summaryrefslogtreecommitdiffhomepage
path: root/benchmarks/harness/__init__.py
diff options
context:
space:
mode:
authorJamie Liu <jamieliu@google.com>2020-06-11 18:33:35 -0700
committergVisor bot <gvisor-bot@google.com>2020-06-11 18:34:53 -0700
commit77c206e3719962d27cc60781ca59712b040587ab (patch)
tree1bcddd28e19dc3bbc60367c3c25ea392f1b480a1 /benchmarks/harness/__init__.py
parentdc4e0157ef09632a25575810a70846ea81c4dd6b (diff)
Add //pkg/sentry/fsimpl/overlay.
Major differences from existing overlay filesystems: - Linux allows lower layers in an overlay to require revalidation, but not the upper layer. VFS1 allows the upper layer in an overlay to require revalidation, but not the lower layer. VFS2 does not allow any layers to require revalidation. (Now that vfs.MkdirOptions.ForSyntheticMountpoint exists, no uses of overlay in VFS1 are believed to require upper layer revalidation; in particular, the requirement that the upper layer support the creation of "trusted." extended attributes for whiteouts effectively required the upper filesystem to be tmpfs in most cases.) - Like VFS1, but unlike Linux, VFS2 overlay does not attempt to make mutations of the upper layer atomic using a working directory and features like RENAME_WHITEOUT. (This may change in the future, since not having a working directory makes error recovery for some operations, e.g. rmdir, particularly painful.) - Like Linux, but unlike VFS1, VFS2 represents whiteouts using character devices with rdev == 0; the equivalent of the whiteout attribute on directories is xattr trusted.overlay.opaque = "y"; and there is no equivalent to the whiteout attribute on non-directories since non-directories are never merged with lower layers. - Device and inode numbers work as follows: - In Linux, modulo the xino feature and a special case for when all layers are the same filesystem: - Directories use the overlay filesystem's device number and an ephemeral inode number assigned by the overlay. - Non-directories that have been copied up use the device and inode number assigned by the upper filesystem. - Non-directories that have not been copied up use a per-(overlay, layer)-pair device number and the inode number assigned by the lower filesystem. - In VFS1, device and inode numbers always come from the lower layer unless "whited out"; this has the adverse effect of requiring interaction with the lower filesystem even for non-directory files that exist on the upper layer. - In VFS2, device and inode numbers are assigned as in Linux, except that xino and the samefs special case are not supported. - Like Linux, but unlike VFS1, VFS2 does not attempt to maintain memory mapping coherence across copy-up. (This may have to change in the future, as users may be dependent on this property.) - Like Linux, but unlike VFS1, VFS2 uses the overlayfs mounter's credentials when interacting with the overlay's layers, rather than the caller's. - Like Linux, but unlike VFS1, VFS2 permits multiple lower layers in an overlay. - Like Linux, but unlike VFS1, VFS2's overlay filesystem is application-mountable. Updates #1199 PiperOrigin-RevId: 316019067
Diffstat (limited to 'benchmarks/harness/__init__.py')
0 files changed, 0 insertions, 0 deletions