diff options
author | gVisor bot <gvisor-bot@google.com> | 2020-05-27 17:51:40 +0000 |
---|---|---|
committer | gVisor bot <gvisor-bot@google.com> | 2020-05-27 17:51:40 +0000 |
commit | 84452958e1397b337a806f815e07ae69c4f4c896 (patch) | |
tree | 138422671bc14bd0c66f83c31be1a991888f3359 /pkg/sentry/fs/lock/lock_set.go | |
parent | bae1520437ecbd3dd217880cb51eb24b59d26f51 (diff) | |
parent | 0bc022b7f3c13bb7c5c8d47d1781820161e7b1ad (diff) |
Merge release-20200518.0-45-g0bc022b7 (automated)
Diffstat (limited to 'pkg/sentry/fs/lock/lock_set.go')
-rw-r--r--[-rwxr-xr-x] | pkg/sentry/fs/lock/lock_set.go | 377 |
1 files changed, 373 insertions, 4 deletions
diff --git a/pkg/sentry/fs/lock/lock_set.go b/pkg/sentry/fs/lock/lock_set.go index 2343ca0b4..5356f5791 100755..100644 --- a/pkg/sentry/fs/lock/lock_set.go +++ b/pkg/sentry/fs/lock/lock_set.go @@ -5,6 +5,34 @@ import ( "fmt" ) +// trackGaps is an optional parameter. +// +// If trackGaps is 1, the Set will track maximum gap size recursively, +// enabling the GapIterator.{Prev,Next}LargeEnoughGap functions. In this +// case, Key must be an unsigned integer. +// +// trackGaps must be 0 or 1. +const LocktrackGaps = 0 + +var _ = uint8(LocktrackGaps << 7) // Will fail if not zero or one. + +// dynamicGap is a type that disappears if trackGaps is 0. +type LockdynamicGap [LocktrackGaps]uint64 + +// Get returns the value of the gap. +// +// Precondition: trackGaps must be non-zero. +func (d *LockdynamicGap) Get() uint64 { + return d[:][0] +} + +// Set sets the value of the gap. +// +// Precondition: trackGaps must be non-zero. +func (d *LockdynamicGap) Set(v uint64) { + d[:][0] = v +} + const ( // minDegree is the minimum degree of an internal node in a Set B-tree. // @@ -263,8 +291,12 @@ func (s *LockSet) Insert(gap LockGapIterator, r LockRange, val Lock) LockIterato } if prev.Ok() && prev.End() == r.Start { if mval, ok := (lockSetFunctions{}).Merge(prev.Range(), prev.Value(), r, val); ok { + shrinkMaxGap := LocktrackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get() prev.SetEndUnchecked(r.End) prev.SetValue(mval) + if shrinkMaxGap { + gap.node.updateMaxGapLeaf() + } if next.Ok() && next.Start() == r.End { val = mval if mval, ok := (lockSetFunctions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok { @@ -278,11 +310,16 @@ func (s *LockSet) Insert(gap LockGapIterator, r LockRange, val Lock) LockIterato } if next.Ok() && next.Start() == r.End { if mval, ok := (lockSetFunctions{}).Merge(r, val, next.Range(), next.Value()); ok { + shrinkMaxGap := LocktrackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get() next.SetStartUnchecked(r.Start) next.SetValue(mval) + if shrinkMaxGap { + gap.node.updateMaxGapLeaf() + } return next } } + return s.InsertWithoutMergingUnchecked(gap, r, val) } @@ -309,11 +346,15 @@ func (s *LockSet) InsertWithoutMerging(gap LockGapIterator, r LockRange, val Loc // Preconditions: r.Start >= gap.Start(); r.End <= gap.End(). func (s *LockSet) InsertWithoutMergingUnchecked(gap LockGapIterator, r LockRange, val Lock) LockIterator { gap = gap.node.rebalanceBeforeInsert(gap) + splitMaxGap := LocktrackGaps != 0 && (gap.node.nrSegments == 0 || gap.Range().Length() == gap.node.maxGap.Get()) copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments]) copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments]) gap.node.keys[gap.index] = r gap.node.values[gap.index] = val gap.node.nrSegments++ + if splitMaxGap { + gap.node.updateMaxGapLeaf() + } return LockIterator{gap.node, gap.index} } @@ -328,12 +369,20 @@ func (s *LockSet) Remove(seg LockIterator) LockGapIterator { seg.SetRangeUnchecked(victim.Range()) seg.SetValue(victim.Value()) + + nextAdjacentNode := seg.NextSegment().node + if LocktrackGaps != 0 { + nextAdjacentNode.updateMaxGapLeaf() + } return s.Remove(victim).NextGap() } copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments]) copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments]) lockSetFunctions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1]) seg.node.nrSegments-- + if LocktrackGaps != 0 { + seg.node.updateMaxGapLeaf() + } return seg.node.rebalanceAfterRemove(LockGapIterator{seg.node, seg.index}) } @@ -383,6 +432,7 @@ func (s *LockSet) MergeUnchecked(first, second LockIterator) LockIterator { first.SetEndUnchecked(second.End()) first.SetValue(mval) + return s.Remove(second).PrevSegment() } } @@ -558,6 +608,12 @@ type Locknode struct { // than "isLeaf" because false must be the correct value for an empty root. hasChildren bool + // The longest gap within this node. If the node is a leaf, it's simply the + // maximum gap among all the (nrSegments+1) gaps formed by its nrSegments keys + // including the 0th and nrSegments-th gap possibly shared with its upper-level + // nodes; if it's a non-leaf node, it's the max of all children's maxGap. + maxGap LockdynamicGap + // Nodes store keys and values in separate arrays to maximize locality in // the common case (scanning keys for lookup). keys [LockmaxDegree - 1]LockRange @@ -603,12 +659,12 @@ func (n *Locknode) nextSibling() *Locknode { // required for insertion, and returns an updated iterator to the position // represented by gap. func (n *Locknode) rebalanceBeforeInsert(gap LockGapIterator) LockGapIterator { - if n.parent != nil { - gap = n.parent.rebalanceBeforeInsert(gap) - } if n.nrSegments < LockmaxDegree-1 { return gap } + if n.parent != nil { + gap = n.parent.rebalanceBeforeInsert(gap) + } if n.parent == nil { left := &Locknode{ @@ -644,6 +700,11 @@ func (n *Locknode) rebalanceBeforeInsert(gap LockGapIterator) LockGapIterator { n.hasChildren = true n.children[0] = left n.children[1] = right + + if LocktrackGaps != 0 { + left.updateMaxGapLocal() + right.updateMaxGapLocal() + } if gap.node != n { return gap } @@ -681,6 +742,11 @@ func (n *Locknode) rebalanceBeforeInsert(gap LockGapIterator) LockGapIterator { } n.nrSegments = LockminDegree - 1 + if LocktrackGaps != 0 { + n.updateMaxGapLocal() + sibling.updateMaxGapLocal() + } + if gap.node != n { return gap } @@ -726,6 +792,11 @@ func (n *Locknode) rebalanceAfterRemove(gap LockGapIterator) LockGapIterator { } n.nrSegments++ sibling.nrSegments-- + + if LocktrackGaps != 0 { + n.updateMaxGapLocal() + sibling.updateMaxGapLocal() + } if gap.node == sibling && gap.index == sibling.nrSegments { return LockGapIterator{n, 0} } @@ -754,6 +825,11 @@ func (n *Locknode) rebalanceAfterRemove(gap LockGapIterator) LockGapIterator { } n.nrSegments++ sibling.nrSegments-- + + if LocktrackGaps != 0 { + n.updateMaxGapLocal() + sibling.updateMaxGapLocal() + } if gap.node == sibling { if gap.index == 0 { return LockGapIterator{n, n.nrSegments} @@ -786,6 +862,7 @@ func (n *Locknode) rebalanceAfterRemove(gap LockGapIterator) LockGapIterator { p.children[0] = nil p.children[1] = nil } + if gap.node == left { return LockGapIterator{p, gap.index} } @@ -832,10 +909,146 @@ func (n *Locknode) rebalanceAfterRemove(gap LockGapIterator) LockGapIterator { p.children[p.nrSegments] = nil p.nrSegments-- + if LocktrackGaps != 0 { + left.updateMaxGapLocal() + } + n = p } } +// updateMaxGapLeaf updates maxGap bottom-up from the calling leaf until no +// necessary update. +// +// Preconditions: n must be a leaf node, trackGaps must be 1. +func (n *Locknode) updateMaxGapLeaf() { + if n.hasChildren { + panic(fmt.Sprintf("updateMaxGapLeaf should always be called on leaf node: %v", n)) + } + max := n.calculateMaxGapLeaf() + if max == n.maxGap.Get() { + + return + } + oldMax := n.maxGap.Get() + n.maxGap.Set(max) + if max > oldMax { + + for p := n.parent; p != nil; p = p.parent { + if p.maxGap.Get() >= max { + + break + } + + p.maxGap.Set(max) + } + return + } + + for p := n.parent; p != nil; p = p.parent { + if p.maxGap.Get() > oldMax { + + break + } + + parentNewMax := p.calculateMaxGapInternal() + if p.maxGap.Get() == parentNewMax { + + break + } + + p.maxGap.Set(parentNewMax) + } +} + +// updateMaxGapLocal updates maxGap of the calling node solely with no +// propagation to ancestor nodes. +// +// Precondition: trackGaps must be 1. +func (n *Locknode) updateMaxGapLocal() { + if !n.hasChildren { + + n.maxGap.Set(n.calculateMaxGapLeaf()) + } else { + + n.maxGap.Set(n.calculateMaxGapInternal()) + } +} + +// calculateMaxGapLeaf iterates the gaps within a leaf node and calculate the +// max. +// +// Preconditions: n must be a leaf node. +func (n *Locknode) calculateMaxGapLeaf() uint64 { + max := LockGapIterator{n, 0}.Range().Length() + for i := 1; i <= n.nrSegments; i++ { + if current := (LockGapIterator{n, i}).Range().Length(); current > max { + max = current + } + } + return max +} + +// calculateMaxGapInternal iterates children's maxGap within an internal node n +// and calculate the max. +// +// Preconditions: n must be a non-leaf node. +func (n *Locknode) calculateMaxGapInternal() uint64 { + max := n.children[0].maxGap.Get() + for i := 1; i <= n.nrSegments; i++ { + if current := n.children[i].maxGap.Get(); current > max { + max = current + } + } + return max +} + +// searchFirstLargeEnoughGap returns the first gap having at least minSize length +// in the subtree rooted by n. If not found, return a terminal gap iterator. +func (n *Locknode) searchFirstLargeEnoughGap(minSize uint64) LockGapIterator { + if n.maxGap.Get() < minSize { + return LockGapIterator{} + } + if n.hasChildren { + for i := 0; i <= n.nrSegments; i++ { + if largeEnoughGap := n.children[i].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() { + return largeEnoughGap + } + } + } else { + for i := 0; i <= n.nrSegments; i++ { + currentGap := LockGapIterator{n, i} + if currentGap.Range().Length() >= minSize { + return currentGap + } + } + } + panic(fmt.Sprintf("invalid maxGap in %v", n)) +} + +// searchLastLargeEnoughGap returns the last gap having at least minSize length +// in the subtree rooted by n. If not found, return a terminal gap iterator. +func (n *Locknode) searchLastLargeEnoughGap(minSize uint64) LockGapIterator { + if n.maxGap.Get() < minSize { + return LockGapIterator{} + } + if n.hasChildren { + for i := n.nrSegments; i >= 0; i-- { + if largeEnoughGap := n.children[i].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() { + return largeEnoughGap + } + } + } else { + for i := n.nrSegments; i >= 0; i-- { + currentGap := LockGapIterator{n, i} + if currentGap.Range().Length() >= minSize { + return currentGap + } + } + } + panic(fmt.Sprintf("invalid maxGap in %v", n)) +} + // A Iterator is conceptually one of: // // - A pointer to a segment in a set; or @@ -1141,6 +1354,114 @@ func (gap LockGapIterator) NextGap() LockGapIterator { return seg.NextGap() } +// NextLargeEnoughGap returns the iterated gap's first next gap with larger +// length than minSize. If not found, return a terminal gap iterator (does NOT +// include this gap itself). +// +// Precondition: trackGaps must be 1. +func (gap LockGapIterator) NextLargeEnoughGap(minSize uint64) LockGapIterator { + if LocktrackGaps != 1 { + panic("set is not tracking gaps") + } + if gap.node != nil && gap.node.hasChildren && gap.index == gap.node.nrSegments { + + gap.node = gap.NextSegment().node + gap.index = 0 + return gap.nextLargeEnoughGapHelper(minSize) + } + return gap.nextLargeEnoughGapHelper(minSize) +} + +// nextLargeEnoughGapHelper is the helper function used by NextLargeEnoughGap +// to do the real recursions. +// +// Preconditions: gap is NOT the trailing gap of a non-leaf node. +func (gap LockGapIterator) nextLargeEnoughGapHelper(minSize uint64) LockGapIterator { + + for gap.node != nil && + (gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == gap.node.nrSegments)) { + gap.node, gap.index = gap.node.parent, gap.node.parentIndex + } + + if gap.node == nil { + return LockGapIterator{} + } + + gap.index++ + for gap.index <= gap.node.nrSegments { + if gap.node.hasChildren { + if largeEnoughGap := gap.node.children[gap.index].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() { + return largeEnoughGap + } + } else { + if gap.Range().Length() >= minSize { + return gap + } + } + gap.index++ + } + gap.node, gap.index = gap.node.parent, gap.node.parentIndex + if gap.node != nil && gap.index == gap.node.nrSegments { + + gap.node, gap.index = gap.node.parent, gap.node.parentIndex + } + return gap.nextLargeEnoughGapHelper(minSize) +} + +// PrevLargeEnoughGap returns the iterated gap's first prev gap with larger or +// equal length than minSize. If not found, return a terminal gap iterator +// (does NOT include this gap itself). +// +// Precondition: trackGaps must be 1. +func (gap LockGapIterator) PrevLargeEnoughGap(minSize uint64) LockGapIterator { + if LocktrackGaps != 1 { + panic("set is not tracking gaps") + } + if gap.node != nil && gap.node.hasChildren && gap.index == 0 { + + gap.node = gap.PrevSegment().node + gap.index = gap.node.nrSegments + return gap.prevLargeEnoughGapHelper(minSize) + } + return gap.prevLargeEnoughGapHelper(minSize) +} + +// prevLargeEnoughGapHelper is the helper function used by PrevLargeEnoughGap +// to do the real recursions. +// +// Preconditions: gap is NOT the first gap of a non-leaf node. +func (gap LockGapIterator) prevLargeEnoughGapHelper(minSize uint64) LockGapIterator { + + for gap.node != nil && + (gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == 0)) { + gap.node, gap.index = gap.node.parent, gap.node.parentIndex + } + + if gap.node == nil { + return LockGapIterator{} + } + + gap.index-- + for gap.index >= 0 { + if gap.node.hasChildren { + if largeEnoughGap := gap.node.children[gap.index].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() { + return largeEnoughGap + } + } else { + if gap.Range().Length() >= minSize { + return gap + } + } + gap.index-- + } + gap.node, gap.index = gap.node.parent, gap.node.parentIndex + if gap.node != nil && gap.index == 0 { + + gap.node, gap.index = gap.node.parent, gap.node.parentIndex + } + return gap.prevLargeEnoughGapHelper(minSize) +} + // segmentBeforePosition returns the predecessor segment of the position given // by n.children[i], which may or may not contain a child. If no such segment // exists, segmentBeforePosition returns a terminal iterator. @@ -1207,7 +1528,15 @@ func (n *Locknode) writeDebugString(buf *bytes.Buffer, prefix string) { child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i)) } buf.WriteString(prefix) - buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i])) + if n.hasChildren { + if LocktrackGaps != 0 { + buf.WriteString(fmt.Sprintf("- % 3d: %v => %v, maxGap: %d\n", i, n.keys[i], n.values[i], n.maxGap.Get())) + } else { + buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i])) + } + } else { + buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i])) + } } if child := n.children[n.nrSegments]; child != nil { child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments)) @@ -1259,6 +1588,46 @@ func (s *LockSet) ImportSortedSlices(sds *LockSegmentDataSlices) error { } return nil } + +// segmentTestCheck returns an error if s is incorrectly sorted, does not +// contain exactly expectedSegments segments, or contains a segment which +// fails the passed check. +// +// This should be used only for testing, and has been added to this package for +// templating convenience. +func (s *LockSet) segmentTestCheck(expectedSegments int, segFunc func(int, LockRange, Lock) error) error { + havePrev := false + prev := uint64(0) + nrSegments := 0 + for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { + next := seg.Start() + if havePrev && prev >= next { + return fmt.Errorf("incorrect order: key %d (segment %d) >= key %d (segment %d)", prev, nrSegments-1, next, nrSegments) + } + if segFunc != nil { + if err := segFunc(nrSegments, seg.Range(), seg.Value()); err != nil { + return err + } + } + prev = next + havePrev = true + nrSegments++ + } + if nrSegments != expectedSegments { + return fmt.Errorf("incorrect number of segments: got %d, wanted %d", nrSegments, expectedSegments) + } + return nil +} + +// countSegments counts the number of segments in the set. +// +// Similar to Check, this should only be used for testing. +func (s *LockSet) countSegments() (segments int) { + for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { + segments++ + } + return segments +} func (s *LockSet) saveRoot() *LockSegmentDataSlices { return s.ExportSortedSlices() } |