// Copyright (C) 2014 Nippon Telegraph and Telephone Corporation. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or // implied. // See the License for the specific language governing permissions and // limitations under the License. package table import ( "bytes" "encoding/binary" "encoding/json" "fmt" log "github.com/Sirupsen/logrus" api "github.com/osrg/gobgp/api" "github.com/osrg/gobgp/config" "github.com/osrg/gobgp/packet" "net" ) const ( BPR_UNKNOWN = "Unknown" BPR_ONLY_PATH = "Only Path" BPR_REACHABLE_NEXT_HOP = "Reachable Next Hop" BPR_HIGHEST_WEIGHT = "Highest Weight" BPR_LOCAL_PREF = "Local Pref" BPR_LOCAL_ORIGIN = "Local Origin" BPR_ASPATH = "AS Path" BPR_ORIGIN = "Origin" BPR_MED = "MED" BPR_ASN = "ASN" BPR_IGP_COST = "IGP Cost" BPR_ROUTER_ID = "Router ID" ) func toRadixkey(b []byte, max uint8) string { var buffer bytes.Buffer for i := 0; i < len(b) && i < int(max); i++ { buffer.WriteString(fmt.Sprintf("%08b", b[i])) } return buffer.String()[:max] } func IpToRadixkey(prefix net.IP, prefixLen uint8) string { b := prefix.To4() if b == nil { b = prefix.To16() } return toRadixkey(b, prefixLen) } func CidrToRadixkey(cidr string) string { _, n, _ := net.ParseCIDR(cidr) ones, _ := n.Mask.Size() return toRadixkey(n.IP, uint8(ones)) } type PeerInfo struct { AS uint32 ID net.IP LocalAS uint32 LocalID net.IP Address net.IP RouteReflectorClient bool RouteReflectorClusterID net.IP } func (lhs *PeerInfo) Equal(rhs *PeerInfo) bool { if lhs == rhs { return true } if rhs == nil { return false } if (lhs.AS == rhs.AS) && lhs.ID.Equal(rhs.ID) && lhs.LocalID.Equal(rhs.LocalID) && lhs.Address.Equal(rhs.Address) { return true } return false } func (i *PeerInfo) String() string { if i.Address == nil { return "local" } s := bytes.NewBuffer(make([]byte, 0, 64)) s.WriteString(fmt.Sprintf("{ %s | ", i.Address)) s.WriteString(fmt.Sprintf("as: %d", i.AS)) s.WriteString(fmt.Sprintf(", id: %s", i.ID)) if i.RouteReflectorClient { s.WriteString(fmt.Sprintf(", cluster-id: %s", i.RouteReflectorClusterID)) } s.WriteString(" }") return s.String() } func NewPeerInfo(g *config.Global, p *config.Neighbor) *PeerInfo { id := net.ParseIP(string(p.RouteReflector.RouteReflectorConfig.RouteReflectorClusterId)).To4() return &PeerInfo{ AS: p.NeighborConfig.PeerAs, LocalAS: g.GlobalConfig.As, LocalID: g.GlobalConfig.RouterId, Address: p.NeighborConfig.NeighborAddress, RouteReflectorClient: p.RouteReflector.RouteReflectorConfig.RouteReflectorClient, RouteReflectorClusterID: id, } } type Destination struct { routeFamily bgp.RouteFamily nlri bgp.AddrPrefixInterface knownPathList []*Path withdrawList []*Path newPathList []*Path bestPath *Path bestPathReason string RadixKey string } func NewDestination(nlri bgp.AddrPrefixInterface) *Destination { d := &Destination{ routeFamily: bgp.AfiSafiToRouteFamily(nlri.AFI(), nlri.SAFI()), nlri: nlri, knownPathList: make([]*Path, 0), withdrawList: make([]*Path, 0), newPathList: make([]*Path, 0), } switch d.routeFamily { case bgp.RF_IPv4_UC, bgp.RF_IPv6_UC: d.RadixKey = CidrToRadixkey(nlri.String()) } return d } func (dd *Destination) MarshalJSON() ([]byte, error) { return json.Marshal(dd.ToApiStruct()) } func (dd *Destination) ToApiStruct() *api.Destination { prefix := dd.GetNlri().String() paths := func(arg []*Path) []*api.Path { ret := make([]*api.Path, 0, len(arg)) for _, p := range arg { pp := p.ToApiStruct() if dd.GetBestPath().Equal(p) { pp.Best = true } ret = append(ret, pp) } return ret }(dd.knownPathList) return &api.Destination{ Prefix: prefix, Paths: paths, } } func (dd *Destination) getRouteFamily() bgp.RouteFamily { return dd.routeFamily } func (dd *Destination) setRouteFamily(routeFamily bgp.RouteFamily) { dd.routeFamily = routeFamily } func (dd *Destination) GetNlri() bgp.AddrPrefixInterface { return dd.nlri } func (dd *Destination) setNlri(nlri bgp.AddrPrefixInterface) { dd.nlri = nlri } func (dd *Destination) getBestPathReason() string { return dd.bestPathReason } func (dd *Destination) setBestPathReason(reason string) { dd.bestPathReason = reason } func (dd *Destination) GetBestPath() *Path { return dd.bestPath } func (dd *Destination) setBestPath(path *Path) { dd.bestPath = path } func (dd *Destination) GetKnownPathList() []*Path { return dd.knownPathList } func (dd *Destination) setKnownPathList(List []*Path) { dd.knownPathList = List } func (dd *Destination) addWithdraw(withdraw *Path) { dd.validatePath(withdraw) dd.withdrawList = append(dd.withdrawList, withdraw) } func (dd *Destination) addNewPath(newPath *Path) { dd.validatePath(newPath) dd.newPathList = append(dd.newPathList, newPath) } func (dd *Destination) validatePath(path *Path) { if path == nil || path.GetRouteFamily() != dd.routeFamily { log.WithFields(log.Fields{ "Topic": "Table", "Key": dd.GetNlri().String(), "Path": path, "ExpectedRF": dd.routeFamily, }).Error("path is nil or invalid route family") } } // Calculates best-path among known paths for this destination. // // Returns: - Best path // // Modifies destination's state related to stored paths. Removes withdrawn // paths from known paths. Also, adds new paths to known paths. func (dest *Destination) Calculate() (*Path, string, error) { // First remove the withdrawn paths. // Note: If we want to support multiple paths per destination we may // have to maintain sent-routes per path. dest.removeWithdrawals() // Have to select best-path from available paths and new paths. // If we do not have any paths, then we no longer have best path. if len(dest.knownPathList) == 0 && len(dest.newPathList) == 1 { // If we do not have any old but one new path // it becomes best path. dest.knownPathList = append(dest.knownPathList, dest.newPathList[0]) dest.newPathList, _ = deleteAt(dest.newPathList, 0) log.WithFields(log.Fields{ "Topic": "Table", "Key": dest.GetNlri().String(), "Path": dest.knownPathList[0], "Reason": BPR_ONLY_PATH, }).Debug("best path") return dest.knownPathList[0], BPR_ONLY_PATH, nil } // If we have a new version of old/known path we use it and delete old // one. dest.removeOldPaths() log.Debugf("removeOldPaths") // Collect all new paths into known paths. dest.knownPathList = append(dest.knownPathList, dest.newPathList...) // Clear new paths as we copied them. dest.newPathList = make([]*Path, 0) // If we do not have any paths to this destination, then we do not have // new best path. if len(dest.knownPathList) == 0 { return nil, BPR_UNKNOWN, nil } // Compute new best path currentBestPath, reason, e := dest.computeKnownBestPath() if e != nil { log.Error(e) } return currentBestPath, reason, e } //"""Removes withdrawn paths. // //Note: //We may have disproportionate number of withdraws compared to know paths //since not all paths get installed into the table due to bgp policy and //we can receive withdraws for such paths and withdrawals may not be //stopped by the same policies. //""" func (dest *Destination) removeWithdrawals() { // If we have no withdrawals, we have nothing to do. if len(dest.withdrawList) == 0 { return } log.WithFields(log.Fields{ "Topic": "Table", "Key": dest.GetNlri().String(), "Length": len(dest.withdrawList), }).Debug("Removing withdrawals") // If we have some withdrawals and no know-paths, it means it is safe to // delete these withdraws. if len(dest.knownPathList) == 0 { log.WithFields(log.Fields{ "Topic": "Table", "Key": dest.GetNlri().String(), "Length": len(dest.withdrawList), }).Debug("Found withdrawals for path(s) that did not get installed") dest.withdrawList = dest.withdrawList[len(dest.withdrawList):] } // If we have some known paths and some withdrawals, we find matches and // delete them first. matches := make(map[string]*Path) wMatches := make(map[string]*Path) // Match all withdrawals from destination paths. for _, withdraw := range dest.withdrawList { var isFound bool = false for _, path := range dest.knownPathList { // We have a match if the source are same. // TODO add GetSource to Path interface if path.GetSource().Equal(withdraw.GetSource()) { isFound = true matches[path.String()] = path wMatches[withdraw.String()] = withdraw // One withdraw can remove only one path. break } } // We do no have any match for this withdraw. if !isFound { log.WithFields(log.Fields{ "Topic": "Table", "Key": dest.GetNlri().String(), "Path": withdraw, }).Debug("No matching path for withdraw found, may be path was not installed into table") } } // If we have partial match. if len(matches) != len(dest.withdrawList) { log.WithFields(log.Fields{ "Topic": "Table", "Key": dest.GetNlri().String(), "MatchLength": len(matches), "WithdrawLength": len(dest.withdrawList), }).Debug("Did not find match for some withdrawals.") } // Clear matching paths and withdrawals. for _, path := range matches { var result bool = false dest.knownPathList, result = removeWithPath(dest.knownPathList, path) if !result { log.WithFields(log.Fields{ "Topic": "Table", "Key": dest.GetNlri().String(), "Path": path, }).Debug("could not remove path from knownPathList") } } for _, path := range wMatches { var result bool = false dest.withdrawList, result = removeWithPath(dest.withdrawList, path) if !result { log.WithFields(log.Fields{ "Topic": "Table", "Key": dest.GetNlri().String(), "Path": path, }).Debug("could not remove path from withdrawList") } } } func (dest *Destination) computeKnownBestPath() (*Path, string, error) { // """Computes the best path among known paths. // // Returns current best path among `knownPaths`. if len(dest.knownPathList) == 0 { return nil, "", fmt.Errorf("Need at-least one known path to compute best path") } log.Debugf("computeKnownBestPath known pathlist: %d", len(dest.knownPathList)) // We pick the first path as current best path. This helps in breaking // tie between two new paths learned in one cycle for which best-path // calculation steps lead to tie. currentBestPath := dest.knownPathList[0] bestPathReason := BPR_ONLY_PATH for _, nextPath := range dest.knownPathList[1:] { // Compare next path with current best path. newBestPath, reason := computeBestPath(currentBestPath, nextPath) bestPathReason = reason if newBestPath != nil { currentBestPath = newBestPath } } return currentBestPath, bestPathReason, nil } func (dest *Destination) removeOldPaths() { // """Identifies which of known paths are old and removes them. // // Known paths will no longer have paths whose new version is present in // new paths. // """ newPaths := dest.newPathList knownPaths := dest.knownPathList for _, newPath := range newPaths { if newPath.NoImplicitWithdraw { continue } oldPaths := make([]*Path, 0) for _, path := range knownPaths { // Here we just check if source is same and not check if path // version num. as newPaths are implicit withdrawal of old // paths and when doing RouteRefresh (not EnhancedRouteRefresh) // we get same paths again. if newPath.GetSource().Equal(path.GetSource()) { oldPaths = append(oldPaths, path) break } } for _, oldPath := range oldPaths { match := false knownPaths, match = removeWithPath(knownPaths, oldPath) if !match { log.WithFields(log.Fields{ "Topic": "Table", "Key": dest.GetNlri().String(), "Path": oldPath, }).Debug("not matched") } log.WithFields(log.Fields{ "Topic": "Table", "Key": dest.GetNlri().String(), "Path": oldPath, }).Debug("Implicit withdrawal of old path, since we have learned new path from the same peer") } } dest.knownPathList = knownPaths } func deleteAt(list []*Path, pos int) ([]*Path, bool) { if list != nil { list = append(list[:pos], list[pos+1:]...) return list, true } return nil, false } // remove item from slice by object itself func removeWithPath(list []*Path, path *Path) ([]*Path, bool) { for index, p := range list { if p == path { pathList := append(list[:index], list[index+1:]...) return pathList, true } } return list, false } func computeBestPath(path1, path2 *Path) (*Path, string) { //Compares given paths and returns best path. // //Parameters: // -`path1`: first path to compare // -`path2`: second path to compare // // Best path processing will involve following steps: // 1. Select a path with a reachable next hop. // 2. Select the path with the highest weight. // 3. If path weights are the same, select the path with the highest // local preference value. // 4. Prefer locally originated routes (network routes, redistributed // routes, or aggregated routes) over received routes. // 5. Select the route with the shortest AS-path length. // 6. If all paths have the same AS-path length, select the path based // on origin: IGP is preferred over EGP; EGP is preferred over // Incomplete. // 7. If the origins are the same, select the path with lowest MED // value. // 8. If the paths have the same MED values, select the path learned // via EBGP over one learned via IBGP. // 9. Select the route with the lowest IGP cost to the next hop. // 10. Select the route received from the peer with the lowest BGP // router ID. // // Returns None if best-path among given paths cannot be computed else best // path. // Assumes paths from NC has source equal to None. // var bestPath *Path bestPathReason := BPR_UNKNOWN // Follow best path calculation algorithm steps. // compare by reachability if bestPath == nil { bestPath = compareByReachableNexthop(path1, path2) bestPathReason = BPR_REACHABLE_NEXT_HOP } if bestPath == nil { bestPath = compareByHighestWeight(path1, path2) bestPathReason = BPR_HIGHEST_WEIGHT } if bestPath == nil { bestPath = compareByLocalPref(path1, path2) bestPathReason = BPR_LOCAL_PREF } if bestPath == nil { bestPath = compareByLocalOrigin(path1, path2) bestPathReason = BPR_LOCAL_ORIGIN } if bestPath == nil { bestPath = compareByASPath(path1, path2) bestPathReason = BPR_ASPATH } if bestPath == nil { bestPath = compareByOrigin(path1, path2) bestPathReason = BPR_ORIGIN } if bestPath == nil { bestPath = compareByMED(path1, path2) bestPathReason = BPR_MED } if bestPath == nil { bestPath = compareByASNumber(path1, path2) bestPathReason = BPR_ASN } if bestPath == nil { bestPath = compareByIGPCost(path1, path2) bestPathReason = BPR_IGP_COST } if bestPath == nil { var e error = nil bestPath, e = compareByRouterID(path1, path2) if e != nil { log.Error(e) } bestPathReason = BPR_ROUTER_ID } if bestPath == nil { bestPathReason = BPR_UNKNOWN } return bestPath, bestPathReason } func compareByReachableNexthop(path1, path2 *Path) *Path { // Compares given paths and selects best path based on reachable next-hop. // // If no path matches this criteria, return None. // However RouteServer doesn't need to check reachability, so return nil. log.Debugf("enter compareByReachableNexthop -- path1: %s, path2: %s", path1, path2) return nil } func compareByHighestWeight(path1, path2 *Path) *Path { // Selects a path with highest weight. // // Weight is BGPS specific parameter. It is local to the router on which it // is configured. // Return: // nil if best path among given paths cannot be decided, else best path. log.Debugf("enter compareByHighestWeight -- path1: %s, path2: %s", path1, path2) return nil } func compareByLocalPref(path1, path2 *Path) *Path { // Selects a path with highest local-preference. // // Unlike the weight attribute, which is only relevant to the local // router, local preference is an attribute that routers exchange in the // same AS. Highest local-pref is preferred. If we cannot decide, // we return None. // // # Default local-pref values is 100 log.Debugf("enter compareByLocalPref") _, attribute1 := path1.getPathAttr(bgp.BGP_ATTR_TYPE_LOCAL_PREF) _, attribute2 := path2.getPathAttr(bgp.BGP_ATTR_TYPE_LOCAL_PREF) if attribute1 == nil || attribute2 == nil { return nil } localPref1 := attribute1.(*bgp.PathAttributeLocalPref).Value localPref2 := attribute2.(*bgp.PathAttributeLocalPref).Value // Highest local-preference value is preferred. if localPref1 > localPref2 { return path1 } else if localPref1 < localPref2 { return path2 } else { return nil } } func compareByLocalOrigin(path1, path2 *Path) *Path { // Select locally originating path as best path. // Locally originating routes are network routes, redistributed routes, // or aggregated routes. // Returns None if given paths have same source. // // If both paths are from same sources we cannot compare them here. log.Debugf("enter compareByLocalOrigin") if path1.GetSource().Equal(path2.GetSource()) { return nil } // Here we consider prefix from NC as locally originating static route. // Hence it is preferred. if path1.IsLocal() { return path1 } if path2.IsLocal() { return path2 } return nil } func compareByASPath(path1, path2 *Path) *Path { // Calculated the best-paths by comparing as-path lengths. // // Shortest as-path length is preferred. If both path have same lengths, // we return None. log.Debugf("enter compareByASPath") _, attribute1 := path1.getPathAttr(bgp.BGP_ATTR_TYPE_AS_PATH) _, attribute2 := path2.getPathAttr(bgp.BGP_ATTR_TYPE_AS_PATH) if attribute1 == nil || attribute2 == nil { log.WithFields(log.Fields{ "Topic": "Table", "Key": "compareByASPath", "ASPath1": attribute1, "ASPath2": attribute2, }).Warn("can't compare ASPath because it's not present") } l1 := path1.GetAsPathLen() l2 := path2.GetAsPathLen() log.Debugf("compareByASPath -- l1: %d, l2: %d", l1, l2) if l1 > l2 { return path2 } else if l1 < l2 { return path1 } else { return nil } } func compareByOrigin(path1, path2 *Path) *Path { // Select the best path based on origin attribute. // // IGP is preferred over EGP; EGP is preferred over Incomplete. // If both paths have same origin, we return None. log.Debugf("enter compareByOrigin") _, attribute1 := path1.getPathAttr(bgp.BGP_ATTR_TYPE_ORIGIN) _, attribute2 := path2.getPathAttr(bgp.BGP_ATTR_TYPE_ORIGIN) if attribute1 == nil || attribute2 == nil { log.WithFields(log.Fields{ "Topic": "Table", "Key": "compareByOrigin", "Origin1": attribute1, "Origin2": attribute2, }).Error("can't compare origin because it's not present") return nil } origin1, n1 := binary.Uvarint(attribute1.(*bgp.PathAttributeOrigin).Value) origin2, n2 := binary.Uvarint(attribute2.(*bgp.PathAttributeOrigin).Value) log.Debugf("compareByOrigin -- origin1: %d(%d), origin2: %d(%d)", origin1, n1, origin2, n2) // If both paths have same origins if origin1 == origin2 { return nil } else if origin1 < origin2 { return path1 } else { return path2 } } func compareByMED(path1, path2 *Path) *Path { // Select the path based with lowest MED value. // // If both paths have same MED, return None. // By default, a route that arrives with no MED value is treated as if it // had a MED of 0, the most preferred value. // RFC says lower MED is preferred over higher MED value. // compare MED among not only same AS path but also all path, // like bgp always-compare-med log.Debugf("enter compareByMED") getMed := func(path *Path) uint32 { _, attribute := path.getPathAttr(bgp.BGP_ATTR_TYPE_MULTI_EXIT_DISC) if attribute == nil { return 0 } med := attribute.(*bgp.PathAttributeMultiExitDisc).Value return med } med1 := getMed(path1) med2 := getMed(path2) log.Debugf("compareByMED -- med1: %d, med2: %d", med1, med2) if med1 == med2 { return nil } else if med1 < med2 { return path1 } return path2 } func compareByASNumber(path1, path2 *Path) *Path { //Select the path based on source (iBGP/eBGP) peer. // //eBGP path is preferred over iBGP. If both paths are from same kind of //peers, return None. log.Debugf("enter compareByASNumber") log.Debugf("compareByASNumber -- p1Asn: %d, p2Asn: %d", path1.source.AS, path2.source.AS) // If one path is from ibgp peer and another is from ebgp peer, take the ebgp path if path1.IsIBGP() != path2.IsIBGP() { if path1.IsIBGP() { return path2 } return path1 } // If both paths are from ebgp or ibpg peers, we cannot decide. return nil } func compareByIGPCost(path1, path2 *Path) *Path { // Select the route with the lowest IGP cost to the next hop. // // Return None if igp cost is same. // Currently BGPS has no concept of IGP and IGP cost. log.Debugf("enter compareByIGPCost -- path1: %v, path2: %v", path1, path2) return nil } func compareByRouterID(path1, path2 *Path) (*Path, error) { // Select the route received from the peer with the lowest BGP router ID. // // If both paths are eBGP paths, then we do not do any tie breaking, i.e we do // not pick best-path based on this criteria. // RFC: http://tools.ietf.org/html/rfc5004 // We pick best path between two iBGP paths as usual. log.Debugf("enter compareByRouterID") // If both paths are from NC we have same router Id, hence cannot compare. if path1.IsLocal() && path2.IsLocal() { return nil, nil } // If both paths are from eBGP peers, then according to RFC we need // not tie break using router id. if !path1.IsIBGP() && !path2.IsIBGP() { return nil, nil } if path1.IsIBGP() != path2.IsIBGP() { return nil, fmt.Errorf("This method does not support comparing ebgp with ibgp path") } // At least one path is not coming from NC, so we get local bgp id. id1 := binary.BigEndian.Uint32(path1.source.ID) id2 := binary.BigEndian.Uint32(path2.source.ID) // If both router ids are same/equal we cannot decide. // This case is possible since router ids are arbitrary. if id1 == id2 { return nil, nil } else if id1 < id2 { return path1, nil } else { return path2, nil } } func (dest *Destination) String() string { return fmt.Sprintf("Destination NLRI: %s", dest.nlri.String()) }