1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ltc_ecc_mulmod.c
ECC Crypto, Tom St Denis
*/
#ifdef LTC_MECC
#ifndef LTC_ECC_TIMING_RESISTANT
/* size of sliding window, don't change this! */
#define WINSIZE 4
/**
Perform a point multiplication
@param k The scalar to multiply by
@param G The base point
@param R [out] Destination for kG
@param modulus The modulus of the field the ECC curve is in
@param map Boolean whether to map back to affine or not (1==map, 0 == leave in projective)
@return CRYPT_OK on success
*/
int ltc_ecc_mulmod(void *k, ecc_point *G, ecc_point *R, void *modulus, int map)
{
ecc_point *tG, *M[8];
int i, j, err;
void *mu, *mp;
unsigned long buf;
int first, bitbuf, bitcpy, bitcnt, mode, digidx;
LTC_ARGCHK(k != NULL);
LTC_ARGCHK(G != NULL);
LTC_ARGCHK(R != NULL);
LTC_ARGCHK(modulus != NULL);
/* init montgomery reduction */
if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) {
return err;
}
if ((err = mp_init(&mu)) != CRYPT_OK) {
mp_montgomery_free(mp);
return err;
}
if ((err = mp_montgomery_normalization(mu, modulus)) != CRYPT_OK) {
mp_montgomery_free(mp);
mp_clear(mu);
return err;
}
/* alloc ram for window temps */
for (i = 0; i < 8; i++) {
M[i] = ltc_ecc_new_point();
if (M[i] == NULL) {
for (j = 0; j < i; j++) {
ltc_ecc_del_point(M[j]);
}
mp_montgomery_free(mp);
mp_clear(mu);
return CRYPT_MEM;
}
}
/* make a copy of G incase R==G */
tG = ltc_ecc_new_point();
if (tG == NULL) { err = CRYPT_MEM; goto done; }
/* tG = G and convert to montgomery */
if (mp_cmp_d(mu, 1) == LTC_MP_EQ) {
if ((err = mp_copy(G->x, tG->x)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(G->y, tG->y)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(G->z, tG->z)) != CRYPT_OK) { goto done; }
} else {
if ((err = mp_mulmod(G->x, mu, modulus, tG->x)) != CRYPT_OK) { goto done; }
if ((err = mp_mulmod(G->y, mu, modulus, tG->y)) != CRYPT_OK) { goto done; }
if ((err = mp_mulmod(G->z, mu, modulus, tG->z)) != CRYPT_OK) { goto done; }
}
mp_clear(mu);
mu = NULL;
/* calc the M tab, which holds kG for k==8..15 */
/* M[0] == 8G */
if ((err = ltc_mp.ecc_ptdbl(tG, M[0], modulus, mp)) != CRYPT_OK) { goto done; }
if ((err = ltc_mp.ecc_ptdbl(M[0], M[0], modulus, mp)) != CRYPT_OK) { goto done; }
if ((err = ltc_mp.ecc_ptdbl(M[0], M[0], modulus, mp)) != CRYPT_OK) { goto done; }
/* now find (8+k)G for k=1..7 */
for (j = 9; j < 16; j++) {
if ((err = ltc_mp.ecc_ptadd(M[j-9], tG, M[j-8], modulus, mp)) != CRYPT_OK) { goto done; }
}
/* setup sliding window */
mode = 0;
bitcnt = 1;
buf = 0;
digidx = mp_get_digit_count(k) - 1;
bitcpy = bitbuf = 0;
first = 1;
/* perform ops */
for (;;) {
/* grab next digit as required */
if (--bitcnt == 0) {
if (digidx == -1) {
break;
}
buf = mp_get_digit(k, digidx);
bitcnt = (int) ltc_mp.bits_per_digit;
--digidx;
}
/* grab the next msb from the ltiplicand */
i = (buf >> (ltc_mp.bits_per_digit - 1)) & 1;
buf <<= 1;
/* skip leading zero bits */
if (mode == 0 && i == 0) {
continue;
}
/* if the bit is zero and mode == 1 then we double */
if (mode == 1 && i == 0) {
if ((err = ltc_mp.ecc_ptdbl(R, R, modulus, mp)) != CRYPT_OK) { goto done; }
continue;
}
/* else we add it to the window */
bitbuf |= (i << (WINSIZE - ++bitcpy));
mode = 2;
if (bitcpy == WINSIZE) {
/* if this is the first window we do a simple copy */
if (first == 1) {
/* R = kG [k = first window] */
if ((err = mp_copy(M[bitbuf-8]->x, R->x)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(M[bitbuf-8]->y, R->y)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(M[bitbuf-8]->z, R->z)) != CRYPT_OK) { goto done; }
first = 0;
} else {
/* normal window */
/* ok window is filled so double as required and add */
/* double first */
for (j = 0; j < WINSIZE; j++) {
if ((err = ltc_mp.ecc_ptdbl(R, R, modulus, mp)) != CRYPT_OK) { goto done; }
}
/* then add, bitbuf will be 8..15 [8..2^WINSIZE] guaranteed */
if ((err = ltc_mp.ecc_ptadd(R, M[bitbuf-8], R, modulus, mp)) != CRYPT_OK) { goto done; }
}
/* empty window and reset */
bitcpy = bitbuf = 0;
mode = 1;
}
}
/* if bits remain then double/add */
if (mode == 2 && bitcpy > 0) {
/* double then add */
for (j = 0; j < bitcpy; j++) {
/* only double if we have had at least one add first */
if (first == 0) {
if ((err = ltc_mp.ecc_ptdbl(R, R, modulus, mp)) != CRYPT_OK) { goto done; }
}
bitbuf <<= 1;
if ((bitbuf & (1 << WINSIZE)) != 0) {
if (first == 1){
/* first add, so copy */
if ((err = mp_copy(tG->x, R->x)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(tG->y, R->y)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(tG->z, R->z)) != CRYPT_OK) { goto done; }
first = 0;
} else {
/* then add */
if ((err = ltc_mp.ecc_ptadd(R, tG, R, modulus, mp)) != CRYPT_OK) { goto done; }
}
}
}
}
/* map R back from projective space */
if (map) {
err = ltc_ecc_map(R, modulus, mp);
} else {
err = CRYPT_OK;
}
done:
if (mu != NULL) {
mp_clear(mu);
}
mp_montgomery_free(mp);
ltc_ecc_del_point(tG);
for (i = 0; i < 8; i++) {
ltc_ecc_del_point(M[i]);
}
return err;
}
#endif
#undef WINSIZE
#endif
/* $Source$ */
/* $Revision$ */
/* $Date$ */
|