1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
|
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* SPDX-License-Identifier: Unlicense
*/
#ifndef BN_H_
#define BN_H_
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <limits.h>
#include "tommath_class.h"
#ifdef __cplusplus
extern "C" {
#endif
/* MS Visual C++ doesn't have a 128bit type for words, so fall back to 32bit MPI's (where words are 64bit) */
#if defined(_MSC_VER) || defined(__LLP64__) || defined(__e2k__) || defined(__LCC__)
# define MP_32BIT
#endif
/* detect 64-bit mode if possible */
#if defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) || \
defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__) || \
defined(__s390x__) || defined(__arch64__) || defined(__aarch64__) || \
defined(__sparcv9) || defined(__sparc_v9__) || defined(__sparc64__) || \
defined(__ia64) || defined(__ia64__) || defined(__itanium__) || defined(_M_IA64) || \
defined(__LP64__) || defined(_LP64) || defined(__64BIT__)
# if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT))
# if defined(__GNUC__)
/* we support 128bit integers only via: __attribute__((mode(TI))) */
# define MP_64BIT
# else
/* otherwise we fall back to MP_32BIT even on 64bit platforms */
# define MP_32BIT
# endif
# endif
#endif
/* some default configurations.
*
* A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
* A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
*
* At the very least a mp_digit must be able to hold 7 bits
* [any size beyond that is ok provided it doesn't overflow the data type]
*/
#ifdef MP_8BIT
typedef uint8_t mp_digit;
typedef uint16_t mp_word;
# define MP_SIZEOF_MP_DIGIT 1
# ifdef DIGIT_BIT
# error You must not define DIGIT_BIT when using MP_8BIT
# endif
#elif defined(MP_16BIT)
typedef uint16_t mp_digit;
typedef uint32_t mp_word;
# define MP_SIZEOF_MP_DIGIT 2
# ifdef DIGIT_BIT
# error You must not define DIGIT_BIT when using MP_16BIT
# endif
#elif defined(MP_64BIT)
/* for GCC only on supported platforms */
typedef uint64_t mp_digit;
typedef unsigned long mp_word __attribute__((mode(TI)));
# define DIGIT_BIT 60
#else
/* this is the default case, 28-bit digits */
/* this is to make porting into LibTomCrypt easier :-) */
typedef uint32_t mp_digit;
typedef uint64_t mp_word;
# ifdef MP_31BIT
/* this is an extension that uses 31-bit digits */
# define DIGIT_BIT 31
# else
/* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
# define DIGIT_BIT 28
# define MP_28BIT
# endif
#endif
/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
#ifndef DIGIT_BIT
# define DIGIT_BIT (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1)) /* bits per digit */
typedef uint_least32_t mp_min_u32;
#else
typedef mp_digit mp_min_u32;
#endif
#define MP_DIGIT_BIT DIGIT_BIT
#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
#define MP_DIGIT_MAX MP_MASK
/* equalities */
#define MP_LT -1 /* less than */
#define MP_EQ 0 /* equal to */
#define MP_GT 1 /* greater than */
#define MP_ZPOS 0 /* positive integer */
#define MP_NEG 1 /* negative */
#define MP_OKAY 0 /* ok result */
#define MP_MEM -2 /* out of mem */
#define MP_VAL -3 /* invalid input */
#define MP_RANGE MP_VAL
#define MP_ITER -4 /* Max. iterations reached */
#define MP_YES 1 /* yes response */
#define MP_NO 0 /* no response */
/* Primality generation flags */
#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
typedef int mp_err;
/* you'll have to tune these... */
extern int KARATSUBA_MUL_CUTOFF,
KARATSUBA_SQR_CUTOFF,
TOOM_MUL_CUTOFF,
TOOM_SQR_CUTOFF;
/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */
/* default precision */
#ifndef MP_PREC
# ifndef MP_LOW_MEM
# define MP_PREC 32 /* default digits of precision */
# else
# define MP_PREC 8 /* default digits of precision */
# endif
#endif
/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
#define MP_WARRAY (1u << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1))
/* the infamous mp_int structure */
typedef struct {
int used, alloc, sign;
mp_digit *dp;
} mp_int;
/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
#define USED(m) ((m)->used)
#define DIGIT(m, k) ((m)->dp[(k)])
#define SIGN(m) ((m)->sign)
/* error code to char* string */
const char *mp_error_to_string(int code);
/* ---> init and deinit bignum functions <--- */
/* init a bignum */
int mp_init(mp_int *a);
/* free a bignum */
void mp_clear(mp_int *a);
/* init a null terminated series of arguments */
int mp_init_multi(mp_int *mp, ...);
/* clear a null terminated series of arguments */
void mp_clear_multi(mp_int *mp, ...);
/* exchange two ints */
void mp_exch(mp_int *a, mp_int *b);
/* shrink ram required for a bignum */
int mp_shrink(mp_int *a);
/* grow an int to a given size */
int mp_grow(mp_int *a, int size);
/* init to a given number of digits */
int mp_init_size(mp_int *a, int size);
/* ---> Basic Manipulations <--- */
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
#define mp_iseven(a) ((((a)->used == 0) || (((a)->dp[0] & 1u) == 0u)) ? MP_YES : MP_NO)
#define mp_isodd(a) ((((a)->used > 0) && (((a)->dp[0] & 1u) == 1u)) ? MP_YES : MP_NO)
#define mp_isneg(a) (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO)
/* set to zero */
void mp_zero(mp_int *a);
/* set to a digit */
void mp_set(mp_int *a, mp_digit b);
/* set a 32-bit const */
int mp_set_int(mp_int *a, unsigned long b);
/* set a platform dependent unsigned long value */
int mp_set_long(mp_int *a, unsigned long b);
/* set a platform dependent unsigned long long value */
int mp_set_long_long(mp_int *a, unsigned long long b);
/* get a 32-bit value */
unsigned long mp_get_int(const mp_int *a);
/* get a platform dependent unsigned long value */
unsigned long mp_get_long(const mp_int *a);
/* get a platform dependent unsigned long long value */
unsigned long long mp_get_long_long(const mp_int *a);
/* initialize and set a digit */
int mp_init_set(mp_int *a, mp_digit b);
/* initialize and set 32-bit value */
int mp_init_set_int(mp_int *a, unsigned long b);
/* copy, b = a */
int mp_copy(const mp_int *a, mp_int *b);
/* inits and copies, a = b */
int mp_init_copy(mp_int *a, const mp_int *b);
/* trim unused digits */
void mp_clamp(mp_int *a);
/* import binary data */
int mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op);
/* export binary data */
int mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op);
/* ---> digit manipulation <--- */
/* right shift by "b" digits */
void mp_rshd(mp_int *a, int b);
/* left shift by "b" digits */
int mp_lshd(mp_int *a, int b);
/* c = a / 2**b, implemented as c = a >> b */
int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
/* b = a/2 */
int mp_div_2(const mp_int *a, mp_int *b);
/* c = a * 2**b, implemented as c = a << b */
int mp_mul_2d(const mp_int *a, int b, mp_int *c);
/* b = a*2 */
int mp_mul_2(const mp_int *a, mp_int *b);
/* c = a mod 2**b */
int mp_mod_2d(const mp_int *a, int b, mp_int *c);
/* computes a = 2**b */
int mp_2expt(mp_int *a, int b);
/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(const mp_int *a);
/* I Love Earth! */
/* makes a pseudo-random mp_int of a given size */
int mp_rand(mp_int *a, int digits);
/* makes a pseudo-random small int of a given size */
int mp_rand_digit(mp_digit *r);
#ifdef MP_PRNG_ENABLE_LTM_RNG
/* A last resort to provide random data on systems without any of the other
* implemented ways to gather entropy.
* It is compatible with `rng_get_bytes()` from libtomcrypt so you could
* provide that one and then set `ltm_rng = rng_get_bytes;` */
extern unsigned long (*ltm_rng)(unsigned char *out, unsigned long outlen, void (*callback)(void));
extern void (*ltm_rng_callback)(void);
#endif
/* ---> binary operations <--- */
/* c = a XOR b */
int mp_xor(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a OR b */
int mp_or(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a AND b */
int mp_and(const mp_int *a, const mp_int *b, mp_int *c);
/* Checks the bit at position b and returns MP_YES
if the bit is 1, MP_NO if it is 0 and MP_VAL
in case of error */
int mp_get_bit(const mp_int *a, int b);
/* c = a XOR b (two complement) */
int mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a OR b (two complement) */
int mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a AND b (two complement) */
int mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c);
/* right shift (two complement) */
int mp_tc_div_2d(const mp_int *a, int b, mp_int *c);
/* ---> Basic arithmetic <--- */
/* b = ~a */
int mp_complement(const mp_int *a, mp_int *b);
/* b = -a */
int mp_neg(const mp_int *a, mp_int *b);
/* b = |a| */
int mp_abs(const mp_int *a, mp_int *b);
/* compare a to b */
int mp_cmp(const mp_int *a, const mp_int *b);
/* compare |a| to |b| */
int mp_cmp_mag(const mp_int *a, const mp_int *b);
/* c = a + b */
int mp_add(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a - b */
int mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a * b */
int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
/* b = a*a */
int mp_sqr(const mp_int *a, mp_int *b);
/* a/b => cb + d == a */
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
/* c = a mod b, 0 <= c < b */
int mp_mod(const mp_int *a, const mp_int *b, mp_int *c);
/* ---> single digit functions <--- */
/* compare against a single digit */
int mp_cmp_d(const mp_int *a, mp_digit b);
/* c = a + b */
int mp_add_d(const mp_int *a, mp_digit b, mp_int *c);
/* c = a - b */
int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c);
/* c = a * b */
int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);
/* a/b => cb + d == a */
int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
/* a/3 => 3c + d == a */
int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d);
/* c = a**b */
int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c);
int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
/* c = a mod b, 0 <= c < b */
int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);
/* ---> number theory <--- */
/* d = a + b (mod c) */
int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* d = a - b (mod c) */
int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* d = a * b (mod c) */
int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* c = a * a (mod b) */
int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c);
/* c = 1/a (mod b) */
int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
/* c = (a, b) */
int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
/* produces value such that U1*a + U2*b = U3 */
int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
/* c = [a, b] or (a*b)/(a, b) */
int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
/* finds one of the b'th root of a, such that |c|**b <= |a|
*
* returns error if a < 0 and b is even
*/
int mp_n_root(const mp_int *a, mp_digit b, mp_int *c);
int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
/* special sqrt algo */
int mp_sqrt(const mp_int *arg, mp_int *ret);
/* special sqrt (mod prime) */
int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret);
/* is number a square? */
int mp_is_square(const mp_int *arg, int *ret);
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
int mp_jacobi(const mp_int *a, const mp_int *n, int *c);
/* computes the Kronecker symbol c = (a | p) (like jacobi() but with {a,p} in Z */
int mp_kronecker(const mp_int *a, const mp_int *p, int *c);
/* used to setup the Barrett reduction for a given modulus b */
int mp_reduce_setup(mp_int *a, const mp_int *b);
/* Barrett Reduction, computes a (mod b) with a precomputed value c
*
* Assumes that 0 < x <= m*m, note if 0 > x > -(m*m) then you can merely
* compute the reduction as -1 * mp_reduce(mp_abs(x)) [pseudo code].
*/
int mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
/* setups the montgomery reduction */
int mp_montgomery_setup(const mp_int *n, mp_digit *rho);
/* computes a = B**n mod b without division or multiplication useful for
* normalizing numbers in a Montgomery system.
*/
int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
/* computes x/R == x (mod N) via Montgomery Reduction */
int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho);
/* returns 1 if a is a valid DR modulus */
int mp_dr_is_modulus(const mp_int *a);
/* sets the value of "d" required for mp_dr_reduce */
void mp_dr_setup(const mp_int *a, mp_digit *d);
/* reduces a modulo n using the Diminished Radix method */
int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k);
/* returns true if a can be reduced with mp_reduce_2k */
int mp_reduce_is_2k(const mp_int *a);
/* determines k value for 2k reduction */
int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
/* returns true if a can be reduced with mp_reduce_2k_l */
int mp_reduce_is_2k_l(const mp_int *a);
/* determines k value for 2k reduction */
int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d);
/* Y = G**X (mod P) */
int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y);
/* ---> Primes <--- */
/* number of primes */
#ifdef MP_8BIT
# define PRIME_SIZE 31
#else
# define PRIME_SIZE 256
#endif
/* table of first PRIME_SIZE primes */
extern const mp_digit ltm_prime_tab[PRIME_SIZE];
/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
int mp_prime_is_divisible(const mp_int *a, int *result);
/* performs one Fermat test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result);
/* performs one Miller-Rabin test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result);
/* This gives [for a given bit size] the number of trials required
* such that Miller-Rabin gives a prob of failure lower than 2^-96
*/
int mp_prime_rabin_miller_trials(int size);
/* performs one strong Lucas-Selfridge test of "a".
* Sets result to 0 if composite or 1 if probable prime
*/
int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result);
/* performs one Frobenius test of "a" as described by Paul Underwood.
* Sets result to 0 if composite or 1 if probable prime
*/
int mp_prime_frobenius_underwood(const mp_int *N, int *result);
/* performs t random rounds of Miller-Rabin on "a" additional to
* bases 2 and 3. Also performs an initial sieve of trial
* division. Determines if "a" is prime with probability
* of error no more than (1/4)**t.
* Both a strong Lucas-Selfridge to complete the BPSW test
* and a separate Frobenius test are available at compile time.
* With t<0 a deterministic test is run for primes up to
* 318665857834031151167461. With t<13 (abs(t)-13) additional
* tests with sequential small primes are run starting at 43.
* Is Fips 186.4 compliant if called with t as computed by
* mp_prime_rabin_miller_trials();
*
* Sets result to 1 if probably prime, 0 otherwise
*/
int mp_prime_is_prime(const mp_int *a, int t, int *result);
/* finds the next prime after the number "a" using "t" trials
* of Miller-Rabin.
*
* bbs_style = 1 means the prime must be congruent to 3 mod 4
*/
int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
/* makes a truly random prime of a given size (bytes),
* call with bbs = 1 if you want it to be congruent to 3 mod 4
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
* The prime generated will be larger than 2^(8*size).
*/
#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
/* makes a truly random prime of a given size (bits),
*
* Flags are as follows:
*
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
* LTM_PRIME_2MSB_ON - make the 2nd highest bit one
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
*/
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
/* ---> radix conversion <--- */
int mp_count_bits(const mp_int *a);
int mp_unsigned_bin_size(const mp_int *a);
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
int mp_signed_bin_size(const mp_int *a);
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
int mp_to_signed_bin(const mp_int *a, unsigned char *b);
int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
int mp_read_radix(mp_int *a, const char *str, int radix);
int mp_toradix(const mp_int *a, char *str, int radix);
int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen);
int mp_radix_size(const mp_int *a, int radix, int *size);
#ifndef LTM_NO_FILE
int mp_fread(mp_int *a, int radix, FILE *stream);
int mp_fwrite(const mp_int *a, int radix, FILE *stream);
#endif
#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
#define mp_raw_size(mp) mp_signed_bin_size(mp)
#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
#define mp_mag_size(mp) mp_unsigned_bin_size(mp)
#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
#define mp_tohex(M, S) mp_toradix((M), (S), 16)
#ifdef __cplusplus
}
#endif
#endif
/* ref: HEAD -> master, tag: v1.1.0 */
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
/* commit time: 2019-01-28 20:32:32 +0100 */
|