1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
#include "tomcrypt.h"
/**
@file dsa_verify_key.c
DSA implementation, verify a key, Tom St Denis
*/
#ifdef LTC_MDSA
/**
Validate a DSA key
Yeah, this function should've been called dsa_validate_key()
in the first place and for compat-reasons we keep it
as it was (for now).
@param key The key to validate
@param stat [out] Result of test, 1==valid, 0==invalid
@return CRYPT_OK if successful
*/
int dsa_verify_key(dsa_key *key, int *stat)
{
int err;
err = dsa_int_validate_primes(key, stat);
if (err != CRYPT_OK || *stat == 0) return err;
err = dsa_int_validate_pqg(key, stat);
if (err != CRYPT_OK || *stat == 0) return err;
return dsa_int_validate_xy(key, stat);
}
/**
Non-complex part (no primality testing) of the validation
of DSA params (p, q, g)
@param key The key to validate
@param stat [out] Result of test, 1==valid, 0==invalid
@return CRYPT_OK if successful
*/
int dsa_int_validate_pqg(dsa_key *key, int *stat)
{
void *tmp1, *tmp2;
int err;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(stat != NULL);
*stat = 0;
/* check q-order */
if ( key->qord >= LTC_MDSA_MAX_GROUP || key->qord <= 15 ||
(unsigned long)key->qord >= mp_unsigned_bin_size(key->p) ||
(mp_unsigned_bin_size(key->p) - key->qord) >= LTC_MDSA_DELTA ) {
return CRYPT_OK;
}
/* FIPS 186-4 chapter 4.1: 1 < g < p */
if (mp_cmp_d(key->g, 1) != LTC_MP_GT || mp_cmp(key->g, key->p) != LTC_MP_LT) {
return CRYPT_OK;
}
if ((err = mp_init_multi(&tmp1, &tmp2, NULL)) != CRYPT_OK) { return err; }
/* FIPS 186-4 chapter 4.1: q is a divisor of (p - 1) */
if ((err = mp_sub_d(key->p, 1, tmp1)) != CRYPT_OK) { goto error; }
if ((err = mp_div(tmp1, key->q, tmp1, tmp2)) != CRYPT_OK) { goto error; }
if (mp_iszero(tmp2) != LTC_MP_YES) {
err = CRYPT_OK;
goto error;
}
/* FIPS 186-4 chapter 4.1: g is a generator of a subgroup of order q in
* the multiplicative group of GF(p) - so we make sure that g^q mod p = 1
*/
if ((err = mp_exptmod(key->g, key->q, key->p, tmp1)) != CRYPT_OK) { goto error; }
if (mp_cmp_d(tmp1, 1) != LTC_MP_EQ) {
err = CRYPT_OK;
goto error;
}
err = CRYPT_OK;
*stat = 1;
error:
mp_clear_multi(tmp2, tmp1, NULL);
return err;
}
/**
Primality testing of DSA params p and q
@param key The key to validate
@param stat [out] Result of test, 1==valid, 0==invalid
@return CRYPT_OK if successful
*/
int dsa_int_validate_primes(dsa_key *key, int *stat)
{
int err, res;
*stat = 0;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(stat != NULL);
/* key->q prime? */
if ((err = mp_prime_is_prime(key->q, LTC_MILLER_RABIN_REPS, &res)) != CRYPT_OK) {
return err;
}
if (res == LTC_MP_NO) {
return CRYPT_OK;
}
/* key->p prime? */
if ((err = mp_prime_is_prime(key->p, LTC_MILLER_RABIN_REPS, &res)) != CRYPT_OK) {
return err;
}
if (res == LTC_MP_NO) {
return CRYPT_OK;
}
*stat = 1;
return CRYPT_OK;
}
/**
Validation of a DSA key (x and y values)
@param key The key to validate
@param stat [out] Result of test, 1==valid, 0==invalid
@return CRYPT_OK if successful
*/
int dsa_int_validate_xy(dsa_key *key, int *stat)
{
void *tmp;
int err;
*stat = 0;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(stat != NULL);
/* 1 < y < p-1 */
if ((err = mp_init(&tmp)) != CRYPT_OK) {
return err;
}
if ((err = mp_sub_d(key->p, 1, tmp)) != CRYPT_OK) {
goto error;
}
if (mp_cmp_d(key->y, 1) != LTC_MP_GT || mp_cmp(key->y, tmp) != LTC_MP_LT) {
err = CRYPT_OK;
goto error;
}
if (key->type == PK_PRIVATE) {
/* FIPS 186-4 chapter 4.1: 0 < x < q */
if (mp_cmp_d(key->x, 0) != LTC_MP_GT || mp_cmp(key->x, key->q) != LTC_MP_LT) {
err = CRYPT_OK;
goto error;
}
/* FIPS 186-4 chapter 4.1: y = g^x mod p */
if ((err = mp_exptmod(key->g, key->x, key->p, tmp)) != CRYPT_OK) {
goto error;
}
if (mp_cmp(tmp, key->y) != LTC_MP_EQ) {
err = CRYPT_OK;
goto error;
}
}
else {
/* with just a public key we cannot test y = g^x mod p therefore we
* only test that y^q mod p = 1, which makes sure y is in g^x mod p
*/
if ((err = mp_exptmod(key->y, key->q, key->p, tmp)) != CRYPT_OK) {
goto error;
}
if (mp_cmp_d(tmp, 1) != LTC_MP_EQ) {
err = CRYPT_OK;
goto error;
}
}
err = CRYPT_OK;
*stat = 1;
error:
mp_clear(tmp);
return err;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */
|