1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ecc_verify_hash.c
ECC Crypto, Tom St Denis
*/
#ifdef MECC
/* verify
*
* w = s^-1 mod n
* u1 = xw
* u2 = rw
* X = u1*G + u2*Q
* v = X_x1 mod n
* accept if v == r
*/
/**
Verify an ECC signature
@param sig The signature to verify
@param siglen The length of the signature (octets)
@param hash The hash (message digest) that was signed
@param hashlen The length of the hash (octets)
@param stat Result of signature, 1==valid, 0==invalid
@param key The corresponding public ECC key
@return CRYPT_OK if successful (even if the signature is not valid)
*/
int ecc_verify_hash(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long hashlen,
int *stat, ecc_key *key)
{
ecc_point *mG, *mQ;
void *r, *s, *v, *w, *u1, *u2, *e, *p, *m;
void *mp;
int err;
LTC_ARGCHK(sig != NULL);
LTC_ARGCHK(hash != NULL);
LTC_ARGCHK(stat != NULL);
LTC_ARGCHK(key != NULL);
/* default to invalid signature */
*stat = 0;
mp = NULL;
/* is the IDX valid ? */
if (ltc_ecc_is_valid_idx(key->idx) != 1) {
return CRYPT_PK_INVALID_TYPE;
}
/* allocate ints */
if ((err = mp_init_multi(&r, &s, &v, &w, &u1, &u2, &p, &e, &m, NULL)) != CRYPT_OK) {
return CRYPT_MEM;
}
/* allocate points */
mG = ltc_ecc_new_point();
mQ = ltc_ecc_new_point();
if (mQ == NULL || mG == NULL) {
err = CRYPT_MEM;
goto error;
}
/* parse header */
if ((err = der_decode_sequence_multi(sig, siglen,
LTC_ASN1_INTEGER, 1UL, r,
LTC_ASN1_INTEGER, 1UL, s,
LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) {
goto error;
}
/* get the order */
if ((err = mp_read_radix(p, (char *)key->dp->order, 16)) != CRYPT_OK) { goto error; }
/* get the modulus */
if ((err = mp_read_radix(m, (char *)key->dp->prime, 16)) != CRYPT_OK) { goto error; }
/* check for zero */
if (mp_iszero(r) || mp_iszero(s) || mp_cmp(r, p) != LTC_MP_LT || mp_cmp(s, p) != LTC_MP_LT) {
err = CRYPT_INVALID_PACKET;
goto error;
}
/* read hash */
if ((err = mp_read_unsigned_bin(e, (unsigned char *)hash, (int)hashlen)) != CRYPT_OK) { goto error; }
/* w = s^-1 mod n */
if ((err = mp_invmod(s, p, w)) != CRYPT_OK) { goto error; }
/* u1 = ew */
if ((err = mp_mulmod(e, w, p, u1)) != CRYPT_OK) { goto error; }
/* u2 = rw */
if ((err = mp_mulmod(r, w, p, u2)) != CRYPT_OK) { goto error; }
/* find mG and mQ */
if ((err = mp_read_radix(mG->x, (char *)key->dp->Gx, 16)) != CRYPT_OK) { goto error; }
if ((err = mp_read_radix(mG->y, (char *)key->dp->Gy, 16)) != CRYPT_OK) { goto error; }
if ((err = mp_set(mG->z, 1)) != CRYPT_OK) { goto error; }
if ((err = mp_copy(key->pubkey.x, mQ->x)) != CRYPT_OK) { goto error; }
if ((err = mp_copy(key->pubkey.y, mQ->y)) != CRYPT_OK) { goto error; }
if ((err = mp_copy(key->pubkey.z, mQ->z)) != CRYPT_OK) { goto error; }
/* compute u1*mG + u2*mQ = mG */
if (ltc_mp.ecc_mul2add == NULL) {
if ((err = ltc_mp.ecc_ptmul(u1, mG, mG, m, 0)) != CRYPT_OK) { goto error; }
if ((err = ltc_mp.ecc_ptmul(u2, mQ, mQ, m, 0)) != CRYPT_OK) { goto error; }
/* find the montgomery mp */
if ((err = mp_montgomery_setup(m, &mp)) != CRYPT_OK) { goto error; }
/* add them */
if ((err = ltc_mp.ecc_ptadd(mQ, mG, mG, m, mp)) != CRYPT_OK) { goto error; }
/* reduce */
if ((err = ltc_mp.ecc_map(mG, m, mp)) != CRYPT_OK) { goto error; }
} else {
/* use Shamir's trick to compute u1*mG + u2*mQ using half of the doubles */
if ((err = ltc_mp.ecc_mul2add(mG, u1, mQ, u2, mG, m)) != CRYPT_OK) { goto error; }
}
/* v = X_x1 mod n */
if ((err = mp_mod(mG->x, p, v)) != CRYPT_OK) { goto error; }
/* does v == r */
if (mp_cmp(v, r) == LTC_MP_EQ) {
*stat = 1;
}
/* clear up and return */
err = CRYPT_OK;
error:
ltc_ecc_del_point(mG);
ltc_ecc_del_point(mQ);
mp_clear_multi(r, s, v, w, u1, u2, p, e, m, NULL);
if (mp != NULL) {
mp_montgomery_free(mp);
}
return err;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc_verify_hash.c,v $ */
/* $Revision: 1.12 $ */
/* $Date: 2006/12/04 05:07:59 $ */
|