)
+ t.Arch().SetIP(uintptr(r.Restart))
+ t.Arch().SetOldRSeqInterruptedIP(ip)
}
}
+
+// Preconditions: The caller must be running on the task goroutine.
+func (t *Task) rseqInterrupt() {
+ t.rseqAddrInterrupt()
+ t.oldRSeqInterrupt()
+}