1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
#include "tommath_private.h"
#ifdef BN_MP_PRIME_FROBENIUS_UNDERWOOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* SPDX-License-Identifier: Unlicense
*/
/*
* See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
*/
#ifndef LTM_USE_FIPS_ONLY
#ifdef MP_8BIT
/*
* floor of positive solution of
* (2^16)-1 = (a+4)*(2*a+5)
* TODO: Both values are smaller than N^(1/4), would have to use a bigint
* for a instead but any a biger than about 120 are already so rare that
* it is possible to ignore them and still get enough pseudoprimes.
* But it is still a restriction of the set of available pseudoprimes
* which makes this implementation less secure if used stand-alone.
*/
#define LTM_FROBENIUS_UNDERWOOD_A 177
#else
#define LTM_FROBENIUS_UNDERWOOD_A 32764
#endif
int mp_prime_frobenius_underwood(const mp_int *N, int *result)
{
mp_int T1z, T2z, Np1z, sz, tz;
int a, ap2, length, i, j, isset;
int e;
*result = MP_NO;
if ((e = mp_init_multi(&T1z, &T2z, &Np1z, &sz, &tz, NULL)) != MP_OKAY) {
return e;
}
for (a = 0; a < LTM_FROBENIUS_UNDERWOOD_A; a++) {
/* TODO: That's ugly! No, really, it is! */
if ((a==2) || (a==4) || (a==7) || (a==8) || (a==10) ||
(a==14) || (a==18) || (a==23) || (a==26) || (a==28)) {
continue;
}
/* (32764^2 - 4) < 2^31, no bigint for >MP_8BIT needed) */
if ((e = mp_set_long(&T1z, (unsigned long)a)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sqr(&T1z, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sub_d(&T1z, 4uL, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_kronecker(&T1z, N, &j)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if (j == -1) {
break;
}
if (j == 0) {
/* composite */
goto LBL_FU_ERR;
}
}
/* Tell it a composite and set return value accordingly */
if (a >= LTM_FROBENIUS_UNDERWOOD_A) {
e = MP_ITER;
goto LBL_FU_ERR;
}
/* Composite if N and (a+4)*(2*a+5) are not coprime */
if ((e = mp_set_long(&T1z, (unsigned long)((a+4)*((2*a)+5)))) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_gcd(N, &T1z, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if (!((T1z.used == 1) && (T1z.dp[0] == 1u))) {
goto LBL_FU_ERR;
}
ap2 = a + 2;
if ((e = mp_add_d(N, 1uL, &Np1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
mp_set(&sz, 1uL);
mp_set(&tz, 2uL);
length = mp_count_bits(&Np1z);
for (i = length - 2; i >= 0; i--) {
/*
* temp = (sz*(a*sz+2*tz))%N;
* tz = ((tz-sz)*(tz+sz))%N;
* sz = temp;
*/
if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
/* a = 0 at about 50% of the cases (non-square and odd input) */
if (a != 0) {
if ((e = mp_mul_d(&sz, (mp_digit)a, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_add(&T1z, &T2z, &T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
}
if ((e = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sub(&tz, &sz, &T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_add(&sz, &tz, &sz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mul(&sz, &T2z, &tz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mod(&tz, N, &tz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mod(&T1z, N, &sz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((isset = mp_get_bit(&Np1z, i)) == MP_VAL) {
e = isset;
goto LBL_FU_ERR;
}
if (isset == MP_YES) {
/*
* temp = (a+2) * sz + tz
* tz = 2 * tz - sz
* sz = temp
*/
if (a == 0) {
if ((e = mp_mul_2(&sz, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
} else {
if ((e = mp_mul_d(&sz, (mp_digit)ap2, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
}
if ((e = mp_add(&T1z, &tz, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sub(&T2z, &sz, &tz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
mp_exch(&sz, &T1z);
}
}
if ((e = mp_set_long(&T1z, (unsigned long)((2 * a) + 5))) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mod(&T1z, N, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((mp_iszero(&sz) != MP_NO) && (mp_cmp(&tz, &T1z) == MP_EQ)) {
*result = MP_YES;
goto LBL_FU_ERR;
}
LBL_FU_ERR:
mp_clear_multi(&tz, &sz, &Np1z, &T2z, &T1z, NULL);
return e;
}
#endif
#endif
/* ref: HEAD -> master, tag: v1.1.0 */
/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
/* commit time: 2019-01-28 20:32:32 +0100 */
|