// Copyright (C) 2014, 2015 Nippon Telegraph and Telephone Corporation. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or // implied. // See the License for the specific language governing permissions and // limitations under the License. package zebra import ( "encoding/binary" "net" "syscall" "testing" "github.com/stretchr/testify/require" "github.com/stretchr/testify/assert" ) func Test_Header(t *testing.T) { assert := assert.New(t) command := map[uint8]API_TYPE{ 2: IPV4_ROUTE_ADD, 3: IPV4_ROUTE_ADD, 4: FRR_IPV4_ROUTE_ADD, 5: FRR_ZAPI5_IPV4_ROUTE_ADD, 6: FRR_ZAPI6_ROUTE_ADD, } for v := MinZapiVer; v <= MaxZapiVer; v++ { //DecodeFromBytes buf := make([]byte, HeaderSize(v)) binary.BigEndian.PutUint16(buf[0:], HeaderSize(v)) buf[2] = HEADER_MARKER if v >= 4 { buf[2] = FRR_HEADER_MARKER } buf[3] = v switch v { case 2: binary.BigEndian.PutUint16(buf[4:], uint16(command[v])) case 3, 4: binary.BigEndian.PutUint16(buf[4:], uint16(0)) // vrf id binary.BigEndian.PutUint16(buf[6:], uint16(command[v])) case 5, 6: binary.BigEndian.PutUint32(buf[4:], uint32(0)) // vrf id binary.BigEndian.PutUint16(buf[8:], uint16(command[v])) } h := &Header{} err := h.DecodeFromBytes(buf) assert.Equal(nil, err) //Serialize buf, err = h.Serialize() assert.Equal(nil, err) h2 := &Header{} err = h2.DecodeFromBytes(buf) assert.Equal(nil, err) assert.Equal(h, h2) // header_size mismatch buf = make([]byte, HeaderSize(v)-1) // mismatch value binary.BigEndian.PutUint16(buf[0:], HeaderSize(v)) buf[2] = HEADER_MARKER if v >= 4 { buf[2] = FRR_HEADER_MARKER } buf[3] = v h3 := &Header{} err = h3.DecodeFromBytes(buf) assert.NotEqual(nil, err, "err should be nil") } } func Test_InterfaceUpdateBody(t *testing.T) { assert := assert.New(t) addSize := map[uint8]uint8{2: 39, 3: 44, 4: 50, 5: 50, 6: 50} for v := MinZapiVer; v <= MaxZapiVer; v++ { //DecodeFromBytes buf := make([]byte, INTERFACE_NAMSIZ+addSize[v]) pos := INTERFACE_NAMSIZ binary.BigEndian.PutUint32(buf[pos:], 1) //Index pos += 4 buf[pos] = byte(INTERFACE_ACTIVE) //Status pos += 1 binary.BigEndian.PutUint64(buf[pos:], 1) pos += 8 // flags if v > 3 { buf[pos] = byte(PTM_ENABLE_OFF) // ptm enable pos += 1 buf[pos] = byte(PTM_STATUS_UNKNOWN) // ptm status pos += 1 } binary.BigEndian.PutUint32(buf[pos:], 1) pos += 4 // metric if v > 3 { binary.BigEndian.PutUint32(buf[pos:], 10000) pos += 4 // speed } binary.BigEndian.PutUint32(buf[pos:], 1500) pos += 4 // MTU binary.BigEndian.PutUint32(buf[pos:], 1500) pos += 4 // MTU6 binary.BigEndian.PutUint32(buf[pos:], 200) pos += 4 // bandwidth if v > 2 { binary.BigEndian.PutUint32(buf[pos:], uint32(LINK_TYPE_ETHER)) pos += 4 // Linktype } binary.BigEndian.PutUint32(buf[pos:], 6) pos += 4 // hwaddr_len mac, _ := net.ParseMAC("01:23:45:67:89:ab") copy(buf[pos:pos+6], []byte(mac)) pos += 6 if v > 2 { buf[pos] = byte(0) // link param pos += 1 } b := &InterfaceUpdateBody{} err := b.DecodeFromBytes(buf, v) assert.Equal(nil, err) assert.Equal("01:23:45:67:89:ab", b.HardwareAddr.String()) buf = make([]byte, INTERFACE_NAMSIZ+32) //size mismatch b = &InterfaceUpdateBody{} err = b.DecodeFromBytes(buf, v) assert.NotEqual(nil, err) } } func Test_InterfaceAddressUpdateBody(t *testing.T) { assert := assert.New(t) for v := MinZapiVer; v <= MaxZapiVer; v++ { //DecodeFromBytes buf := make([]byte, 15) pos := 0 binary.BigEndian.PutUint32(buf[pos:], 0) // index pos += 4 buf[pos] = 0x01 // flags pos += 1 buf[pos] = 0x2 // family pos += 1 ip := net.ParseIP("192.168.100.1").To4() // prefix copy(buf[pos:pos+4], []byte(ip)) pos += 4 buf[pos] = byte(24) // prefix len pos += 1 dst := net.ParseIP("192.168.100.255").To4() // destination copy(buf[pos:pos+4], []byte(dst)) b := &InterfaceAddressUpdateBody{} err := b.DecodeFromBytes(buf, v) require.NoError(t, err) assert.Equal(uint32(0), b.Index) assert.Equal(INTERFACE_ADDRESS_FLAG(1), b.Flags) assert.Equal("192.168.100.1", b.Prefix.String()) assert.Equal(uint8(24), b.Length) assert.Equal("192.168.100.255", b.Destination.String()) // af invalid buf[5] = 0x4 pos += 1 b = &InterfaceAddressUpdateBody{} err = b.DecodeFromBytes(buf, v) assert.NotEqual(nil, err) } } func Test_RouterIDUpdateBody(t *testing.T) { assert := assert.New(t) for v := MinZapiVer; v <= MaxZapiVer; v++ { //DecodeFromBytes buf := make([]byte, 6) pos := 0 buf[pos] = 0x2 pos += 1 ip := net.ParseIP("192.168.100.1").To4() copy(buf[pos:pos+4], []byte(ip)) pos += 4 buf[pos] = byte(32) b := &RouterIDUpdateBody{} err := b.DecodeFromBytes(buf, v) assert.Equal(nil, err) assert.Equal("192.168.100.1", b.Prefix.String()) assert.Equal(uint8(32), b.Length) // af invalid buf[0] = 0x4 pos += 1 b = &RouterIDUpdateBody{} err = b.DecodeFromBytes(buf, v) assert.NotEqual(nil, err) } } func Test_IPRouteBody_IPv4(t *testing.T) { assert := assert.New(t) size := map[uint8]uint8{2: 26, 3: 26, 4: 31, 5: 38, 6: 38} command := map[uint8]API_TYPE{ 2: IPV4_ROUTE_ADD, 3: IPV4_ROUTE_ADD, 4: FRR_IPV4_ROUTE_ADD, 5: FRR_ZAPI5_IPV4_ROUTE_ADD, 6: FRR_ZAPI6_ROUTE_ADD, } routeType := map[uint8]ROUTE_TYPE{ 2: ROUTE_CONNECT, 3: ROUTE_CONNECT, 4: FRR_ROUTE_CONNECT, 5: FRR_ZAPI5_ROUTE_CONNECT, 6: FRR_ZAPI6_ROUTE_CONNECT, } message := map[uint8]MESSAGE_FLAG{ 2: MESSAGE_NEXTHOP | MESSAGE_IFINDEX | MESSAGE_DISTANCE | MESSAGE_METRIC | MESSAGE_MTU, 3: MESSAGE_NEXTHOP | MESSAGE_IFINDEX | MESSAGE_DISTANCE | MESSAGE_METRIC | MESSAGE_MTU, 4: FRR_MESSAGE_NEXTHOP | FRR_MESSAGE_IFINDEX | FRR_MESSAGE_DISTANCE | FRR_MESSAGE_METRIC | FRR_MESSAGE_MTU, 5: FRR_ZAPI5_MESSAGE_NEXTHOP | FRR_ZAPI5_MESSAGE_DISTANCE | FRR_ZAPI5_MESSAGE_METRIC | FRR_ZAPI5_MESSAGE_MTU, 6: FRR_ZAPI5_MESSAGE_NEXTHOP | FRR_ZAPI5_MESSAGE_DISTANCE | FRR_ZAPI5_MESSAGE_METRIC | FRR_ZAPI5_MESSAGE_MTU, } messageWithoutNexthop := map[uint8]MESSAGE_FLAG{ 2: MESSAGE_DISTANCE | MESSAGE_METRIC, 3: MESSAGE_DISTANCE | MESSAGE_METRIC, 4: FRR_MESSAGE_DISTANCE | FRR_MESSAGE_METRIC, 5: FRR_ZAPI5_MESSAGE_DISTANCE | FRR_ZAPI5_MESSAGE_METRIC, 6: FRR_ZAPI5_MESSAGE_DISTANCE | FRR_ZAPI5_MESSAGE_METRIC, } for v := MinZapiVer; v <= MaxZapiVer; v++ { //DecodeFromBytes IPV4_ROUTE buf := make([]byte, size[v]) buf[0] = byte(routeType[v]) pos := 1 switch v { case 2, 3: buf[pos] = byte(FLAG_SELECTED) pos += 1 case 4, 5, 6: binary.BigEndian.PutUint16(buf[pos:], 0) //Instance pos += 2 binary.BigEndian.PutUint32(buf[pos:], uint32(FLAG_SELECTED)) pos += 4 } buf[pos] = byte(message[v]) pos += 1 if v > 4 { buf[pos] = byte(FRR_ZAPI5_SAFI_UNICAST) //SAFI pos += 1 buf[pos] = byte(syscall.AF_INET) //Family pos += 1 } buf[pos] = 24 // PrefixLen pos += 1 ip := net.ParseIP("192.168.100.0").To4() copy(buf[pos:pos+3], []byte(ip)) pos += 3 switch v { case 2, 3, 4: buf[pos] = byte(1) // Number of Nexthops pos += 1 case 5, 6: binary.BigEndian.PutUint16(buf[pos:], 1) // Number of Nexthops pos += 2 binary.BigEndian.PutUint32(buf[pos:], 0) // vrfid pos += 4 buf[pos] = byte(FRR_NEXTHOP_TYPE_IPV4_IFINDEX) pos += 1 } nexthop := net.ParseIP("0.0.0.0").To4() copy(buf[pos:pos+4], []byte(nexthop)) pos += 4 if v < 5 { buf[pos] = 1 // Number of ifindex pos += 1 } binary.BigEndian.PutUint32(buf[pos:], 1) // ifindex pos += 4 buf[pos] = 0 // distance pos += 1 binary.BigEndian.PutUint32(buf[pos:], 1) // metric pos += 4 binary.BigEndian.PutUint32(buf[pos:], 1) // mtu pos += 4 r := &IPRouteBody{Api: command[v]} err := r.DecodeFromBytes(buf, v) assert.Equal(nil, err) assert.Equal("192.168.100.0", r.Prefix.Prefix.String()) assert.Equal(uint8(0x18), r.Prefix.PrefixLen) assert.Equal(message[v], r.Message) assert.Equal("0.0.0.0", r.Nexthops[0].Gate.String()) switch v { case 2, 3, 4: assert.Equal(uint32(1), r.Nexthops[1].Ifindex) case 5, 6: assert.Equal(uint32(1), r.Nexthops[0].Ifindex) } assert.Equal(uint8(0), r.Distance) assert.Equal(uint32(1), r.Metric) assert.Equal(uint32(1), r.Mtu) //Serialize buf, err = r.Serialize(v) assert.Equal(nil, err) switch v { case 2, 3: assert.Equal([]byte{0x2, 0x10, byte(message[v])}, buf[0:3]) pos = 3 case 4, 5, 6: assert.Equal([]byte{0x2, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, byte(message[v])}, buf[0:8]) pos = 8 } switch v { case 2, 3, 4: assert.Equal([]byte{0x0, 0x1}, buf[pos:pos+2]) // SAFI pos += 2 case 5, 6: assert.Equal(byte(0x1), buf[pos]) // SAFI pos += 1 assert.Equal(byte(0x2), buf[pos]) // Family pos += 1 } assert.Equal(byte(24), buf[pos]) pos += 1 ip = net.ParseIP("192.168.100.0").To4() assert.Equal([]byte(ip)[0:3], buf[pos:pos+3]) pos += 3 switch v { case 2, 3, 4: assert.Equal(byte(2), buf[pos]) // number of nexthop pos += 1 case 5, 6: assert.Equal([]byte{0x0, 0x1}, buf[pos:pos+2]) // number of nexthop pos += 2 assert.Equal([]byte{0x0, 0x0, 0x0, 0x0}, buf[pos:pos+4]) // vrfid pos += 4 } switch v { case 2, 3: assert.Equal(byte(NEXTHOP_TYPE_IPV4), buf[pos]) assert.Equal(byte(NEXTHOP_TYPE_IFINDEX), buf[pos+5]) pos += 10 case 4: assert.Equal(byte(FRR_NEXTHOP_TYPE_IPV4), buf[pos]) assert.Equal(byte(FRR_NEXTHOP_TYPE_IFINDEX), buf[pos+5]) pos += 10 case 5, 6: assert.Equal(byte(FRR_NEXTHOP_TYPE_IPV4_IFINDEX), buf[pos]) pos += 9 } assert.Equal(byte(0x0), buf[pos]) // distance bi := make([]byte, 4) binary.BigEndian.PutUint32(bi, 1) assert.Equal(bi, buf[pos+1:pos+5]) //metric assert.Equal(bi, buf[pos+5:pos+9]) //mtu // length invalid buf = make([]byte, size[v]-8) buf[0] = byte(routeType[v]) pos = 1 switch v { case 2, 3: buf[pos] = byte(FLAG_SELECTED) pos += 1 case 4, 5, 6: binary.BigEndian.PutUint16(buf[pos:], 0) //Instance pos += 2 binary.BigEndian.PutUint32(buf[pos:], uint32(FLAG_SELECTED)) pos += 4 } buf[pos] = byte(message[v]) pos += 1 if v > 4 { buf[pos] = byte(FRR_ZAPI5_SAFI_UNICAST) //SAFI pos += 1 buf[pos] = byte(syscall.AF_INET) //Family pos += 1 } buf[pos] = 24 // PrefixLen pos += 1 ip = net.ParseIP("192.168.100.0").To4() copy(buf[pos:pos+3], []byte(ip)) pos += 3 switch v { case 2, 3, 4: buf[pos] = byte(1) // Number of Nexthops pos += 1 case 5, 6: binary.BigEndian.PutUint16(buf[pos:], 1) // Number of Nexthops pos += 2 binary.BigEndian.PutUint32(buf[pos:], 0) // vrfid pos += 4 buf[pos] = byte(FRR_NEXTHOP_TYPE_IPV4_IFINDEX) pos += 1 } nexthop = net.ParseIP("0.0.0.0").To4() copy(buf[pos:pos+4], []byte(nexthop)) pos += 4 if v < 5 { buf[pos] = 1 // Number of ifindex pos += 1 } binary.BigEndian.PutUint32(buf[pos:], 1) // ifindex pos += 4 r = &IPRouteBody{Api: command[v]} err = r.DecodeFromBytes(buf, v) switch v { case 2, 3, 4: assert.Equal("MESSAGE_METRIC message length invalid pos:14 rest:14", err.Error()) case 5, 6: assert.Equal("MESSAGE_METRIC message length invalid pos:19 rest:19", err.Error()) } // no nexthop switch v { case 2, 3, 4: buf = make([]byte, size[v]-14) case 5, 6: buf = make([]byte, size[v]-19) } buf[0] = byte(routeType[v]) pos = 1 switch v { case 2, 3: buf[pos] = byte(FLAG_SELECTED) pos += 1 case 4, 5, 6: binary.BigEndian.PutUint16(buf[pos:], 0) //Instance pos += 2 binary.BigEndian.PutUint32(buf[pos:], uint32(FLAG_SELECTED)) pos += 4 } buf[pos] = byte(messageWithoutNexthop[v]) pos += 1 if v > 4 { buf[pos] = byte(FRR_ZAPI5_SAFI_UNICAST) //SAFI pos += 1 buf[pos] = byte(syscall.AF_INET) //Family pos += 1 } buf[pos] = 24 // PrefixLen pos += 1 ip = net.ParseIP("192.168.100.0").To4() copy(buf[pos:pos+3], []byte(ip)) pos += 3 buf[pos] = 1 // distance pos += 1 binary.BigEndian.PutUint32(buf[pos:], 0) //metric pos += 4 r = &IPRouteBody{Api: command[v]} err = r.DecodeFromBytes(buf, v) assert.Equal(nil, err) } } func Test_IPRouteBody_IPv6(t *testing.T) { assert := assert.New(t) size := map[uint8]uint8{2: 43, 3: 43, 4: 48, 5: 55, 6: 55} command := map[uint8]API_TYPE{ 2: IPV6_ROUTE_ADD, 3: IPV6_ROUTE_ADD, 4: FRR_IPV6_ROUTE_ADD, 5: FRR_ZAPI5_IPV6_ROUTE_ADD, 6: FRR_ZAPI6_ROUTE_ADD, } routeType := map[uint8]ROUTE_TYPE{ 2: ROUTE_CONNECT, 3: ROUTE_CONNECT, 4: FRR_ROUTE_CONNECT, 5: FRR_ZAPI5_ROUTE_CONNECT, 6: FRR_ZAPI6_ROUTE_CONNECT, } message := map[uint8]MESSAGE_FLAG{ 2: MESSAGE_NEXTHOP | MESSAGE_IFINDEX | MESSAGE_DISTANCE | MESSAGE_METRIC | MESSAGE_MTU, 3: MESSAGE_NEXTHOP | MESSAGE_IFINDEX | MESSAGE_DISTANCE | MESSAGE_METRIC | MESSAGE_MTU, 4: FRR_MESSAGE_NEXTHOP | FRR_MESSAGE_IFINDEX | FRR_MESSAGE_DISTANCE | FRR_MESSAGE_METRIC | FRR_MESSAGE_MTU, 5: FRR_ZAPI5_MESSAGE_NEXTHOP | FRR_ZAPI5_MESSAGE_DISTANCE | FRR_ZAPI5_MESSAGE_METRIC | FRR_ZAPI5_MESSAGE_MTU, 6: FRR_ZAPI5_MESSAGE_NEXTHOP | FRR_ZAPI5_MESSAGE_DISTANCE | FRR_ZAPI5_MESSAGE_METRIC | FRR_ZAPI5_MESSAGE_MTU, } nexthopType := map[uint8]NEXTHOP_TYPE{ 2: NEXTHOP_TYPE_IPV6, 3: NEXTHOP_TYPE_IPV6, 4: FRR_NEXTHOP_TYPE_IPV6, 5: FRR_NEXTHOP_TYPE_IPV6_IFINDEX, 6: FRR_NEXTHOP_TYPE_IPV6_IFINDEX, } messageWithoutNexthop := map[uint8]MESSAGE_FLAG{ 2: MESSAGE_DISTANCE | MESSAGE_METRIC, 3: MESSAGE_DISTANCE | MESSAGE_METRIC, 4: FRR_MESSAGE_DISTANCE | FRR_MESSAGE_METRIC, 5: FRR_ZAPI5_MESSAGE_DISTANCE | FRR_ZAPI5_MESSAGE_METRIC, 6: FRR_ZAPI5_MESSAGE_DISTANCE | FRR_ZAPI5_MESSAGE_METRIC, } for v := MinZapiVer; v <= MaxZapiVer; v++ { //DecodeFromBytes IPV6_ROUTE buf := make([]byte, size[v]) buf[0] = byte(routeType[v]) pos := 1 switch v { case 2, 3: buf[pos] = byte(FLAG_SELECTED) pos += 1 case 4, 5, 6: binary.BigEndian.PutUint16(buf[pos:], 0) //Instance pos += 2 binary.BigEndian.PutUint32(buf[pos:], uint32(FLAG_SELECTED)) pos += 4 } buf[pos] = byte(message[v]) pos += 1 if v > 4 { buf[pos] = byte(FRR_ZAPI5_SAFI_UNICAST) //SAFI pos += 1 buf[pos] = byte(syscall.AF_INET6) //Family pos += 1 } buf[pos] = 64 // prefixLen pos += 1 ip := net.ParseIP("2001:db8:0:f101::").To16() copy(buf[pos:pos+8], []byte(ip)) pos += 8 switch v { case 2, 3, 4: buf[pos] = byte(1) // Number of Nexthops pos += 1 case 5, 6: binary.BigEndian.PutUint16(buf[pos:], 1) // Number of Nexthops pos += 2 binary.BigEndian.PutUint32(buf[pos:], 0) // vrfid pos += 4 buf[pos] = byte(FRR_NEXTHOP_TYPE_IPV6_IFINDEX) pos += 1 } nexthop := net.ParseIP("::").To16() copy(buf[pos:pos+16], []byte(nexthop)) pos += 16 if v < 5 { buf[pos] = 1 // Number of ifindex pos += 1 } binary.BigEndian.PutUint32(buf[pos:], 1) // ifindex pos += 4 buf[pos] = 0 // distance pos += 1 binary.BigEndian.PutUint32(buf[pos:], 1) // metric pos += 4 binary.BigEndian.PutUint32(buf[pos:], 1) // mtu pos += 4 r := &IPRouteBody{Api: command[v]} err := r.DecodeFromBytes(buf, v) assert.Equal(nil, err) assert.Equal("2001:db8:0:f101::", r.Prefix.Prefix.String()) assert.Equal(uint8(64), r.Prefix.PrefixLen) assert.Equal(message[v], r.Message) assert.Equal("::", r.Nexthops[0].Gate.String()) switch v { case 2, 3, 4: assert.Equal(uint32(1), r.Nexthops[1].Ifindex) case 5, 6: assert.Equal(uint32(1), r.Nexthops[0].Ifindex) } assert.Equal(uint8(0), r.Distance) assert.Equal(uint32(1), r.Metric) assert.Equal(uint32(1), r.Mtu) //Serialize buf, err = r.Serialize(v) assert.Equal(nil, err) switch v { case 2, 3: assert.Equal([]byte{0x2, 0x10, byte(message[v])}, buf[0:3]) pos = 3 case 4, 5, 6: assert.Equal([]byte{0x2, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, byte(message[v])}, buf[0:8]) pos = 8 } switch v { case 2, 3, 4: assert.Equal([]byte{0x0, 0x1}, buf[pos:pos+2]) // SAFI pos += 2 case 5, 6: assert.Equal(byte(0x1), buf[pos]) // SAFI pos += 1 assert.Equal(byte(syscall.AF_INET6), buf[pos]) // Family pos += 1 } assert.Equal(byte(64), buf[pos]) pos += 1 ip = net.ParseIP("2001:db8:0:f101::").To16() assert.Equal([]byte(ip)[0:8], buf[pos:pos+8]) pos += 8 switch v { case 2, 3, 4: assert.Equal(byte(2), buf[pos]) // number of nexthop pos += 1 case 5, 6: assert.Equal([]byte{0x0, 0x1}, buf[pos:pos+2]) // number of nexthop pos += 2 assert.Equal([]byte{0x0, 0x0, 0x0, 0x0}, buf[pos:pos+4]) // vrfid pos += 4 } assert.Equal(byte(nexthopType[v]), buf[pos]) pos += 1 ip = net.ParseIP("::").To16() assert.Equal([]byte(ip), buf[pos:pos+16]) pos += 16 switch v { // Only Quagga (ZAPI version 2,3) and FRR 3.x (ZAPI version 4) case 2, 3: assert.Equal(byte(NEXTHOP_TYPE_IFINDEX), buf[pos]) pos += 1 case 4: assert.Equal(byte(FRR_NEXTHOP_TYPE_IFINDEX), buf[pos]) pos += 1 } bi := make([]byte, 4) binary.BigEndian.PutUint32(bi, 1) assert.Equal(bi, buf[pos:pos+4]) // ifindex pos += 4 assert.Equal(byte(0x0), buf[pos]) // distance assert.Equal(bi, buf[pos+1:pos+5]) //metric assert.Equal(bi, buf[pos+5:pos+9]) //mtu // length invalid buf = make([]byte, size[v]+7) buf[0] = byte(routeType[v]) pos = 1 switch v { case 2, 3: buf[pos] = byte(FLAG_SELECTED) pos += 1 case 4, 5, 6: binary.BigEndian.PutUint16(buf[pos:], 0) //Instance pos += 2 binary.BigEndian.PutUint32(buf[pos:], uint32(FLAG_SELECTED)) pos += 4 } buf[pos] = byte(message[v]) pos += 1 if v > 4 { buf[pos] = byte(FRR_ZAPI5_SAFI_UNICAST) //SAFI pos += 1 buf[pos] = byte(syscall.AF_INET6) //Family pos += 1 } buf[pos] = 64 // prefixLen pos += 1 ip = net.ParseIP("2001:db8:0:f101::").To16() copy(buf[pos:pos+8], []byte(ip)) pos += 8 switch v { case 2, 3, 4: buf[pos] = byte(1) // Number of Nexthops pos += 1 case 5, 6: binary.BigEndian.PutUint16(buf[pos:], 1) // Number of Nexthops pos += 2 binary.BigEndian.PutUint32(buf[pos:], 0) // vrfid pos += 4 buf[pos] = byte(FRR_NEXTHOP_TYPE_IPV6_IFINDEX) pos += 1 } nexthop = net.ParseIP("::").To16() copy(buf[pos:pos+16], []byte(nexthop)) pos += 16 if v < 5 { buf[pos] = 1 // Number of ifindex pos += 1 } binary.BigEndian.PutUint32(buf[pos:], 1) // ifindex pos += 4 r = &IPRouteBody{Api: command[v]} err = r.DecodeFromBytes(buf, v) switch v { case 2, 3, 4: assert.Equal("message length invalid pos:39 rest:46", err.Error()) case 5, 6: assert.Equal("message length invalid pos:44 rest:51", err.Error()) } // no nexthop switch v { case 2, 3, 4: buf = make([]byte, size[v]-32) case 5, 6: buf = make([]byte, size[v]-37) } buf[0] = byte(routeType[v]) pos = 1 switch v { case 2, 3: buf[pos] = byte(FLAG_SELECTED) pos += 1 case 4, 5, 6: binary.BigEndian.PutUint16(buf[pos:], 0) //Instance pos += 2 binary.BigEndian.PutUint32(buf[pos:], uint32(FLAG_SELECTED)) pos += 4 } buf[pos] = byte(messageWithoutNexthop[v]) pos += 1 if v > 4 { buf[pos] = byte(FRR_ZAPI5_SAFI_UNICAST) //SAFI pos += 1 buf[pos] = byte(syscall.AF_INET) //Family pos += 1 } buf[pos] = 16 // PrefixLen pos += 1 ip = net.ParseIP("2501::").To16() copy(buf[pos:pos+2], []byte(ip)) pos += 2 buf[pos] = 1 //distance binary.BigEndian.PutUint32(buf[pos:], 0) //metic r = &IPRouteBody{Api: command[v]} err = r.DecodeFromBytes(buf, v) assert.Equal(nil, err) } } // NexthopLookup exists in only quagga (zebra API version 2 and 3) func Test_NexthopLookupBody(t *testing.T) { assert := assert.New(t) //ipv4 //DecodeFromBytes pos := 0 buf := make([]byte, 18) ip := net.ParseIP("192.168.50.0").To4() copy(buf[0:4], []byte(ip)) pos += 4 binary.BigEndian.PutUint32(buf[pos:], 10) pos += 4 buf[pos] = byte(1) pos += 1 buf[pos] = byte(4) pos += 1 ip = net.ParseIP("172.16.1.101").To4() copy(buf[pos:pos+4], []byte(ip)) pos += 4 binary.BigEndian.PutUint32(buf[pos:], 3) b := &NexthopLookupBody{Api: IPV4_NEXTHOP_LOOKUP} err := b.DecodeFromBytes(buf, 2) assert.Equal(nil, err) assert.Equal("192.168.50.0", b.Addr.String()) assert.Equal(uint32(10), b.Metric) assert.Equal(uint32(3), b.Nexthops[0].Ifindex) assert.Equal(NEXTHOP_TYPE(4), b.Nexthops[0].Type) assert.Equal("172.16.1.101", b.Nexthops[0].Gate.String()) //Serialize buf, err = b.Serialize(2) ip = net.ParseIP("192.168.50.0").To4() assert.Equal(nil, err) assert.Equal([]byte(ip)[0:4], buf[0:4]) // length invalid buf = make([]byte, 3) b = &NexthopLookupBody{Api: IPV4_NEXTHOP_LOOKUP} err = b.DecodeFromBytes(buf, 2) assert.NotEqual(nil, err) //ipv6 //DecodeFromBytes pos = 0 buf = make([]byte, 46) ip = net.ParseIP("2001:db8:0:f101::").To16() copy(buf[0:16], []byte(ip)) pos += 16 binary.BigEndian.PutUint32(buf[pos:], 10) pos += 4 buf[pos] = byte(1) pos += 1 buf[pos] = byte(7) pos += 1 ip = net.ParseIP("2001:db8:0:1111::1").To16() copy(buf[pos:pos+16], []byte(ip)) pos += 16 binary.BigEndian.PutUint32(buf[pos:], 3) b = &NexthopLookupBody{Api: IPV6_NEXTHOP_LOOKUP} err = b.DecodeFromBytes(buf, 2) assert.Equal(nil, err) assert.Equal("2001:db8:0:f101::", b.Addr.String()) assert.Equal(uint32(10), b.Metric) assert.Equal(uint32(3), b.Nexthops[0].Ifindex) assert.Equal(NEXTHOP_TYPE(7), b.Nexthops[0].Type) assert.Equal("2001:db8:0:1111::1", b.Nexthops[0].Gate.String()) //Serialize buf, err = b.Serialize(2) ip = net.ParseIP("2001:db8:0:f101::").To16() assert.Equal(nil, err) assert.Equal([]byte(ip)[0:16], buf[0:16]) // length invalid buf = make([]byte, 15) b = &NexthopLookupBody{Api: IPV6_NEXTHOP_LOOKUP} err = b.DecodeFromBytes(buf, 2) assert.NotEqual(nil, err) } // ImportLookup exists in only quagga (zebra API version 2 and 3) func Test_ImportLookupBody(t *testing.T) { assert := assert.New(t) //DecodeFromBytes pos := 0 buf := make([]byte, 18) ip := net.ParseIP("192.168.50.0").To4() copy(buf[0:4], []byte(ip)) pos += 4 binary.BigEndian.PutUint32(buf[pos:], 10) pos += 4 buf[pos] = byte(1) pos += 1 buf[pos] = byte(4) pos += 1 ip = net.ParseIP("172.16.1.101").To4() copy(buf[pos:pos+4], []byte(ip)) pos += 4 binary.BigEndian.PutUint32(buf[pos:], 3) b := &ImportLookupBody{Api: IPV4_IMPORT_LOOKUP} err := b.DecodeFromBytes(buf, 2) assert.Equal(nil, err) assert.Equal("192.168.50.0", b.Addr.String()) assert.Equal(uint32(10), b.Metric) assert.Equal(uint32(3), b.Nexthops[0].Ifindex) assert.Equal(NEXTHOP_TYPE(4), b.Nexthops[0].Type) assert.Equal("172.16.1.101", b.Nexthops[0].Gate.String()) //Serialize b.PrefixLength = uint8(24) buf, err = b.Serialize(2) ip = net.ParseIP("192.168.50.0").To4() assert.Equal(nil, err) assert.Equal(uint8(24), buf[0]) assert.Equal([]byte(ip)[0:4], buf[1:5]) // length invalid buf = make([]byte, 3) b = &ImportLookupBody{Api: IPV4_IMPORT_LOOKUP} err = b.DecodeFromBytes(buf, 2) assert.NotEqual(nil, err) } func Test_NexthopRegisterBody(t *testing.T) { assert := assert.New(t) // Input binary bufIn := []byte{ 0x01, uint8(syscall.AF_INET >> 8), uint8(syscall.AF_INET & 0xff), 0x20, // connected(1 byte)=1, afi(2 bytes)=AF_INET, prefix_len(1 byte)=32 0xc0, 0xa8, 0x01, 0x01, // prefix(4 bytes)="192.168.1.1" 0x00, uint8(syscall.AF_INET6 >> 8), uint8(syscall.AF_INET6 & 0xff), 0x80, // connected(1 byte)=0, afi(2 bytes)=AF_INET6, prefix_len(1 byte)=128 0x20, 0x01, 0x0d, 0xb8, // prefix(16 bytes)="2001:db8:1:1::1" 0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, } command := map[uint8]API_TYPE{ 2: NEXTHOP_REGISTER, 3: NEXTHOP_REGISTER, 4: FRR_NEXTHOP_REGISTER, 5: FRR_ZAPI5_NEXTHOP_REGISTER, 6: FRR_ZAPI6_NEXTHOP_REGISTER, } for v := MinZapiVer; v <= MaxZapiVer; v++ { // Test DecodeFromBytes() b := &NexthopRegisterBody{Api: command[v]} err := b.DecodeFromBytes(bufIn, v) assert.Nil(err) // Test decoded values assert.Equal(uint8(1), b.Nexthops[0].Connected) assert.Equal(uint16(syscall.AF_INET), b.Nexthops[0].Family) assert.Equal(net.ParseIP("192.168.1.1").To4(), b.Nexthops[0].Prefix) assert.Equal(uint8(0), b.Nexthops[1].Connected) assert.Equal(uint16(syscall.AF_INET6), b.Nexthops[1].Family) assert.Equal(net.ParseIP("2001:db8:1:1::1").To16(), b.Nexthops[1].Prefix) // Test Serialize() bufOut, err := b.Serialize(v) assert.Nil(err) // Test serialised value assert.Equal(bufIn, bufOut) } } func Test_NexthopUpdateBody(t *testing.T) { assert := assert.New(t) size := map[uint8]uint8{2: 21, 3: 21, 4: 22, 5: 26, 6: 26} command := map[uint8]API_TYPE{ 2: NEXTHOP_UPDATE, 3: NEXTHOP_UPDATE, 4: FRR_NEXTHOP_UPDATE, 5: FRR_ZAPI5_NEXTHOP_UPDATE, 6: FRR_ZAPI6_NEXTHOP_UPDATE, } nexthopType := map[uint8]NEXTHOP_TYPE{ 2: NEXTHOP_TYPE_IPV4_IFINDEX, 3: NEXTHOP_TYPE_IPV4_IFINDEX, 4: FRR_NEXTHOP_TYPE_IPV4_IFINDEX, 5: FRR_NEXTHOP_TYPE_IPV4_IFINDEX, 6: FRR_NEXTHOP_TYPE_IPV4_IFINDEX, } for v := MinZapiVer; v <= MaxZapiVer; v++ { // Input binary bufIn := make([]byte, size[v]) // afi(2 bytes)=AF_INET, prefix_len(1 byte)=32, prefix(4 bytes)="192.168.1.1" copy(bufIn[0:7], []byte{0x00, 0x02, 0x20, 0xc0, 0xa8, 0x01, 0x01}) pos := 7 if v > 4 { // Type(1byte), Instance(2byte) copy(bufIn[pos:pos+3], []byte{byte(FRR_ZAPI5_ROUTE_CONNECT), 0x00, 0x00}) pos += 3 } if v > 3 { // Distance bufIn[pos] = 0 pos += 1 } // metric(4 bytes)=1, number of nexthops(1 byte)=1 copy(bufIn[pos:pos+5], []byte{0x00, 0x00, 0x00, 0x01, 0x01}) pos += 5 bufIn[pos] = byte(nexthopType[v]) pos += 1 // nexthop_ip(4 bytes)="192.168.0.1", nexthop_ifindex(4 byte)=2 copy(bufIn[pos:pos+8], []byte{0xc0, 0xa8, 0x01, 0x01, 0x00, 0x00, 0x00, 0x02}) pos += 8 if v > 4 { bufIn[pos] = byte(0) // label num pos += 1 } // Test DecodeFromBytes() b := &NexthopUpdateBody{Api: command[v]} err := b.DecodeFromBytes(bufIn, v) assert.Nil(err) // Test decoded values assert.Equal(uint8(syscall.AF_INET), b.Prefix.Family) assert.Equal(net.ParseIP("192.168.1.1").To4(), b.Prefix.Prefix) assert.Equal(uint32(1), b.Metric) nexthop := Nexthop{ Type: nexthopType[v], Gate: net.ParseIP("192.168.1.1").To4(), Ifindex: uint32(2), } assert.Equal(1, len(b.Nexthops)) assert.Equal(nexthop, b.Nexthops[0]) } } func Test_GetLabelChunkBody(t *testing.T) { assert := assert.New(t) // Test only with ZAPI version 5 and 6 routeType := map[uint8]ROUTE_TYPE{5: FRR_ZAPI5_ROUTE_BGP, 6: FRR_ZAPI6_ROUTE_BGP} for v := uint8(5); v <= MaxZapiVer; v++ { //DecodeFromBytes buf := make([]byte, 12) buf[0] = byte(routeType[v]) // Route Type binary.BigEndian.PutUint16(buf[1:], 0) //Instance buf[3] = 0 //Keep binary.BigEndian.PutUint32(buf[4:], 80) //Start binary.BigEndian.PutUint32(buf[8:], 89) //End b := &GetLabelChunkBody{} err := b.DecodeFromBytes(buf, v) assert.Equal(nil, err) //Serialize b.ChunkSize = 10 buf, err = b.Serialize(v) assert.Equal(nil, err) assert.Equal(byte(routeType[v]), buf[0]) bi := make([]byte, 4) binary.BigEndian.PutUint32(bi, 10) assert.Equal(bi, buf[4:8]) // Chunksize } } func Test_VrfLabelBody(t *testing.T) { assert := assert.New(t) // Test only with ZAPI version 5 and 6 for v := uint8(5); v <= MaxZapiVer; v++ { //DecodeFromBytes bufIn := make([]byte, 6) binary.BigEndian.PutUint32(bufIn[0:], 80) //label bufIn[4] = byte(AFI_IP) bufIn[5] = byte(LSP_BGP) b := &VrfLabelBody{} err := b.DecodeFromBytes(bufIn, v) assert.Equal(nil, err) //Serialize var bufOut []byte bufOut, err = b.Serialize(v) assert.Equal(nil, err) assert.Equal(bufIn, bufOut) } }